Introduction to Space-Time Coding

Frédérique Oggier
frederique@ntu.edu.sg
Division of Mathematical Sciences
Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017

Last Time

- 1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0$ when $\mathbf{X} \neq \mathbf{X}^{\prime}$.

2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.

Last Time

- 1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0$ when $\mathbf{X} \neq \mathbf{X}^{\prime}$.

2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.

- 1. For coding for MIMO slow fading channels, joint design of an inner and outer code.

2. The outer code is a coset code, which addresses the problem of codes over matrices.
3. Connection between codes over matrices and codes over finite fields.

Outline

Quotients of Space-Time Codes $n \times n$ Space-Time Coded Modulation Structure of Quotients
Construction A
The Commutative Case

$n \times n$ MIMO slow fading channel

$$
\underbrace{\mathbf{Y}}_{n \times n L}=\underbrace{\mathbf{H}}_{n \times n} \mathbf{X}+\underbrace{\mathbf{Z}}_{n \times n L}
$$

- $n L=$ frame length.
- $\mathbf{X}=\left[X_{1}, \ldots, X_{L}\right] \in \mathbb{C}^{n \times n L}$.

Code design criteria

Design

$$
\mathbf{X}=\left[X_{1}, \ldots, X_{L}\right] \in \mathbb{C}^{n \times n L}
$$

such that

1. X_{i} are fully diverse, $i=1, \ldots, L$.
2. the minimum determinant

$$
\begin{aligned}
\Delta_{\min } & =\min _{\mathbf{0} \neq \mathbf{X}} \operatorname{det}\left(\mathbf{X X}^{*}\right) \\
& =\min _{\mathbf{0} \neq \mathbf{X}} \operatorname{det}\left(\sum_{i=1}^{L} X_{i} X_{i}^{*}\right) \\
& \geq \min _{\mathbf{0} \neq \mathbf{X}}\left(\sum_{i=1}^{L}\left|\operatorname{det}\left(X_{i}\right)\right|\right)^{2}
\end{aligned}
$$

is maximized.

Concatenated codes

1. Choose $X_{i}, i=1, \ldots, L$ independently.
2. Use a concatenated code:

- inner code for diversity
- outer code for coding gain

Orders

- Given a cyclic algebra $\mathcal{A}=L \oplus e L \oplus \ldots \oplus e^{n-1} L$, then $\Lambda=\mathcal{O}_{L} \oplus e \mathcal{O}_{L} \oplus \ldots \oplus e^{n-1} \mathcal{O}_{L}$ is an $\mathcal{O}_{K^{-}}$-order.

Orders

- Given a cyclic algebra $\mathcal{A}=L \oplus e L \oplus \ldots \oplus e^{n-1} L$, then $\Lambda=\mathcal{O}_{L} \oplus e \mathcal{O}_{L} \oplus \ldots \oplus e^{n-1} \mathcal{O}_{L}$ is an $\mathcal{O}_{K^{-}}$-order.
- Then Λ is a free module over \mathcal{O}_{K}, with basis $\left\{b_{i}\right\}$, $i=1, \ldots, n^{2}$:

$$
\Lambda \simeq \oplus_{i=1}^{n^{2}} b_{i} \mathcal{O}_{K}
$$

Orders

- Given a cyclic algebra $\mathcal{A}=L \oplus e L \oplus \ldots \oplus e^{n-1} L$, then $\Lambda=\mathcal{O}_{L} \oplus e \mathcal{O}_{L} \oplus \ldots \oplus e^{n-1} \mathcal{O}_{L}$ is an $\mathcal{O}_{K^{-}}$-order.
- Then Λ is a free module over \mathcal{O}_{K}, with basis $\left\{b_{i}\right\}$, $i=1, \ldots, n^{2}$:

$$
\Lambda \simeq \oplus_{i=1}^{n^{2}} b_{i} \mathcal{O}_{K}
$$

- If \mathcal{O}_{L} is a free \mathcal{O}_{K}-module of rank n with basis $\left\{\beta_{k}\right\}$, $k=1, \ldots, n$:

$$
\Lambda \simeq \oplus_{j=1}^{n} e^{j} \oplus_{k=1}^{n} \beta_{k} \mathcal{O}_{K}
$$

Thus $\left\{b_{i}\right\}=\left\{e^{j} \beta_{k}\right\}$.

