

## Introduction to Space-Time Coding

Frédérique Oggier frederique@ntu.edu.sg

Division of Mathematical Sciences Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017

#### Last Time

- 1. A fully diverse space-time code is a family C of (square) complex matrices such that det(X − X') ≠ 0 when X ≠ X'.
  - Division algebras whose elements can be represented as matrices satisfy full diversity by definition.

#### Last Time

- 1. A fully diverse space-time code is a family C of (square) complex matrices such that det(X − X') ≠ 0 when X ≠ X'.
  - 2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.
- For coding for MIMO slow fading channels, joint design of an inner and outer code.
  - The outer code is a coset code, which addresses the problem of codes over matrices.
  - Connection between codes over matrices and codes over finite fields.

### Outline

Quotients of Space-Time Codes  $n \times n$  Space-Time Coded Modulation Structure of Quotients

Construction A

The Commutative Case



## $n \times n$ MIMO slow fading channel

$$\underbrace{\mathbf{Y}}_{n\times nL} = \underbrace{\mathbf{H}}_{n\times n} \mathbf{X} + \underbrace{\mathbf{Z}}_{n\times nL}$$

- *nL* = frame length.
- $\mathbf{X} = [X_1, \dots, X_L] \in \mathbb{C}^{n \times nL}$ .

## Code design criteria

### Design

$$\mathbf{X} = [X_1, \dots, X_L] \in \mathbb{C}^{n \times nL}$$

#### such that

- 1.  $X_i$  are fully diverse, i = 1, ..., L.
- 2. the minimum determinant

$$\begin{array}{rcl} \Delta_{min} & = & \min\limits_{\mathbf{0} \neq \mathbf{X}} \det(\mathbf{X}\mathbf{X}^*) \\ & = & \min\limits_{\mathbf{0} \neq \mathbf{X}} \det(\sum_{i=1}^L X_i X_i^*) \\ & \geq & \min\limits_{\mathbf{0} \neq \mathbf{X}} (\sum_{i=1}^L |\det(X_i)|)^2 \end{array}$$

is maximized.

### Concatenated codes

- 1. Choose  $X_i$ , i = 1, ..., L independently.
- 2. Use a concatenated code:
  - *inner code* for diversity
  - *outer code* for coding gain

### **Orders**

• Given a cyclic algebra  $\mathcal{A} = L \oplus eL \oplus \ldots \oplus e^{n-1}L$ , then  $\Lambda = \mathcal{O}_L \oplus e\mathcal{O}_L \oplus \ldots \oplus e^{n-1}\mathcal{O}_L$  is an  $\mathcal{O}_K$ -order.

### **Orders**

- Given a cyclic algebra  $\mathcal{A} = L \oplus eL \oplus \ldots \oplus e^{n-1}L$ , then  $\Lambda = \mathcal{O}_L \oplus e\mathcal{O}_L \oplus \ldots \oplus e^{n-1}\mathcal{O}_L$  is an  $\mathcal{O}_K$ -order.
- Then  $\Lambda$  is a free module over  $\mathcal{O}_K$ , with basis  $\{b_i\}$ ,  $i=1,\ldots,n^2$ :

$$\Lambda \simeq \oplus_{i=1}^{n^2} b_i \mathcal{O}_K.$$

### **Orders**

- Given a cyclic algebra  $\mathcal{A} = L \oplus eL \oplus \ldots \oplus e^{n-1}L$ , then  $\Lambda = \mathcal{O}_L \oplus e\mathcal{O}_L \oplus \ldots \oplus e^{n-1}\mathcal{O}_L$  is an  $\mathcal{O}_K$ -order.
- Then  $\Lambda$  is a free module over  $\mathcal{O}_K$ , with basis  $\{b_i\}$ ,  $i=1,\ldots,n^2$ :

$$\Lambda \simeq \oplus_{i=1}^{n^2} b_i \mathcal{O}_K.$$

• If  $\mathcal{O}_L$  is a free  $\mathcal{O}_K$ -module of rank n with basis  $\{\beta_k\}$ ,  $k=1,\ldots,n$ :

$$\Lambda \simeq \bigoplus_{j=1}^n e^j \oplus_{k=1}^n \beta_k \mathcal{O}_K.$$

Thus  $\{b_i\} = \{e^j \beta_k\}.$ 

### Quotients of Orders

• Let  $\mathfrak a$  be an ideal of  $\mathcal O_K$ , then  $\mathfrak a\Lambda$  is two-sided and

$$\Lambda/\mathfrak{a}\Lambda \simeq \oplus_{i=1}^{n^2} b_i \mathcal{O}_K/b_i \mathfrak{a}$$

is a free module over  $\mathcal{O}_K/\mathfrak{a}\mathcal{O}_K$  with basis  $\pi(b_i)$  where  $\pi:\Lambda\to\Lambda/\mathfrak{a}\Lambda$ .

