Introduction to Space-Time Coding

Frédérique Oggier
frederique@ntu.edu.sg
Division of Mathematical Sciences
Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017

Last Time

- 1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0$ when $\mathbf{X} \neq \mathbf{X}^{\prime}$.

2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.

Last Time

- 1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0$ when $\mathbf{X} \neq \mathbf{X}^{\prime}$.

2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.

- 1. For coding for MIMO slow fading channels, joint design of an inner and outer code.

2. The outer code is a coset code, which addresses the problem of codes over matrices.
3. Connection between codes over matrices and codes over finite fields.

Outline

Construction A
The non-commutative case Non-associative Algebras

Construction A

- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.

Construction A

- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.
- Let ζ_{p} be a primitive p th root of unity, p a prime.
- Let $\rho: \mathbb{Z}\left[\zeta_{p}\right]^{N} \mapsto \mathbb{F}_{p}^{N}$ be the reduction componentwise modulo the prime ideal $\mathfrak{p}=\left(1-\zeta_{p}\right)$.
- Then $\rho^{-1}(C)$ is a lattice, when C is an (N, k) linear code over \mathbb{F}_{p}.
- In particular, $p=2$ yields the binary Construction A.

Construction A

- Let ζ_{p} be a primitive p th root of unity, p a prime.
- Let $\rho: \mathbb{Z}^{N} \mapsto \mathbb{F}_{2}^{N}$ be the reduction modulo 2 componentwise.
- Let $C \subset \mathbb{F}_{2}^{N}$ be an (N, k) linear binary code.
- Then $\rho^{-1}(C)$ is a lattice.
- Let $\rho: \mathbb{Z}\left[\zeta_{p}\right]^{N} \mapsto \mathbb{F}_{p}^{N}$ be the reduction componentwise modulo the prime ideal $\mathfrak{p}=\left(1-\zeta_{p}\right)$.
- Then $\rho^{-1}(C)$ is a lattice, when C is an (N, k) linear code over \mathbb{F}_{p}.
- In particular, $p=2$ yields the binary Construction A.

What about a Construction A from division algebras?

Ingredients

$A \quad \wedge \supset \mathfrak{p} \wedge$
$K \quad \mathcal{O}_{K} \supset \mathfrak{p} \mathcal{O}_{K}$
$\langle\sigma\rangle \mid$

$$
\begin{array}{ll}
F & \mathcal{O}_{F} \supset \mathfrak{p} \\
\mathbb{Q} & \mathbb{Z} \supset p
\end{array}
$$

Ingredients

$A \quad \wedge \supset \mathfrak{p} \wedge$
$K \quad \mathcal{O}_{K} \supset \mathfrak{p} \mathcal{O}_{K}$
$\langle\sigma\rangle \mid$

$$
F \quad \mathcal{O}_{F} \supset \mathfrak{p}
$$

$$
\mathbb{Q} \quad \mathbb{Z} \supset p
$$

- Let K / F be a cyclic number field extension of degree n, and rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}. Consider the cyclic division algebra

$$
\mathcal{A}=K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in \mathcal{O}_{F}$, and $e k=\sigma(k) e$ for $k \in K$.

Ingredients

$A \quad \wedge \supset \mathfrak{p} \wedge$

$$
\mathcal{O}_{K} \supset \mathfrak{p} \mathcal{O}_{K}
$$

$K \quad \mathcal{O}_{K} \supset \mathfrak{p} \mathcal{O}_{K}$

$$
\text { where } e^{n}=u \in \mathcal{O}_{F} \text {, and } e k=\sigma(k) e \text { for } k \in K
$$

$$
F \quad \mathcal{O}_{F} \supset \mathfrak{p}
$$

- Let Λ be its natural order

$$
\Lambda=\mathcal{O}_{K} \oplus \mathcal{O}_{K} e \oplus \cdots \oplus \mathcal{O}_{K} e^{n-1}
$$