Quotients of Orders

- Let \mathfrak{a} be an ideal of \mathcal{O}_{K}, then $\mathfrak{a} \wedge$ is two-sided and

$$
\Lambda / \mathfrak{a} \Lambda \simeq \oplus_{i=1}^{n^{2}} b_{i} \mathcal{O}_{K} / b_{i} \mathfrak{a}
$$

is a free module over $\mathcal{O}_{K} / \mathfrak{a} \mathcal{O}_{K}$ with basis $\pi\left(b_{i}\right)$ where $\pi: \Lambda \rightarrow \Lambda / \mathfrak{a} \Lambda$.

Coset codes for $n=2,3,4$

For \mathcal{A} over L / K, with

$$
\begin{array}{rc}
L / K=\mathbb{Q}(i, \sqrt{5}), & \gamma=i \\
L / K=\mathbb{Q}\left(\zeta_{3}, \zeta_{7}+\zeta_{7}^{-1}\right), & \gamma=\zeta_{3} \\
L / K=\mathbb{Q}\left(i, \zeta_{15}+\zeta_{15}^{-1}\right), & \gamma=i
\end{array}
$$

we have

$$
\begin{aligned}
\Lambda / \mathfrak{a} \Lambda & \simeq \mathcal{M}_{n}\left(\mathcal{O}_{K} / \mathfrak{a} \mathcal{O}_{K}\right) \\
& \simeq \begin{cases}\mathcal{M}_{2}\left(\mathbb{F}_{2}\right) & \text { for } n=2 \\
\mathcal{M}_{3}\left(\mathbb{F}_{4}\right) & \text { for } n=3 \\
\mathcal{M}_{4}\left(\mathbb{F}_{2}\right) & \text { for } n=4\end{cases}
\end{aligned}
$$

Linking $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$, where $\omega^{2}+\omega+1=0$.
- We have

$$
\mathcal{M}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathbb{F}_{2}(\omega)+\mathbb{F}_{2}(\omega) j \simeq \mathbb{F}_{4} \times \mathbb{F}_{4}
$$

where $j^{2}=1$ and $j \omega=\omega^{2} j$, given by

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \mapsto j,\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \mapsto w
$$

Linking $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\mathbb{F}_{4}=\mathbb{F}_{2}(\omega)$, where $\omega^{2}+\omega+1=0$.
- We have

$$
\mathcal{M}_{2}\left(\mathbb{F}_{2}\right) \simeq \mathbb{F}_{2}(\omega)+\mathbb{F}_{2}(\omega) j \simeq \mathbb{F}_{4} \times \mathbb{F}_{4}
$$

where $j^{2}=1$ and $j \omega=\omega^{2} j$, given by

$$
\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right] \mapsto j,\left[\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right] \mapsto w
$$

- This means:

$$
\phi:(a, b) \in \mathbb{F}_{4} \times \mathbb{F}_{4} \mapsto M_{a, b} \in \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

Cyclic algebras over finite fields

- Cyclic algebra $\mathcal{A}=\left(\mathbb{F}_{2^{n}} / \mathbb{F}_{2}, \sigma, 1\right)$, with

$$
\mathcal{A} \simeq \mathbb{F}_{2^{n}} \oplus \ldots \mathbb{F}_{2^{n}} e \oplus \mathbb{F}_{2^{n}} e^{n-1}
$$

- We have $\mathcal{A} \simeq \operatorname{End}_{\mathbb{F}_{2}}\left(\mathbb{F}_{2^{n}}\right)$.
- The isomorphism $j: \mathcal{A} \rightarrow \operatorname{End}_{\mathbb{F}_{2}}\left(\mathbb{F}_{2^{n}}\right)$ is explicitly given by $j(a)$, which is the multiplication by a for all a in $\mathbb{F}_{2^{n}}$, and $j(e)=\sigma$.
- Induces an isomorphism of \mathbb{F}_{2}-left vector space

$$
\phi: \underbrace{\mathbb{F}_{2^{n}} \times \ldots \times \mathbb{F}_{2^{n}}}_{n} \rightarrow \mathcal{M}_{n}\left(\mathbb{F}_{2}\right) .
$$