## Coset codes for n = 2, 3, 4

For A over L/K, with

$$L/K = \mathbb{Q}(i, \sqrt{5}), \quad \gamma = i$$
  

$$L/K = \mathbb{Q}(\zeta_3, \zeta_7 + \zeta_7^{-1}), \quad \gamma = \zeta_3$$
  

$$L/K = \mathbb{Q}(i, \zeta_{15} + \zeta_{15}^{-1}), \quad \gamma = i$$

we have

## Linking $\mathcal{M}_2(\mathbb{F}_2)$ and $\mathbb{F}_4$

- $\mathbb{F}_4 = \mathbb{F}_2(\omega)$ , where  $\omega^2 + \omega + 1 = 0$ .
- We have

$$\mathcal{M}_2(\mathbb{F}_2) \simeq \mathbb{F}_2(\omega) + \mathbb{F}_2(\omega)j \simeq \mathbb{F}_4 \times \mathbb{F}_4$$

where  $j^2=1$  and  $j\omega=\omega^2 j$ , given by

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mapsto j, \ \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \mapsto w.$$

## Linking $\mathcal{M}_2(\mathbb{F}_2)$ and $\mathbb{F}_4$

- $\mathbb{F}_4 = \mathbb{F}_2(\omega)$ , where  $\omega^2 + \omega + 1 = 0$ .
- We have

$$\mathcal{M}_2(\mathbb{F}_2)\simeq \mathbb{F}_2(\omega)+\mathbb{F}_2(\omega)j\simeq \mathbb{F}_4 imes \mathbb{F}_4$$

where  $j^2=1$  and  $j\omega=\omega^2 j$ , given by

$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} \mapsto j, \ \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} \mapsto w.$$

This means:

$$\phi: (a,b) \in \mathbb{F}_4 \times \mathbb{F}_4 \mapsto M_{a,b} \in \mathcal{M}_2(\mathbb{F}_2).$$

## Cyclic algebras over finite fields

• Cyclic algebra  $\mathcal{A}=(\mathbb{F}_{2^n}/\mathbb{F}_2,\sigma,1)$ , with

$$\mathcal{A} \simeq \mathbb{F}_{2^n} \oplus \dots \mathbb{F}_{2^n} e \oplus \mathbb{F}_{2^n} e^{n-1}.$$

- We have  $\mathcal{A} \simeq \operatorname{End}_{\mathbb{F}_2}(\mathbb{F}_{2^n})$ .
- The isomorphism  $j: \mathcal{A} \to \operatorname{End}_{\mathbb{F}_2}(\mathbb{F}_{2^n})$  is explicitly given by j(a), which is the multiplication by a for all a in  $\mathbb{F}_{2^n}$ , and  $j(e) = \sigma$ .
- Induces an isomorphism of  $\mathbb{F}_2$ -left vector space

$$\phi: \underbrace{\mathbb{F}_{2^n} \times \ldots \times \mathbb{F}_{2^n}}_{n} \to \mathcal{M}_n(\mathbb{F}_2).$$

## An isometry between $\mathcal{M}_2(\mathbb{F}_2)$ and $\mathbb{F}_4$

- $\phi:(a,b)\in \mathbb{F}_4 imes \mathbb{F}_4\mapsto M_{a,b}\in \mathcal{M}_2(\mathbb{F}_2)$  maps Hamming weight  $1\mapsto$  invertible.
- Define a weight on the matrices

$$w(M_{a,b}) = \left\{ egin{array}{ll} 0 & M_{a,b} = 0 \ 1 & M_{a,b} ext{invertible} \ 2 & 0 
eq M_{a,b} ext{non-invertible} \end{array} 
ight. .$$

ullet  $\phi$  is an isometry:

$$w(M_{a,b}) = w(\phi((a,b))) = w_H((a,b))$$

where  $w_H$ =Hamming weight.