- Let K / F be a cyclic number field extension of degree n, and rings of integers \mathcal{O}_{K} and \mathcal{O}_{F}. Consider the cyclic division algebra

$$
\mathcal{A}=K \oplus K e \oplus \cdots K e^{n-1}
$$

where $e^{n}=u \in \mathcal{O}_{F}$, and $e k=\sigma(k) e$ for $k \in K$.

$$
\mathbb{Q} \quad \mathbb{Z} \supset p
$$

Ingredients

$A \wedge \supset \mathfrak{p} \wedge$
$K \quad \mathcal{O}_{K} \supset \mathfrak{p} \mathcal{O}_{K}$
$\langle\sigma\rangle$
$F \quad \mathcal{O}_{F} \supset \mathfrak{p}$

$$
\Lambda=\mathcal{O}_{K} \oplus \mathcal{O}_{K} e \oplus \cdots \oplus \mathcal{O}_{K} e^{n-1}
$$

- Let \mathfrak{p} be a prime ideal of \mathcal{O}_{F} so that $\mathfrak{p} \wedge$ is a two-sided ideal of Λ.

Skew-polynomial Rings

- Given a ring S with a group $\langle\sigma\rangle$ acting on it, the skew-polynomial ring $S[x ; \sigma]$ is the set of polynomials $s_{0}+s_{1} x+\ldots+s_{n} x^{n}, s_{i} \in S$ for $i=0, \ldots, n$, with $x s=\sigma(s) x$ for all $s \in S$.

Skew-polynomial Rings

- Given a ring S with a group $\langle\sigma\rangle$ acting on it, the skew-polynomial ring $S[x ; \sigma]$ is the set of polynomials $s_{0}+s_{1} x+\ldots+s_{n} x^{n}, s_{i} \in S$ for $i=0, \ldots, n$, with $x s=\sigma(s) x$ for all $s \in S$.
- Lemma. There is an $\mathbb{F}_{p^{f} \text {-algebra isomorphism between } \Lambda / \mathfrak{p} \Lambda} \Lambda$ and the quotient of $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma]$ by the two-sided ideal generated by $x^{n}-u$.

Quotients

$\wedge \supset \mathfrak{p} \wedge \quad \wedge / \mathfrak{p} \wedge$
$\mathcal{O}_{K} \supset \mathfrak{p} \quad \mathfrak{p} \mathcal{O}_{K}$
$\left.\langle\sigma\rangle\right|^{\langle\sigma} \quad \mathcal{O}_{F} \supset \mathfrak{p}$
$\mathbb{Z} \supset p \quad \mathbb{Z} / p \mathbb{Z}$

Quotients

$\wedge \supset \mathfrak{p} \wedge \quad \wedge / \mathfrak{p} \wedge$

$\langle\sigma\rangle$
$\mathcal{O}_{F} \quad \mathcal{O}_{F} \supset \mathfrak{p}$

$$
\mathbb{Z} \supset p \quad \mathbb{Z} / p \mathbb{Z}
$$

- There is an $\mathbb{F}_{p^{f} \text {-algebra }}$ isomorphism

$$
\psi: \Lambda / \mathfrak{p} \Lambda \cong\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /\left(x^{n}-u\right)
$$

- If \mathfrak{p} is inert, $\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}$ is a finite field

Codes over Finite Fields

$$
\begin{array}{ll}
\Lambda / \mathfrak{p} \wedge & \mathbb{F}_{q}^{n} \\
\mathcal{O}_{K} / \mathfrak{p} & \mathbb{F}_{p^{f}}^{N} \\
\left.\right|_{\mathbb{Z} / p \mathbb{Z}} & \mathbb{F}_{p}^{N}
\end{array}
$$