An isometry between $\mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ and \mathbb{F}_{4}

- $\phi:(a, b) \in \mathbb{F}_{4} \times \mathbb{F}_{4} \mapsto M_{a, b} \in \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$ maps

Hamming weight $1 \mapsto$ invertible.

- Define a weight on the matrices

$$
w\left(M_{a, b}\right)=\left\{\begin{array}{cc}
0 & M_{a, b}=0 \\
1 & M_{a, b} \text { invertible } \\
2 & 0 \neq M_{a, b} \text { non-invertible }
\end{array} .\right.
$$

- ϕ is an isometry:

$$
w\left(M_{a, b}\right)=w(\phi((a, b)))=w_{H}((a, b))
$$

where $w_{H}=$ Hamming weight.

Higher dimensions

- ϕ can be extended to m-tuples

$$
\phi:\left(\mathbb{F}_{2^{n}} \times \ldots \times \mathbb{F}_{2^{n}}\right)^{m} \quad \rightarrow \mathcal{M}_{n}\left(\mathbb{F}_{2}\right)^{m}
$$

so that if $\pi(\mathcal{C})$ is a code of length m over $\mathcal{M}_{n}\left(\mathbb{F}_{2}\right)$, then $\phi^{-1}(\pi(\mathcal{C}))$ is a code of length $2 m$ over $\mathbb{F}_{2^{n}}$.

Higher dimensions

- ϕ can be extended to m-tuples

$$
\phi:\left(\mathbb{F}_{2^{n}} \times \ldots \times \mathbb{F}_{2^{n}}\right)^{m} \quad \rightarrow \mathcal{M}_{n}\left(\mathbb{F}_{2}\right)^{m}
$$

so that if $\pi(\mathcal{C})$ is a code of length m over $\mathcal{M}_{n}\left(\mathbb{F}_{2}\right)$, then $\phi^{-1}(\pi(\mathcal{C}))$ is a code of length $2 m$ over $\mathbb{F}_{2^{n}}$.

- Open Questions: Variations of Bachoc weight, best weight?
[O., Sole, Belfiore, "Codes over Matrix Rings for Space-Time Coded Modulations"]

Coset codes (non-prime ideals)

- For $\mathcal{G}=\alpha(\mathbb{Z}[i, \theta] \oplus e \mathbb{Z}[i, \theta]), e^{2}=i$, we have

$$
\mathcal{G} /(1+i) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

and

$$
\Delta_{\min } \geq \min _{\mathbf{0} \neq \mathbf{X}}\left(\sum_{i=1}^{L}\left|\operatorname{det}\left(X_{i}\right)\right|\right)^{2} \geq \min \left(|1+i|^{4} \delta, d_{\min }^{2} \delta\right)
$$

$\delta=$ minimum determinant of $\mathcal{G}, d_{\text {min }}=$ minimum distance.

Coset codes (non-prime ideals)

- For $\mathcal{G}=\alpha(\mathbb{Z}[i, \theta] \oplus e \mathbb{Z}[i, \theta]), e^{2}=i$, we have

$$
\mathcal{G} /(1+i) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)
$$

and

$$
\Delta_{\min } \geq \min _{0 \neq \mathbf{X}}\left(\sum_{i=1}^{L}\left|\operatorname{det}\left(X_{i}\right)\right|\right)^{2} \geq \min \left(|1+i|^{4} \delta, d_{\min }^{2} \delta\right)
$$

$\delta=$ minimum determinant of $\mathcal{G}, d_{\text {min }}=$ minimum distance.

- To increase the lower bound, what about replacing $(1+i)$ by 2?