### Higher dimensions

ullet  $\phi$  can be extended to  $\emph{m}$ -tuples

$$\phi: (\mathbb{F}_{2^n} \times \ldots \times \mathbb{F}_{2^n})^m \to \mathcal{M}_n(\mathbb{F}_2)^m$$

so that if  $\pi(\mathcal{C})$  is a code of length m over  $\mathcal{M}_n(\mathbb{F}_2)$ , then  $\phi^{-1}(\pi(\mathcal{C}))$  is a code of length 2m over  $\mathbb{F}_{2^n}$ .

## Higher dimensions

ullet  $\phi$  can be extended to  $\emph{m}$ -tuples

$$\phi: (\mathbb{F}_{2^n} \times \ldots \times \mathbb{F}_{2^n})^m \to \mathcal{M}_n(\mathbb{F}_2)^m$$

so that if  $\pi(\mathcal{C})$  is a code of length m over  $\mathcal{M}_n(\mathbb{F}_2)$ , then  $\phi^{-1}(\pi(\mathcal{C}))$  is a code of length 2m over  $\mathbb{F}_{2^n}$ .

Open Questions: Variations of Bachoc weight, best weight?

[ O., Sole, Belfiore, "Codes over Matrix Rings for Space-Time Coded Modulations" ]

## Coset codes (non-prime ideals)

• For  $\mathcal{G} = \alpha(\mathbb{Z}[i,\theta] \oplus e\mathbb{Z}[i,\theta])$ ,  $e^2 = i$ , we have

$$\mathcal{G}/(1+i)\mathcal{G}\simeq\mathcal{M}_2(\mathbb{F}_2)$$

and

$$\Delta_{min} \geq \min_{\mathbf{0} \neq \mathbf{X}} (\sum_{i=1}^{L} |\det(X_i)|)^2 \geq \min(|1+i|^4 \delta, d_{min}^2 \delta),$$

 $\delta$ = minimum determinant of  $\mathcal{G}$ ,  $d_{min}$ =minimum distance.

# Coset codes (non-prime ideals)

• For  $\mathcal{G} = \alpha(\mathbb{Z}[i,\theta] \oplus e\mathbb{Z}[i,\theta])$ ,  $e^2 = i$ , we have

$$\mathcal{G}/(1+i)\mathcal{G}\simeq\mathcal{M}_2(\mathbb{F}_2)$$

and

$$\Delta_{min} \geq \min_{\mathbf{0} \neq \mathbf{X}} (\sum_{i=1}^{L} |\det(X_i)|)^2 \geq \min(|1+i|^4 \delta, d_{min}^2 \delta),$$

 $\delta$ = minimum determinant of  $\mathcal{G}$ ,  $d_{min}$ =minimum distance.

• To increase the lower bound, what about replacing (1+i) by 2?

$$\mathcal{M}_2(\mathbb{F}_2[i])$$

We have

$$\mathcal{G}/(2)\mathcal{G}\simeq \mathcal{M}_2(\mathbb{F}_2[i]).$$

$$\mathcal{M}_2(\mathbb{F}_2[i])$$

We have

$$\mathcal{G}/(2)\mathcal{G}\simeq \mathcal{M}_2(\mathbb{F}_2[i]).$$

• We have

$$\mathcal{M}_2(\mathbb{F}_2[i])\simeq \mathbb{F}_2(\omega)[i]+\mathbb{F}_2(\omega)[i]j\simeq \mathbb{F}_4[i] imes \mathbb{F}_4[i]$$
 where  $j^2=1$  and  $j\omega=\omega^2 j$ .

$$\mathcal{M}_2(\mathbb{F}_2[i])$$

We have

$$\mathcal{G}/(2)\mathcal{G}\simeq\mathcal{M}_2(\mathbb{F}_2[i]).$$

• We have

$$\mathcal{M}_2(\mathbb{F}_2[i]) \simeq \mathbb{F}_2(\omega)[i] + \mathbb{F}_2(\omega)[i]j \simeq \mathbb{F}_4[i] \times \mathbb{F}_4[i]$$

where  $j^2 = 1$  and  $j\omega = \omega^2 j$ .