Codes over Finite Fields

- Let \mathcal{I} be a left ideal of $\Lambda, \mathcal{I} \cap \mathcal{O}_{F} \supset \mathfrak{p}$. Then $\mathcal{I} / \mathfrak{p} \Lambda$ is an ideal of $\Lambda / \mathfrak{p} \Lambda$ and $\psi(\mathcal{I} / \mathfrak{p} \Lambda)$ a left ideal of $\mathbb{F}_{q}[x ; \sigma] /\left(x^{n}-u\right)$.
$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p^{f}}^{N}$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N}$

Codes over Finite Fields

- Let \mathcal{I} be a left ideal of $\Lambda, \mathcal{I} \cap \mathcal{O}_{F} \supset \mathfrak{p}$. Then $\mathcal{I} / \mathfrak{p} \Lambda$ is an ideal of $\Lambda / \mathfrak{p} \Lambda$ and $\psi(\mathcal{I} / \mathfrak{p} \Lambda)$ a left ideal of $\mathbb{F}_{q}[x ; \sigma] /\left(x^{n}-u\right)$.
- Let $f \in \mathbb{F}_{q}[x ; \sigma]$ be a polynomial of degree n. If (f) is a two-sided ideal of $\mathbb{F}_{q}[x ; \sigma]$, then a σ-code consists of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of a right divisor g of f.

Codes over Finite Fields

- Let \mathcal{I} be a left ideal of $\Lambda, \mathcal{I} \cap \mathcal{O}_{F} \supset \mathfrak{p}$. Then $\mathcal{I} / \mathfrak{p} \Lambda$ is an ideal of $\Lambda / \mathfrak{p} \Lambda$ and $\psi(\mathcal{I} / \mathfrak{p} \Lambda)$ a left ideal of $\mathbb{F}_{q}[x ; \sigma] /\left(x^{n}-u\right)$.
- Let $f \in \mathbb{F}_{q}[x ; \sigma]$ be a polynomial of degree n. If (f) is a two-sided ideal of $\mathbb{F}_{q}[x ; \sigma]$, then a σ-code consists of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of a right divisor g of f.
- Using $\psi: \Lambda / \mathfrak{p} \Lambda \cong \mathbb{F}_{q}[x ; \sigma] /\left(x^{n}-u\right)$, for every left ideal \mathcal{I} of Λ, we get a σ-code $C=\psi(\mathcal{I} / \mathfrak{p} \Lambda)$ over \mathbb{F}_{q}.
[D. Boucher and F. Ulmer, Coding with skew polynomial rings]

Codes over Finite Rings

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$
$\mathcal{O}_{K} / \mathfrak{p}\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{N}$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N}$

Codes over Finite Rings

$\Lambda / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$ - Let $g(x)$ be a right divisor of $x^{n}-u$. The ideal $(g(x)) /\left(x^{n}-u\right)$ is an $\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}$-module, isomorphic to a submodule of $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$. It
$\mathcal{O}_{K} / \mathfrak{p}\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{N}$ forms a σ-constacyclic code of length n and dimension $k=n-\operatorname{degg}(x)$, consisting of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of $g(x)$.

Codes over Finite Rings

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$ - Let $g(x)$ be a right divisor of $x^{n}-u$. The ideal $(g(x)) /\left(x^{n}-u\right)$ is an $\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}$-module, isomorphic to a submodule of $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$. It forms a σ-constacyclic code of length n and dimension $k=n-\operatorname{degg}(x)$, consisting of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of $g(x)$.
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N}$

- A parity check polynomial is computed.