$\mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right)$

- We have

$$
\mathcal{G} /(2) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right) .
$$

$\mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right)$

- We have

$$
\mathcal{G} /(2) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right) .
$$

- We have

$$
\mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right) \simeq \mathbb{F}_{2}(\omega)[i]+\mathbb{F}_{2}(\omega)[i] j \simeq \mathbb{F}_{4}[i] \times \mathbb{F}_{4}[i]
$$

where $j^{2}=1$ and $j \omega=\omega^{2} j$.

$\mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right)$

- We have

$$
\mathcal{G} /(2) \mathcal{G} \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right)
$$

- We have

$$
\mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right) \simeq \mathbb{F}_{2}(\omega)[i]+\mathbb{F}_{2}(\omega)[i] j \simeq \mathbb{F}_{4}[i] \times \mathbb{F}_{4}[i]
$$

where $j^{2}=1$ and $j \omega=\omega^{2} j$.

- This means:

$$
\phi: \mathbb{F}_{4}[i] \times \mathbb{F}_{4}[i] \mapsto \mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right)
$$

$\left.\mathbb{F}_{4}[i]\right)$

- $\mathbb{F}_{4}[i]$ has 16 elements, 4 of them non-invertible $(a(1+i)$, $a \in \mathbb{F}_{4}$)

$\left.\mathbb{F}_{4}[i]\right)$

- $\mathbb{F}_{4}[i]$ has 16 elements, 4 of them non-invertible $(a(1+i)$, $a \in \mathbb{F}_{4}$)
- If $a+b \omega$ is not invertible and $c+d \omega$ is (or vice-versa), then

$$
\psi((a+b \omega, c+d \omega))=\left[\begin{array}{cc}
a+d & b+c \\
b+c+d & a+b+d
\end{array}\right]
$$

is invertible.

$\left.\mathbb{F}_{4}[i]\right)$

- $\mathbb{F}_{4}[i]$ has 16 elements, 4 of them non-invertible $(a(1+i)$, $a \in \mathbb{F}_{4}$)
- If $a+b \omega$ is not invertible and $c+d \omega$ is (or vice-versa), then

$$
\psi((a+b \omega, c+d \omega))=\left[\begin{array}{cc}
a+d & b+c \\
b+c+d & a+b+d
\end{array}\right]
$$

is invertible.

- Open Questions: Variations of Bachoc weight, best weight?

Summary

- To design concatenated space-time codes, we looked at quotients of space-time codes.
- We started with good space-time codes, then looked at the obtained quotients, and tried to design proper weights (still quite open...).
- What about considering a joint design?

Cyclic Division Algebras and Natural Order

- Let K / F be a number field extension of degree n with cyclic Galois group $\langle\sigma\rangle$, and respective rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}.

Cyclic Division Algebras and Natural Order

- Let K / F be a number field extension of degree n with cyclic Galois group $\langle\sigma\rangle$, and respective rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}.
- Consider the cyclic F-algebra A defined by

$$
K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in F$, and $e k=\sigma(k) e$ for $k \in K$.

Cyclic Division Algebras and Natural Order

- Let K / F be a number field extension of degree n with cyclic Galois group $\langle\sigma\rangle$, and respective rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}.
- Consider the cyclic F-algebra A defined by

$$
K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in F$, and $e k=\sigma(k) e$ for $k \in K$.

- We assume that $u^{i}, i=0, \ldots, n-1$, are not norms in K / F so that the algebra is division, and that $u \in \mathcal{O}_{F}$.

Cyclic Division Algebras and Natural Order

- Let K / F be a number field extension of degree n with cyclic Galois group $\langle\sigma\rangle$, and respective rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}.
- Consider the cyclic F-algebra A defined by

$$
K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in F$, and $e k=\sigma(k) e$ for $k \in K$.

- We assume that $u^{i}, i=0, \ldots, n-1$, are not norms in K / F so that the algebra is division, and that $u \in \mathcal{O}_{F}$.
- Then

$$
\Lambda=\mathcal{O}_{K} \oplus \mathcal{O}_{K} e \oplus \cdots \oplus \mathcal{O}_{K} e^{n-1}
$$

is an \mathcal{O}_{F}-order of A, which is typically not maximal.