This means:

$$\phi: \mathbb{F}_4[i] \times \mathbb{F}_4[i] \mapsto \mathcal{M}_2(\mathbb{F}_2[i]).$$

$$\mathbb{F}_4[i]$$

•  $\mathbb{F}_4[i]$  has 16 elements, 4 of them non-invertible  $(a(1+i), a \in \mathbb{F}_4)$ .

$$\mathbb{F}_4[i]$$

- $\mathbb{F}_4[i]$  has 16 elements, 4 of them non-invertible  $(a(1+i), a \in \mathbb{F}_4)$ .
- If  $a+b\omega$  is not invertible and  $c+d\omega$  is (or vice-versa), then

$$\psi((a+b\omega,c+d\omega)) = \begin{bmatrix} a+d & b+c \\ b+c+d & a+b+d \end{bmatrix}$$

is invertible.

$$\mathbb{F}_4[i]$$

- $\mathbb{F}_4[i]$  has 16 elements, 4 of them non-invertible  $(a(1+i), a \in \mathbb{F}_4)$ .
- If  $a+b\omega$  is not invertible and  $c+d\omega$  is (or vice-versa), then

$$\psi((a+b\omega,c+d\omega)) = \begin{bmatrix} a+d & b+c \\ b+c+d & a+b+d \end{bmatrix}$$

is invertible.

Open Questions: Variations of Bachoc weight, best weight?

## Summary

- To design concatenated space-time codes, we looked at quotients of space-time codes.
- We started with good space-time codes, then looked at the obtained quotients, and tried to design proper weights (still quite open...).
- What about considering a joint design?

• Let K/F be a number field extension of degree n with cyclic Galois group  $\langle \sigma \rangle$ , and respective rings of integers  $\mathcal{O}_K$  and  $\mathcal{O}_F$ .

- Let K/F be a number field extension of degree n with cyclic Galois group  $\langle \sigma \rangle$ , and respective rings of integers  $\mathcal{O}_K$  and  $\mathcal{O}_F$ .
- Consider the cyclic F-algebra A defined by

$$K \oplus Ke \oplus \cdots Ke^{n-1}$$

where  $e^n = u \in F$ , and  $ek = \sigma(k)e$  for  $k \in K$ .

- Let K/F be a number field extension of degree n with cyclic Galois group  $\langle \sigma \rangle$ , and respective rings of integers  $\mathcal{O}_K$  and  $\mathcal{O}_F$ .
- Consider the cyclic F-algebra A defined by

$$K \oplus Ke \oplus \cdots Ke^{n-1}$$

where  $e^n = u \in F$ , and  $ek = \sigma(k)e$  for  $k \in K$ .

• We assume that  $u^i$ ,  $i=0,\ldots,n-1$ , are not norms in K/F so that the algebra is division, and that  $u\in\mathcal{O}_F$ .

- Let K/F be a number field extension of degree n with cyclic Galois group  $\langle \sigma \rangle$ , and respective rings of integers  $\mathcal{O}_K$  and  $\mathcal{O}_F$ .
- Consider the cyclic F-algebra A defined by

$$K \oplus Ke \oplus \cdots Ke^{n-1}$$

where  $e^n = u \in F$ , and  $ek = \sigma(k)e$  for  $k \in K$ .

- We assume that  $u^i$ , i = 0, ..., n-1, are not norms in K/F so that the algebra is division, and that  $u \in \mathcal{O}_F$ .
- Then

$$\Lambda = \mathcal{O}_{\mathcal{K}} \oplus \mathcal{O}_{\mathcal{K}} e \oplus \cdots \oplus \mathcal{O}_{\mathcal{K}} e^{n-1}$$

is an  $\mathcal{O}_F$ -order of A, which is typically not maximal.

## Quotients of Cyclic Division Algebras

#### The questions are:

- Determine the structure of  $\Lambda/\mathcal{J}$  when  $\Lambda = \bigoplus_{i=0}^{n-1} \mathcal{O}_K e^i$  and  $\mathcal{J}$  is a two-sided ideal of  $\Lambda$ .
- Construct codes over  $\Lambda/\mathcal{J}$  and relate them to the original space-time code.

• **Lemma.** Let  $\mathcal J$  be a non zero two-sided ideal of  $\Lambda$ . Then  $\mathcal J\cap\mathcal O_F\neq 0$ .

- **Lemma.** Let  $\mathcal J$  be a non zero two-sided ideal of  $\Lambda$ . Then  $\mathcal J\cap\mathcal O_F\neq 0$ .
- The intersection  $\mathcal{I} = \mathcal{J} \cap \mathcal{O}_F$  is a nonzero ideal of  $\mathcal{O}_F$ .