Codes over Finite Rings

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$ - Let $g(x)$ be a right divisor of $x^{n}-u$. The ideal $(g(x)) /\left(x^{n}-u\right)$ is an $\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}$-module, isomorphic to a submodule of $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n}$. It forms a σ-constacyclic code of length n and dimension $k=n-\operatorname{degg}(x)$, consisting of codewords $a=\left(a_{0}, a_{1}, \ldots, a_{n-1}\right)$, where $a(x)$ are left multiples of $g(x)$.
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N}$

- A parity check polynomial is computed.
- A dual code is defined.
[Ducoat-O., On Skew Polynomial Codes and Lattices from Quotients of Cyclic Division Algebras]

Lattices

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \supset C$
$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p}^{N} \supset C$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N} \supset C$

Lattices

- Set the map :

$$
\rho: \Lambda \rightarrow \psi(\Lambda / \mathfrak{p} \Lambda)=\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /\left(x^{n}-u\right)
$$

compositum of the canonical projection $\Lambda \rightarrow \Lambda / \mathfrak{p} \Lambda$ with ψ.
$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \supset C$
$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p}^{N} \supset \mathcal{C}$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N} \supset C$

Lattices

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \supset C$
$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p}^{N} \supset \mathcal{C}$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N} \supset C$

- Set the map :

$$
\rho: \Lambda \rightarrow \psi(\Lambda / \mathfrak{p} \Lambda)=\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /\left(x^{n}-u\right)
$$

compositum of the canonical projection $\Lambda \rightarrow \Lambda / \mathfrak{p} \Lambda$ with ψ.

- Set

$$
L=\rho^{-1}(C)=\mathcal{I}
$$

Lattices

$\wedge / \mathfrak{p} \wedge\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)^{n} \supset C$
$\mathcal{O}_{K} / \mathfrak{p} \quad \mathbb{F}_{p}^{N} \supset \mathcal{C}$
$\mathbb{Z} / p \mathbb{Z} \quad \mathbb{F}_{p}^{N} \supset C$

- Set the map :

$$
\rho: \Lambda \rightarrow \psi(\Lambda / \mathfrak{p} \Lambda)=\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /\left(x^{n}-u\right)
$$

compositum of the canonical projection $\Lambda \rightarrow \Lambda / \mathfrak{p} \wedge$ with ψ.

- Set

$$
L=\rho^{-1}(C)=\mathcal{I}
$$

- Then L is a lattice, that is a \mathbb{Z}-module of rank $n^{2}[F: \mathbb{Q}]$.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.
- Let \mathfrak{Q} be the quaternion division algebra

$$
\mathfrak{Q}=\mathbb{Q}(i) \oplus \mathbb{Q}(i) e, e^{2}=-1
$$

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.
- Let \mathfrak{Q} be the quaternion division algebra

$$
\mathfrak{Q}=\mathbb{Q}(i) \oplus \mathbb{Q}(i) e, e^{2}=-1
$$

- Set $\Lambda=\mathbb{Z}[i] \oplus \mathbb{Z}[i] e$ and $\mathcal{I}=(1+i+e) \Lambda$.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.
- Let \mathfrak{Q} be the quaternion division algebra

$$
\mathfrak{Q}=\mathbb{Q}(i) \oplus \mathbb{Q}(i) e, e^{2}=-1
$$

- Set $\Lambda=\mathbb{Z}[i] \oplus \mathbb{Z}[i] e$ and $\mathcal{I}=(1+i+e) \Lambda$.
- Let $\alpha \in \mathbb{F}_{9}$ over \mathbb{F}_{3} satisfy $\alpha^{2}+1=0$.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.
- Let \mathfrak{Q} be the quaternion division algebra

$$
\mathfrak{Q}=\mathbb{Q}(i) \oplus \mathbb{Q}(i) e, e^{2}=-1
$$

- Set $\Lambda=\mathbb{Z}[i] \oplus \mathbb{Z}[i] e$ and $\mathcal{I}=(1+i+e) \Lambda$.
- Let $\alpha \in \mathbb{F}_{9}$ over \mathbb{F}_{3} satisfy $\alpha^{2}+1=0$.
- We have

$$
\psi((1+i+e) \bmod 3)=1+\alpha+x
$$

which is a right divisor of $x^{2}+1$ in $\mathbb{F}_{9}[x ; \sigma]$. Therefore, the left ideal $(x+1+\alpha) \mathbb{F}_{9}[x ; \sigma] /\left(x^{2}+1\right)$ is a central σ-code.