Quotients of Cyclic Division Algebras

The questions are:

- Determine the structure of Λ / \mathcal{J} when $\Lambda=\oplus_{i=0}^{n-1} \mathcal{O}_{K} e^{i}$ and \mathcal{J} is a two-sided ideal of Λ.
- Construct codes over Λ / \mathcal{J} and relate them to the original space-time code.

The Structure of Λ / \mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ. Then $\mathcal{J} \cap \mathcal{O}_{F} \neq 0$.

The Structure of Λ / \mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ. Then $\mathcal{J} \cap \mathcal{O}_{F} \neq 0$.
- The intersection $\mathcal{I}=\mathcal{J} \cap \mathcal{O}_{F}$ is a nonzero ideal of \mathcal{O}_{F}.

The Structure of Λ / \mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ. Then $\mathcal{J} \cap \mathcal{O}_{F} \neq 0$.
- The intersection $\mathcal{I}=\mathcal{J} \cap \mathcal{O}_{F}$ is a nonzero ideal of \mathcal{O}_{F}.
- An ideal $\mathcal{I} \neq 0$ of \mathcal{O}_{F} lies in the center of Λ, and generates In .

The Structure of Λ / \mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ. Then $\mathcal{J} \cap \mathcal{O}_{F} \neq 0$.
- The intersection $\mathcal{I}=\mathcal{J} \cap \mathcal{O}_{F}$ is a nonzero ideal of \mathcal{O}_{F}.
- An ideal $\mathcal{I} \neq 0$ of \mathcal{O}_{F} lies in the center of Λ, and generates In.
- We have $\mathcal{J} \supseteq \mathcal{I}$ if and only if $\mathcal{J} \supseteq \mathcal{I} \wedge$. There is then a one-to-one correspondence between ideals of Λ that contain $\mathcal{I} \Lambda$ and ideals of the quotient $\Lambda / \mathcal{I} \wedge$ (the ideal $\mathcal{J} \supseteq \mathcal{I} \Lambda$ of Λ corresponds to the ideal $\mathcal{J} / \mathcal{I} \Lambda$ of $\Lambda / \mathcal{I} \Lambda)$.

The Structure of Λ / \mathcal{J}

- Lemma. Let \mathcal{J} be a non zero two-sided ideal of Λ. Then $\mathcal{J} \cap \mathcal{O}_{F} \neq 0$.
- The intersection $\mathcal{I}=\mathcal{J} \cap \mathcal{O}_{F}$ is a nonzero ideal of \mathcal{O}_{F}.
- An ideal $\mathcal{I} \neq 0$ of \mathcal{O}_{F} lies in the center of Λ, and generates In.
- We have $\mathcal{J} \supseteq \mathcal{I}$ if and only if $\mathcal{J} \supseteq \mathcal{I} \wedge$. There is then a one-to-one correspondence between ideals of Λ that contain $\mathcal{I} \Lambda$ and ideals of the quotient $\Lambda / \mathcal{I} \Lambda$ (the ideal $\mathcal{J} \supseteq \mathcal{I} \Lambda$ of Λ corresponds to the ideal $\mathcal{J} / \mathcal{I} \Lambda$ of $\Lambda / \mathcal{I} \Lambda)$.
- To determine all quotient rings Λ / \mathcal{J}, it is enough to determine the ideal structure of $\Lambda / \mathcal{I} \Lambda$ for \mathcal{I} a nonzero ideal of \mathcal{O}_{F}.
[O.-Sethuraman, Quotients of Orders in Cyclic Algebras and Space-Time Codes]

The Structure of $\wedge / \mathcal{I} \Lambda$

- We have

$$
\Lambda / \mathcal{I} \Lambda \cong \oplus_{i=0}^{n-1}\left(\mathcal{O}_{K} / \mathcal{I} \mathcal{O}_{K}\right) e^{i}
$$