- **Lemma.** Let  $\mathcal J$  be a non zero two-sided ideal of  $\Lambda$ . Then  $\mathcal J\cap\mathcal O_F\neq 0$ .
- The intersection  $\mathcal{I} = \mathcal{J} \cap \mathcal{O}_F$  is a nonzero ideal of  $\mathcal{O}_F$ .
- An ideal  $\mathcal{I} \neq 0$  of  $\mathcal{O}_F$  lies in the center of  $\Lambda$ , and generates  $\mathcal{I}\Lambda$ .

- **Lemma.** Let  $\mathcal J$  be a non zero two-sided ideal of  $\Lambda$ . Then  $\mathcal J\cap\mathcal O_F\neq 0$ .
- The intersection  $\mathcal{I} = \mathcal{J} \cap \mathcal{O}_F$  is a nonzero ideal of  $\mathcal{O}_F$ .
- An ideal  $\mathcal{I} \neq 0$  of  $\mathcal{O}_F$  lies in the center of  $\Lambda$ , and generates  $\mathcal{I}\Lambda$ .
- We have  $\mathcal{J}\supseteq\mathcal{I}$  if and only if  $\mathcal{J}\supseteq\mathcal{I}\Lambda$ . There is then a one-to-one correspondence between ideals of  $\Lambda$  that contain  $\mathcal{I}\Lambda$  and ideals of the quotient  $\Lambda/\mathcal{I}\Lambda$  (the ideal  $\mathcal{J}\supseteq\mathcal{I}\Lambda$  of  $\Lambda$  corresponds to the ideal  $\mathcal{J}/\mathcal{I}\Lambda$  of  $\Lambda/\mathcal{I}\Lambda$ ).

#### The Structure of $\Lambda/\mathcal{J}$

- **Lemma.** Let  $\mathcal{J}$  be a non zero two-sided ideal of  $\Lambda$ . Then  $\mathcal{J} \cap \mathcal{O}_F \neq 0$ .
- The intersection  $\mathcal{I} = \mathcal{J} \cap \mathcal{O}_F$  is a nonzero ideal of  $\mathcal{O}_F$ .
- An ideal  $\mathcal{I} \neq 0$  of  $\mathcal{O}_F$  lies in the center of  $\Lambda$ , and generates  $\mathcal{I}\Lambda$ .
- We have  $\mathcal{J}\supseteq\mathcal{I}$  if and only if  $\mathcal{J}\supseteq\mathcal{I}\Lambda$ . There is then a one-to-one correspondence between ideals of  $\Lambda$  that contain  $\mathcal{I}\Lambda$  and ideals of the quotient  $\Lambda/\mathcal{I}\Lambda$  (the ideal  $\mathcal{J}\supseteq\mathcal{I}\Lambda$  of  $\Lambda$  corresponds to the ideal  $\mathcal{J}/\mathcal{I}\Lambda$  of  $\Lambda/\mathcal{I}\Lambda$ ).
- To determine all quotient rings  $\Lambda/\mathcal{J}$ , it is enough to determine the ideal structure of  $\Lambda/\mathcal{I}\Lambda$  for  $\mathcal{I}$  a nonzero ideal of  $\mathcal{O}_F$ .

[O.-Sethuraman, Quotients of Orders in Cyclic Algebras and Space-Time Codes]

## The Structure of $\Lambda/\mathcal{I}\Lambda$

• We have

$$\Lambda/\mathcal{I}\Lambda\cong \oplus_{i=0}^{n-1}(\mathcal{O}_K/\mathcal{I}\mathcal{O}_K)e^i.$$

## The Structure of $\Lambda/\mathcal{I}\Lambda$

We have

$$\Lambda/\mathcal{I}\Lambda \cong \bigoplus_{i=0}^{n-1} (\mathcal{O}_K/\mathcal{I}\mathcal{O}_K)e^i.$$

Lemma.

$$\Lambda/\mathcal{I}\Lambda \cong \mathcal{R}_1 \times \cdots \times \mathcal{R}_t$$

where  $\mathcal{R}_i$  is the ring  $\bigoplus_{j=0}^{n-1} (\mathcal{O}_K/\mathfrak{p}_i^{s_i} \mathcal{O}_K) e^j$  is subject to  $e(k+\mathfrak{p}_i^{s_i} \mathcal{O}_K) = (\sigma(k)+\mathfrak{p}_i^{s_i} \mathcal{O}_K) e$  and  $e^n = u+\mathfrak{p}_i^{s_i}$ .

• Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.

- Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.
- Then

$$\Lambda/\mathcal{I}\Lambda\simeq \oplus_{j=0}^{n-1}\bar{K}e^{j}$$

and 
$$e^n = u + \mathfrak{q}$$
.

- Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.
- Then

$$\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^j$$

and 
$$e^n = u + \mathfrak{q}$$
.

• If  $u \notin \mathfrak{q}$ , then

$$\Lambda/\mathcal{I}\Lambda \simeq (\bar{K}/\bar{F}, \bar{\sigma}, u + \mathfrak{q}) \simeq \mathcal{M}_n(\bar{F}).$$

- Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.
- Then

$$\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^j$$

and  $e^n = u + \mathfrak{q}$ .

• If  $u \notin \mathfrak{q}$ , then

$$\Lambda/\mathcal{I}\Lambda \simeq (\bar{K}/\bar{F}, \bar{\sigma}, u + \mathfrak{q}) \simeq \mathcal{M}_n(\bar{F}).$$

• For  $\mathcal{A} = (\mathbb{Q}(i, \sqrt{5})/\mathbb{Q}(i), \sigma, i), \Lambda/(1+i)\Lambda \simeq \mathcal{M}_2(\mathbb{F}_2).$ 

- Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.
- Then

$$\Lambda/\mathcal{I}\Lambda\simeq \oplus_{j=0}^{n-1}\bar{K}e^{j}$$

and 
$$e^n = u + \mathfrak{q}$$
.

- Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.
- Then

$$\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^j$$

and 
$$e^n = u + \mathfrak{q}$$
.

• If  $u \in \mathfrak{q}$ , then

$$\Lambda/\mathcal{I}\Lambda \simeq (\bar{K}/\bar{F},\bar{\sigma},0) \simeq \bar{K}[x,\bar{\sigma}]/\langle x^n \rangle.$$

- Inertial case:  $\mathcal{I}=\mathfrak{q},\ g=e=1,\ f=n$  and  $q\mathcal{O}_K$  is a prime. Then  $\bar{K}=\mathcal{O}_K/\mathfrak{q}\mathcal{O}_K$  and  $\bar{F}=\mathcal{O}_F/\mathfrak{q}$  are finite fields and  $\bar{K}/\bar{F}$  is a cyclic extension of degree n.
- Then

$$\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^j$$

and  $e^n = u + \mathfrak{q}$ .

• If  $u \in \mathfrak{q}$ , then

$$\Lambda/\mathcal{I}\Lambda \simeq (\bar{K}/\bar{F},\bar{\sigma},0) \simeq \bar{K}[x,\bar{\sigma}]/\langle x^n \rangle.$$

• For  $\mathcal{A} = (\mathbb{Q}(i, \sqrt{5})/\mathbb{Q}(i), \sigma, i+1), \Lambda/(1+i)\Lambda \simeq \mathbb{F}_4[x, \bar{\sigma}]/\langle x^2 \rangle$ .

• Inertial case:  $\mathcal{I}=\mathfrak{q}^s$ , s>1, g=e=1, f=n and  $q\mathcal{O}_K$  is a prime.

- Inertial case:  $\mathcal{I}=\mathfrak{q}^s$ , s>1, g=e=1, f=n and  $q\mathcal{O}_K$  is a prime.
- Then

$$\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1} (\mathcal{O}_K/\mathfrak{q}^s)e^j$$

and 
$$e^n = u + \mathfrak{q}^s$$
.

- Inertial case:  $\mathcal{I} = \mathfrak{q}^s$ , s > 1, g = e = 1, f = n and  $q\mathcal{O}_K$  is a prime.
- Then

$$\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1}(\mathcal{O}_K/\mathfrak{q}^s)e^j$$

and  $e^n = u + \mathfrak{q}^s$ . • If  $u \notin \mathfrak{q}^s$ , then

$$\Lambda/\mathcal{I}\Lambda \simeq \mathcal{M}_n(\mathcal{O}_F/\mathfrak{q}^s).$$

- Inertial case:  $\mathcal{I}=\mathfrak{q}^s$ , s>1, g=e=1, f=n and  $q\mathcal{O}_K$  is a prime.
- Then

$$\Lambda/\mathcal{I}\Lambda\simeq \oplus_{j=0}^{n-1}(\mathcal{O}_K/\mathfrak{q}^s)e^j$$

• If  $u \notin \mathfrak{q}^s$ , then

and  $e^n = u + \mathfrak{q}^s$ .

$$\Lambda/\mathcal{I}\Lambda\simeq\mathcal{M}_n(\mathcal{O}_F/\mathfrak{q}^s).$$

• For  $\mathcal{A} = (\mathbb{Q}(i, \sqrt{5})/\mathbb{Q}(i), \sigma, i)$ ,  $\Lambda/(1+i)^2\Lambda \simeq \mathcal{M}_2(\mathbb{F}_2[i])$ .