Example (I)

- Let $K=\mathbb{Q}(i)$ and $F=\mathbb{Q}$. Then $\mathcal{O}_{F}=\mathbb{Z}$ and $\mathcal{O}_{K}=\mathbb{Z}[i]$.
- Set $p=3$, inert in $\mathbb{Q}(i)$, and $\mathbb{Z}[i] / 3 \mathbb{Z}[i] \simeq \mathbb{F}_{9}$.
- Let \mathfrak{Q} be the quaternion division algebra

$$
\mathfrak{Q}=\mathbb{Q}(i) \oplus \mathbb{Q}(i) e, e^{2}=-1
$$

- Set $\Lambda=\mathbb{Z}[i] \oplus \mathbb{Z}[i] e$ and $\mathcal{I}=(1+i+e) \Lambda$.
- Let $\alpha \in \mathbb{F}_{9}$ over \mathbb{F}_{3} satisfy $\alpha^{2}+1=0$.
- We have

$$
\psi((1+i+e) \bmod 3)=1+\alpha+x
$$

which is a right divisor of $x^{2}+1$ in $\mathbb{F}_{9}[x ; \sigma]$. Therefore, the left ideal $(x+1+\alpha) \mathbb{F}_{9}[x ; \sigma] /\left(x^{2}+1\right)$ is a central σ-code.

- Taking the pre-image by ψ, it corresponds to the left-ideal $\mathcal{I} / 3 \Lambda$, with $\mathcal{I}=\Lambda(1+i+e)$.

Example (II)

- For $q=a+b e$ in $\mathbb{Z}[i] \oplus \mathbb{Z}[i] e \subset \mathfrak{Q}, a, b \in \mathbb{Z}[i]$

$$
M(q)=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]
$$

where ${ }^{-}$is the non-trivial Galois automorphism of $\mathbb{Q}(i) / \mathbb{Q}$.

Example (II)

- For $q=a+b e$ in $\mathbb{Z}[i] \oplus \mathbb{Z}[i] e \subset \mathfrak{Q}, a, b \in \mathbb{Z}[i]$

$$
M(q)=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]
$$

where ${ }^{-}$is the non-trivial Galois automorphism of $\mathbb{Q}(i) / \mathbb{Q}$.

- $M(q)$ used as codeword for space-time coding.

Example (II)

- For $q=a+b e$ in $\mathbb{Z}[i] \oplus \mathbb{Z}[i] e \subset \mathfrak{Q}, a, b \in \mathbb{Z}[i]$

$$
M(q)=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]
$$

where ${ }^{-}$is the non-trivial Galois automorphism of $\mathbb{Q}(i) / \mathbb{Q}$.

- $M(q)$ used as codeword for space-time coding.
- Let $t=(a+b e)(1+i+e)$ be an element of $\mathcal{I}=\Lambda(1+i+e)$. Then

$$
M(t)=\left[\begin{array}{cc}
a(1+i)-b & -(\bar{a}+\bar{b}(1+i)) \\
a+b(1-i) & \bar{a}(1-i)-\bar{b}
\end{array}\right]
$$

Example (II)

- For $q=a+b e$ in $\mathbb{Z}[i] \oplus \mathbb{Z}[i] e \subset \mathfrak{Q}, a, b \in \mathbb{Z}[i]$

$$
M(q)=\left[\begin{array}{cc}
a & -\bar{b} \\
b & \bar{a}
\end{array}\right]
$$

where ${ }^{-}$is the non-trivial Galois automorphism of $\mathbb{Q}(i) / \mathbb{Q}$.