The Structure of $\Lambda / \mathcal{I} \Lambda$

- We have

$$
\Lambda / \mathcal{I} \Lambda \cong \oplus_{i=0}^{n-1}\left(\mathcal{O}_{K} / \mathcal{I} \mathcal{O}_{K}\right) e^{i}
$$

- Lemma.

$$
\Lambda / \mathcal{I} \Lambda \cong \mathcal{R}_{1} \times \cdots \times \mathcal{R}_{t}
$$

where \mathcal{R}_{i} is the ring $\oplus_{j=0}^{n-1}\left(\mathcal{O}_{K} / \mathfrak{p}_{i}^{s_{i}} \mathcal{O}_{K}\right) e^{j}$ is subject to $e\left(k+\mathfrak{p}_{i}^{s_{i}} \mathcal{O}_{K}\right)=\left(\sigma(k)+\mathfrak{p}_{i}^{s_{i}} \mathcal{O}_{K}\right) e$ and $e^{n}=u+\mathfrak{p}_{i}^{s_{i}}$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (I)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (I)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^{j}
$$

and $e^{n}=u+\mathfrak{q}$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (I)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^{j}
$$

and $e^{n}=u+\mathfrak{q}$.

- If $u \notin \mathfrak{q}$, then

$$
\Lambda / \mathcal{I} \Lambda \simeq(\bar{K} / \bar{F}, \bar{\sigma}, u+\mathfrak{q}) \simeq \mathcal{M}_{n}(\bar{F})
$$

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (I)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^{j}
$$

and $e^{n}=u+\mathfrak{q}$.

- If $u \notin \mathfrak{q}$, then

$$
\Lambda / \mathcal{I} \Lambda \simeq(\bar{K} / \bar{F}, \bar{\sigma}, u+\mathfrak{q}) \simeq \mathcal{M}_{n}(\bar{F})
$$

- For $\mathcal{A}=(\mathbb{Q}(i, \sqrt{5}) / \mathbb{Q}(i), \sigma, i), \Lambda /(1+i) \Lambda \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}\right)$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (II)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^{j}
$$

and $e^{n}=u+\mathfrak{q}$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (II)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^{j}
$$

and $e^{n}=u+\mathfrak{q}$.

- If $u \in \mathfrak{q}$, then

$$
\Lambda / \mathcal{I} \Lambda \simeq(\bar{K} / \bar{F}, \bar{\sigma}, 0) \simeq \bar{K}[x, \bar{\sigma}] /\left\langle x^{n}\right\rangle
$$

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (II)

- Inertial case: $\mathcal{I}=\mathfrak{q}, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime. Then $\bar{K}=\mathcal{O}_{K} / \mathfrak{q} \mathcal{O}_{K}$ and $\bar{F}=\mathcal{O}_{F} / \mathfrak{q}$ are finite fields and \bar{K} / \bar{F} is a cyclic extension of degree n.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1} \bar{K} e^{j}
$$

and $e^{n}=u+\mathfrak{q}$.

- If $u \in \mathfrak{q}$, then

$$
\Lambda / \mathcal{I} \Lambda \simeq(\bar{K} / \bar{F}, \bar{\sigma}, 0) \simeq \bar{K}[x, \bar{\sigma}] /\left\langle x^{n}\right\rangle
$$

- For $\mathcal{A}=(\mathbb{Q}(i, \sqrt{5}) / \mathbb{Q}(i), \sigma, i+1), \Lambda /(1+i) \wedge \simeq \mathbb{F}_{4}[x, \bar{\sigma}] /\left\langle x^{2}\right\rangle$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (III)

- Inertial case: $\mathcal{I}=\mathfrak{q}^{s}, s>1, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (III)

- Inertial case: $\mathcal{I}=\mathfrak{q}^{s}, s>1, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1}\left(\mathcal{O}_{K} / \mathfrak{q}^{s}\right) e^{j}
$$

and $e^{n}=u+\mathfrak{q}^{s}$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (III)

- Inertial case: $\mathcal{I}=\mathfrak{q}^{s}, s>1, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1}\left(\mathcal{O}_{K} / \mathfrak{q}^{s}\right) e^{j}
$$

and $e^{n}=u+\mathfrak{q}^{s}$.