#### The Structure of $\Lambda/\mathcal{I}\Lambda$ : split case

• Split case:  $\mathcal{I}=q$ , g>1, e=1, f=n/g.

#### The Structure of $\Lambda/\mathcal{I}\Lambda$ : split case

- Split case:  $\mathcal{I} = q$ , g > 1, e = 1, f = n/g.
- Suppose  $\bar{u} \neq 0 \in \bar{F}$ . Then  $\Lambda/\mathcal{I}\Lambda \simeq \mathcal{M}_n(\bar{F})$ .

#### The Structure of $\Lambda/\mathcal{I}\Lambda$ : split case

- Split case:  $\mathcal{I} = q$ , g > 1, e = 1, f = n/g.
- Suppose  $\bar{u} \neq 0 \in \bar{F}$ . Then  $\Lambda/\mathcal{I}\Lambda \simeq \mathcal{M}_n(\bar{F})$ .
- Suppose  $\bar{u} = 0 \in \bar{F}$ . Then  $\Lambda/\mathcal{I}\Lambda \simeq \oplus_{j=0}^{n-1} (\bar{K}^{(1)} \times \ldots \times \bar{K}^{(g)}) e^{j}$ .

#### Quotients of Cyclic Division Algebras

#### Open questions:

- Determine the structure of  $\Lambda/\mathcal{J}$  when  $\Lambda=\oplus_{i=0}^{n-1}\mathcal{O}_K e^i$  and  $\mathcal{J}$  is a two-sided ideal of  $\Lambda$ .

  Characterization partially answered (the ramified case is still open).
- Construct codes over  $\Lambda/\mathcal{J}$  and relate them to the original space-time code.

#### Construction A (Commutative)

- Let ρ : Z<sup>N</sup> → F<sub>2</sub><sup>N</sup> be the reduction modulo 2 componentwise.
- Let C ⊂ F<sub>2</sub><sup>N</sup> be an (N, k) linear binary code.
- Then  $\rho^{-1}(C)$  is a lattice.

## Construction A (Commutative)

- Let  $\rho: \mathbb{Z}^N \mapsto \mathbb{F}_2^N$  be the reduction modulo 2 componentwise.
- Let C ⊂ F<sub>2</sub><sup>N</sup> be an (N, k) linear binary code.
- Then  $\rho^{-1}(C)$  is a lattice.

- Let ζ<sub>p</sub> be a primitive pth root of unity, p a prime.
- Let  $\rho: \mathbb{Z}[\zeta_p]^N \mapsto \mathbb{F}_p^N$  be the reduction componentwise modulo the prime ideal  $\mathfrak{p} = (1 \zeta_p)$ .
- Then  $\rho^{-1}(C)$  is a lattice, when C is an (N, k) linear code over  $\mathbb{F}_p$ .
- In particular, p = 2 yields the binary Construction A.

## Construction A (Commutative)

- Let  $\rho: \mathbb{Z}^N \mapsto \mathbb{F}_2^N$  be the reduction modulo 2 componentwise.
- Let C ⊂ F<sub>2</sub><sup>N</sup> be an (N, k) linear binary code.
- Then  $\rho^{-1}(C)$  is a lattice.

- Let  $\zeta_p$  be a primitive pth root of unity, p a prime.
- Let  $\rho: \mathbb{Z}[\zeta_p]^N \mapsto \mathbb{F}_p^N$  be the reduction componentwise modulo the prime ideal  $\mathfrak{p} = (1 \zeta_p)$ .
- Then  $\rho^{-1}(C)$  is a lattice, when C is an (N, k) linear code over  $\mathbb{F}_p$ .
- In particular, p = 2 yields the binary Construction A.

Before discussing division algebras, let us look at the commutative case.

#### Construction A (I)

• Take N=4 copies of  $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ :

$$\mathbb{Z}[\tfrac{1+\sqrt{5}}{2}] \times \mathbb{Z}[\tfrac{1+\sqrt{5}}{2}] \times \mathbb{Z}[\tfrac{1+\sqrt{5}}{2}] \times \mathbb{Z}[\tfrac{1+\sqrt{5}}{2}]$$

- Take the quotient modulo p = 2 componentwise.
- What is  $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]/2\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ ?