- $M(q)$ used as codeword for space-time coding.
- Let $t=(a+b e)(1+i+e)$ be an element of $\mathcal{I}=\Lambda(1+i+e)$. Then

$$
M(t)=\left[\begin{array}{cc}
a(1+i)-b & -(\bar{a}+\bar{b}(1+i)) \\
a+b(1-i) & \bar{a}(1-i)-\bar{b}
\end{array}\right] .
$$

- Then $\mathcal{I}=\rho^{-1}(C)$ is a real lattice of rank 4 embedded in \mathbb{R}^{8}.

Coset Encoding

- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be an information vector to be mapped to a lattice point in L.

Coset Encoding

- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be an information vector to be mapped to a lattice point in L.
- The lattice $L=\rho^{-1}(C)=\mathcal{I} \Lambda$ is a union of cosets of $\mathfrak{p} \Lambda$, each codeword in C is a coset representative.

Coset Encoding

- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be an information vector to be mapped to a lattice point in L.
- The lattice $L=\rho^{-1}(C)=\mathcal{I} \Lambda$ is a union of cosets of $\mathfrak{p} \Lambda$, each codeword in C is a coset representative.
- Coset encoding: v_{1}, \ldots, v_{k} are encoded using the code C, and the rest of the information coefficients are mapped to a point in the lattice $\mathfrak{p} \wedge$.

Coset Encoding

- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be an information vector to be mapped to a lattice point in L.
- The lattice $L=\rho^{-1}(C)=\mathcal{I} \Lambda$ is a union of cosets of $\mathfrak{p} \Lambda$, each codeword in C is a coset representative.
- Coset encoding: v_{1}, \ldots, v_{k} are encoded using the code C, and the rest of the information coefficients are mapped to a point in the lattice $\mathfrak{p} \wedge$.
- Coset encoding is necessary for wiretap codes: information symbols are mapped to a codeword in C, while random symbols are picked uniformly at random in the lattice $\mathfrak{p} \wedge$ to confuse the eavesdropper.

Coset Encoding

- Let $v=\left(v_{1}, \ldots, v_{n}\right)$ be an information vector to be mapped to a lattice point in L.
- The lattice $L=\rho^{-1}(C)=\mathcal{I} \Lambda$ is a union of cosets of $\mathfrak{p} \Lambda$, each codeword in C is a coset representative.
- Coset encoding: v_{1}, \ldots, v_{k} are encoded using the code C, and the rest of the information coefficients are mapped to a point in the lattice $\mathfrak{p} \wedge$.
- Coset encoding is necessary for wiretap codes: information symbols are mapped to a codeword in C, while random symbols are picked uniformly at random in the lattice $\mathfrak{p} \wedge$ to confuse the eavesdropper.
- The lattice $L=\rho^{-1}(C)=\mathcal{I}$ thus enables coset encoding for wiretap space-time codes.

Summary

- Cyclic division algebras are useful for space-time coding. Some applications require to understand quotients of cyclic division algebras.
- The view point of skew-polynomial rings.
- Construction A of lattices from codes over skew-polynomial rings.
- Further work:

1. Study the lattice properties inherited from codes.
2. Study the space-time codes obtained.
3. Study constacyclic codes over $\left(\mathcal{O}_{K} / \mathfrak{p} \mathcal{O}_{K}\right)[x ; \sigma] /(f(x))$, and duality with respect to a Hermitian inner product.

Non-associative Algebras

Non-associative Quaternions Algebras: Definition

- Take F a field of characteristic not 2, and K a quadratic extension of F, with non-trivial Galois automorphism σ. Take $\gamma \in K \backslash F$.