- If $u \notin \mathfrak{q}^{s}$, then

$$
\Lambda / \mathcal{I} \Lambda \simeq \mathcal{M}_{n}\left(\mathcal{O}_{F} / \mathfrak{q}^{s}\right)
$$

The Structure of $\Lambda / \mathcal{I} \Lambda$: inertial case (III)

- Inertial case: $\mathcal{I}=\mathfrak{q}^{s}, s>1, g=e=1, f=n$ and $q \mathcal{O}_{K}$ is a prime.
- Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1}\left(\mathcal{O}_{K} / \mathfrak{q}^{s}\right) e^{j}
$$

and $e^{n}=u+\mathfrak{q}^{s}$.

- If $u \notin \mathfrak{q}^{s}$, then

$$
\Lambda / \mathcal{I} \Lambda \simeq \mathcal{M}_{n}\left(\mathcal{O}_{F} / \mathfrak{q}^{s}\right)
$$

- For $\mathcal{A}=(\mathbb{Q}(i, \sqrt{5}) / \mathbb{Q}(i), \sigma, i), \Lambda /(1+i)^{2} \Lambda \simeq \mathcal{M}_{2}\left(\mathbb{F}_{2}[i]\right)$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: split case

- Split case: $\mathcal{I}=q, g>1, e=1, f=n / g$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: split case

- Split case: $\mathcal{I}=q, g>1, e=1, f=n / g$.
- Suppose $\bar{u} \neq 0 \in \bar{F}$. Then $\Lambda / \mathcal{I} \Lambda \simeq \mathcal{M}_{n}(\bar{F})$.

The Structure of $\Lambda / \mathcal{I} \Lambda$: split case

- Split case: $\mathcal{I}=q, g>1, e=1, f=n / g$.
- Suppose $\bar{u} \neq 0 \in \bar{F}$. Then $\Lambda / \mathcal{I} \Lambda \simeq \mathcal{M}_{n}(\bar{F})$.
- Suppose $\bar{u}=0 \in \bar{F}$. Then

$$
\Lambda / \mathcal{I} \Lambda \simeq \oplus_{j=0}^{n-1}\left(\bar{K}^{(1)} \times \ldots \times \bar{K}^{(g)}\right) e^{j}
$$

Quotients of Cyclic Division Algebras

Open questions:

- Determine the structure of Λ / \mathcal{J} when $\Lambda=\oplus_{i=0}^{n-1} \mathcal{O}_{K} e^{i}$ and \mathcal{J} is a two-sided ideal of Λ.
Characterization partially answered (the ramified case is still open).
- Construct codes over Λ / \mathcal{J} and relate them to the original space-time code.

Construction A (Commutative)

- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.

Construction A (Commutative)

- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.
- Let ζ_{p} be a primitive p th root of unity, p a prime.
- Let $\rho: \mathbb{Z}\left[\zeta_{p}\right]^{N} \mapsto \mathbb{F}_{p}^{N}$ be the reduction componentwise modulo the prime ideal $\mathfrak{p}=\left(1-\zeta_{p}\right)$.
- Then $\rho^{-1}(C)$ is a lattice, when C is an (N, k) linear code over \mathbb{F}_{p}.
- In particular, $p=2$ yields the binary Construction A.

Construction A (Commutative)

- Let ζ_{p} be a primitive p th root of unity, p a prime.
- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.
- Let $\rho: \mathbb{Z}\left[\zeta_{p}\right]^{N} \mapsto \mathbb{F}_{p}^{N}$ be the reduction componentwise modulo the prime ideal $\mathfrak{p}=\left(1-\zeta_{p}\right)$.
- Then $\rho^{-1}(C)$ is a lattice, when C is an (N, k) linear code over \mathbb{F}_{p}.
- In particular, $p=2$ yields the binary Construction A.

Before discussing division algebras, let us look at the commutative case.

Construction A (I)

- Take $N=4$ copies of $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$:

$$
\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]
$$

- Take the quotient modulo $p=2$ componentwise.
- What is $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] / 2 \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$?