#### Construction A (I)

• Take N=4 copies of  $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ :

$$\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$$

- Take the quotient modulo p = 2 componentwise.
- What is  $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]/2\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ ?
- It is  $\mathbb{F}_4 = \{ a + bw, \ a, b \in \mathbb{F}_2 \}$  where  $w^2 + w + 1 = 0$ .

#### Construction A (II)

• Take N=4 copies of  $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$  and reduce them modulo p=2 componentwise:

$$\rho: \mathbb{Z}[\tfrac{1+\sqrt{5}}{2}]^4 \to \mathbb{F}_4^4.$$

• Take a linear code C of length 4 inside  $\mathbb{F}_4^4$ , say

$$\begin{bmatrix} 1 & 0 & w^2 & w \\ 0 & 1 & w & w^2 \end{bmatrix}$$

• Then  $\rho^{-1}(C)$  is a lattice.

## Construction A (III)

• A generator matrix for  $\rho^{-1}(C)$  is given by

$$M_{C} = \begin{bmatrix} I_{k} \otimes M & A \widetilde{\otimes} M \\ \mathbf{0}_{nN-nk,nk} & I_{N-k} \otimes pM \end{bmatrix}$$

where

$$(I_k, A \mod p) = \begin{bmatrix} 1 & 0 & w^2 & w \\ 0 & 1 & w & w^2 \end{bmatrix},$$

$$A \widetilde{\otimes} M = [\sigma_1(A_1) \otimes M_1, \dots, \sigma_n(A_1) \otimes M_n, \dots]$$

and

$$M = \begin{bmatrix} 1 & 1 \\ \sigma_1(\frac{1+\sqrt{5}}{2}) & \sigma_2(\frac{1+\sqrt{5}}{2}) \end{bmatrix}.$$

#### Construction A: this Example

• Using N=4,  $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ , p=2, and C given by

$$\begin{bmatrix} 1 & 0 & w^2 & w \\ 0 & 1 & w & w^2 \end{bmatrix}$$

over  $\mathbb{F}_4$  gives a lattice of dimension 8, minimum 4, which is 5-modular.

• This is the lattice  $Q_8(1)$ .

#### Construction A: some Background

- The case  $\mathbb{Z}$  is p=2 is well known, this is the standard binary Construction A proposed by Forney.
- The case  $\mathbb{Z}[\zeta_p]$  is known, proposed by Ebeling.
- Many many variations using different ideals, rings etc
- Recent constructions use number fields, to combine Construction A and algebraic lattices.

#### Construction A: Parameters and Flexibility

- Choose n the degree of the number field, and N the length of the code.
- Use ideals or orders.
- Choose different ideals, which gives different finite structures where to code.
- Introduce a twisting (or scaling) parameter.

#### Construction A: What For?

- Construction of modular lattices, with large minimum, or other properties.
- Coding applications (encoding decoding).
- Wiretap coding (secrecy gain).
- Physical network coding.

#### Some Results

| No.         | Dim | d  | $\mu_{\Lambda_C}$ | ks  | $\chi^W_{\Lambda_C}$ |
|-------------|-----|----|-------------------|-----|----------------------|
| 1           | 8   | 3  | 2 2               | 8   | 1.2077               |
| 1<br>2<br>3 | 8   | 5  | 2                 | 8   | 1.0020               |
| 3           | 8   | 5  | 4                 | 120 | 1.2970               |
| 4           | 8   | 6  | 3                 | 16  | 1.1753               |
| 5           | 8   | 7  | 2                 | 8   | 0.8838               |
| 6           | 8   | 7  | 3                 | 16  | 1.1048               |
| 7           | 8   | 11 | 3                 | 8   | 1.0015               |
| 8           | 8   | 14 | 2                 | 8   | 0.5303               |
| 9           | 8   | 14 | 3                 | 8   | 0.9216               |
| 10          | 8   | 15 | 3                 | 8   | 0.8869               |
| 11          | 8   | 15 | 4                 | 8   | 1.0840               |
| 12          | 8   | 23 | 3                 | 8   | 0.6847               |
| 13          | 8   | 23 | 5                 | 16  | 1.0396               |
| 14          | 8   | 23 | 5                 | 8   | 1.1394               |

#### Conclusions

- Constructions of lattice from number fields.
- Combined with Construction A.
- Useful for different coding applications: encoding, modularity, wiretap coding, physical network coding.
- Generalizes to the non-commutative case (to be seen next!)

Thank you for your attention!