Non-associative Quaternions Algebras: Definition

- Take F a field of characteristic not 2, and K a quadratic extension of F, with non-trivial Galois automorphism σ. Take $\gamma \in K \backslash F$.
- Define an algebra structure on the F-vector space $K \times K$ via the multiplication

$$
(u, v)\left(u^{\prime}, v^{\prime}\right):=\left(u u^{\prime}+\gamma v^{\prime} \sigma(v), \sigma(u) v^{\prime}+u^{\prime} v\right), u, u^{\prime}, v^{\prime} v^{\prime} \in K
$$

Non-associative Quaternions Algebras: Definition

- Take F a field of characteristic not 2, and K a quadratic extension of F, with non-trivial Galois automorphism σ. Take $\gamma \in K \backslash F$.
- Define an algebra structure on the F-vector space $K \times K$ via the multiplication

$$
(u, v)\left(u^{\prime}, v^{\prime}\right):=\left(u u^{\prime}+\gamma v^{\prime} \sigma(v), \sigma(u) v^{\prime}+u^{\prime} v\right), u, u^{\prime}, v^{\prime} v^{\prime} \in K .
$$

- Similar to associative quaternions, but for $\gamma \in K \backslash F$, which makes the multiplication not associative anymore.

Non-associative Quaternions Algebras: Definition

- Take F a field of characteristic not 2, and K a quadratic extension of F, with non-trivial Galois automorphism σ. Take $\gamma \in K \backslash F$.
- Define an algebra structure on the F-vector space $K \times K$ via the multiplication

$$
(u, v)\left(u^{\prime}, v^{\prime}\right):=\left(u u^{\prime}+\gamma v^{\prime} \sigma(v), \sigma(u) v^{\prime}+u^{\prime} v\right), u, u^{\prime}, v^{\prime} v^{\prime} \in K .
$$

- Similar to associative quaternions, but for $\gamma \in K \backslash F$, which makes the multiplication not associative anymore.
- The algebra A is called a non-associative quaternion algebra over F. It is a division algebra.

Non-associative Quaternions Algebras: Coding

- In the associative case, codewords are obtained by left regular representation over a maximal subfield K. How to obtain it for A a non-associative F-algebra?

Non-associative Quaternions Algebras: Coding

- In the associative case, codewords are obtained by left regular representation over a maximal subfield K. How to obtain it for A a non-associative F-algebra?
- Let K be a subfield of A. For A to be a right K-vector space, it is sufficient to have $K \subset \mathcal{N}_{r}(A)$ or $K \subset \mathcal{N}_{m}(A)$:

$$
\mathcal{N}_{r}(A)=\{x \in A \mid[A, A, x]=0\},[x, y, z]=(x y) z-x(y z)
$$

Non-associative Quaternions Algebras: Coding

- In the associative case, codewords are obtained by left regular representation over a maximal subfield K. How to obtain it for A a non-associative F-algebra?
- Let K be a subfield of A. For A to be a right K-vector space, it is sufficient to have $K \subset \mathcal{N}_{r}(A)$ or $K \subset \mathcal{N}_{m}(A)$:

$$
\mathcal{N}_{r}(A)=\{x \in A \mid[A, A, x]=0\},[x, y, z]=(x y) z-x(y z)
$$

- That the left multiplication λ_{a} is a linear endomorphism of the right K-vector space A is equivalent to have $K \subset \mathcal{N}_{l}(A)$.

Non-associative Quaternions Algebras: Coding

- In the associative case, codewords are obtained by left regular representation over a maximal subfield K. How to obtain it for A a non-associative F-algebra?
- Let K be a subfield of A. For A to be a right K-vector space, it is sufficient to have $K \subset \mathcal{N}_{r}(A)$ or $K \subset \mathcal{N}_{m}(A)$:

$$
\mathcal{N}_{r}(A)=\{x \in A \mid[A, A, x]=0\},[x, y, z]=(x y) z-x(y z)
$$

- That the left multiplication λ_{a} is a linear endomorphism of the right K-vector space A is equivalent to have $K \subset \mathcal{N}_{l}(A)$.
- Take $K \subset \mathcal{N}_{r}(A) \cap \mathcal{N}_{l}(A)$ or $K \subset \mathcal{N}_{m}(A) \cap \mathcal{N}_{l}(A)$, which is maximal with respect to inclusion. Consider A as a right K-vector space. We get an embedding

$$
\lambda: A \rightarrow \operatorname{Mat}_{r}(K), a \mapsto \lambda_{a}
$$

of vector spaces, $r=\operatorname{dim}_{K}(A)$.