Construction A (I)

- Take $N=4$ copies of $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$:

$$
\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] \times \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]
$$

- Take the quotient modulo $p=2$ componentwise.
- What is $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right] / 2 \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$?
- It is $\mathbb{F}_{4}=\left\{a+b w, a, b \in \mathbb{F}_{2}\right\}$ where $w^{2}+w+1=0$.

Construction A (II)

- Take $N=4$ copies of $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ and reduce them modulo $p=2$ componentwise:

$$
\rho: \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]^{4} \rightarrow \mathbb{F}_{4}^{4}
$$

- Take a linear code C of length 4 inside \mathbb{F}_{4}^{4}, say

$$
\left[\begin{array}{cccc}
1 & 0 & w^{2} & w \\
0 & 1 & w & w^{2}
\end{array}\right]
$$

- Then $\rho^{-1}(C)$ is a lattice.

Construction A (III)

- A generator matrix for $\rho^{-1}(C)$ is given by

$$
M_{C}=\left[\begin{array}{cc}
I_{k} \otimes M & A \tilde{\otimes} M \\
\mathbf{0}_{n N-n k, n k} & I_{N-k} \otimes p M
\end{array}\right]
$$

where

$$
\begin{gathered}
\left(I_{k}, A \quad \bmod p\right)=\left[\begin{array}{cccc}
1 & 0 & w^{2} & w \\
0 & 1 & w & w^{2}
\end{array}\right] \\
A \tilde{\otimes} M=\left[\sigma_{1}\left(A_{1}\right) \otimes M_{1}, \ldots, \sigma_{n}\left(A_{1}\right) \otimes M_{n}, \ldots\right]
\end{gathered}
$$

and

$$
M=\left[\begin{array}{cc}
1 & 1 \\
\sigma_{1}\left(\frac{1+\sqrt{5}}{2}\right) & \sigma_{2}\left(\frac{1+\sqrt{5}}{2}\right)
\end{array}\right] .
$$

Construction A: this Example

- Using $N=4, \mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right], p=2$, and C given by

$$
\left[\begin{array}{cccc}
1 & 0 & w^{2} & w \\
0 & 1 & w & w^{2}
\end{array}\right]
$$

over \mathbb{F}_{4} gives a lattice of dimension 8 , minimum 4 , which is 5-modular.

- This is the lattice $Q_{8}(1)$.

Construction A: some Background

- The case \mathbb{Z} is $p=2$ is well known, this is the standard binary Construction A proposed by Forney.
- The case $\mathbb{Z}\left[\zeta_{p}\right]$ is known, proposed by Ebeling.
- Many many variations using different ideals, rings etc
- Recent constructions use number fields, to combine Construction A and algebraic lattices.

Construction A: Parameters and Flexibility

- Choose n the degree of the number field, and N the length of the code.
- Use ideals or orders.
- Choose different ideals, which gives different finite structures where to code.
- Introduce a twisting (or scaling) parameter.

Construction A: What For?

- Construction of modular lattices, with large minimum, or other properties.
- Coding applications (encoding - decoding).
- Wiretap coding (secrecy gain).
- Physical network coding.

Some Results

No.	Dim	d	$\mu_{\Lambda_{c}}$	ks	$\chi_{\Lambda_{c}}^{W}$
1	8	3	2	8	1.2077
2	8	5	2	8	1.0020
3	8	5	4	120	1.2970
4	8	6	3	16	1.1753
5	8	7	2	8	0.8838
6	8	7	3	16	1.1048
7	8	11	3	8	1.0015
8	8	14	2	8	0.5303
9	8	14	3	8	0.9216
10	8	15	3	8	0.8869
11	8	15	4	8	1.0840
12	8	23	3	8	0.6847
13	8	23	5	16	1.0396
14	8	23	5	8	1.1394

Conclusions

- Constructions of lattice from number fields.
- Combined with Construction A.
- Useful for different coding applications: encoding, modularity, wiretap coding, physical network coding.
- Generalizes to the non-commutative case (to be seen next!)

Thank you for your attention!