An Example of Non-associative codebook

- Take $K=F(\sqrt{a})=F(i), \gamma \in K \backslash F$, and A a nonassocative quaternion divison algebras. Set $j=(0,1)$. Then A has F-basis $\{1, i, j, j i\}$ such that $i^{2}=a, j^{2}=b$ and $x j=j \sigma(x)$ for all $x \in K$.

An Example of Non-associative codebook

- Take $K=F(\sqrt{a})=F(i), \gamma \in K \backslash F$, and A a nonassocative quaternion divison algebras. Set $j=(0,1)$. Then A has F-basis $\{1, i, j, j i\}$ such that $i^{2}=a, j^{2}=b$ and $x j=j \sigma(x)$ for all $x \in K$.
- Consider the K-basis $\{1, j\}$ of A. We have an embedding $\lambda: A \rightarrow \operatorname{Mat}_{2}(K)$ which sends $x \in A$ to the matrix of λ_{x} in the basis $\{1, j\}$.

An Example of Non-associative codebook

- Take $K=F(\sqrt{a})=F(i), \gamma \in K \backslash F$, and A a nonassocative quaternion divison algebras. Set $j=(0,1)$. Then A has F-basis $\{1, i, j, j i\}$ such that $i^{2}=a, j^{2}=b$ and $x j=j \sigma(x)$ for all $x \in K$.
- Consider the K-basis $\{1, j\}$ of A. We have an embedding $\lambda: A \rightarrow \operatorname{Mat}_{2}(K)$ which sends $x \in A$ to the matrix of λ_{x} in the basis $\{1, j\}$.
- This gives the codebook

$$
\left\{\left(\begin{array}{cc}
x_{0} & \gamma \sigma\left(x_{1}\right) \\
x_{1} & \sigma\left(x_{0}\right)
\end{array}\right), x_{0}, x_{1} \in K\right\} .
$$

[S. Pumplün, T. Unger, "Space-Time Block Codes from Nonassociative Division Algebras."]

Take Home Message (I)

1. Space-time coding $=$ Families of square complex matrices, to be transmitted over multiple antenna channels.

Take Home Message (I)

1. Space-time coding $=$ Families of square complex matrices, to be transmitted over multiple antenna channels.
2. Good space-time codes $=$ codes with full diversity, can be obtained as multiplication matrices coming from cyclic division algebras.

Take Home Message (I)

1. Space-time coding $=$ Families of square complex matrices, to be transmitted over multiple antenna channels.
2. Good space-time codes $=$ codes with full diversity, can be obtained as multiplication matrices coming from cyclic division algebras.
3. Codes with high minimum determinant are obtained by restricting matrix coefficients to rings of integers of number fields.

Take Home Message (I)

1. Space-time coding $=$ Families of square complex matrices, to be transmitted over multiple antenna channels.
2. Good space-time codes = codes with full diversity, can be obtained as multiplication matrices coming from cyclic division algebras.
3. Codes with high minimum determinant are obtained by restricting matrix coefficients to rings of integers of number fields.
4. Recent constructions using cyclic, crossed-products, non-associative algebras.

Take Home Message (II)

1. Concatenated Space-time coding using quotients of space-time codes. Connections with codes over finite fields/rings. Joint design?

Take Home Message (II)

1. Concatenated Space-time coding using quotients of space-time codes. Connections with codes over finite fields/rings. Joint design?
2. Construction A for space-time codes.

Open Questions

Open Questions

1. Space-time block code modulation: characterization of quotients, weights and codes.
2. Construction A: lattices, space-time codes, constacyclic codes.

Thank you for your attention!

