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Space-Time Coding Division Algebras

Communication Channel: Discrete Channel (I)

Sender, message=x → Channel → Receiver, message=y

• Discrete Channel: y = x + w, x ∈ Fn
2, F2 = {0, 1}, w models

erasures or errors.

• Encoding: The sender encodes an information vector u ∈ Fk
2

into a codeword x belonging to a code C.

• Decoding: The receiver compares y with the list of possible x.
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Space-Time Coding Division Algebras

Communication Channel: Discrete Channel (II)

• For example: u ∈ {00, 10, 01, 11}, x ∈ {000, 101, 011, 110}.

• Suppose there is one erasure: y = ∗00. There is no doubt,
x = 000 and u = 00.

• Suppose there is one error: y = 100. It could have been
x = 000, 110, 101.

• Design Criterion: Hamming distance (and rate).
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Space-Time Coding Division Algebras

Communication Channel: Gaussian Channel (I)

Sender, message=x → Channel → Receiver, message=y

• Gaussian Channel (AWGN): y = x + w ∈ Rn, where w is
Gaussian distributed.

• Decoding: The receiver compares y with the list of possible x.
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Communication Channel: Gaussian Channel (II)

• The decoding is a closest neighbour decoding (Euclidean
distance).

• Knowing the noise variance, place the codewords accordingly.

• Energy constraint: this is packing problem.
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Space-Time Coding Division Algebras

Communication Channel: Fading Channel (I)

Sender, message=x → Channel → Receiver, message=y

• Fading Channel: y = diag(h)x + w ∈ Rn, w ∼ N (0, σ2I ) is
the noise and diag(h1, . . . , hn) is the channel fading matrix, hi
Rayleigh distributed.

• Decoding: The receiver compares y with the list of possible x,
but knowing diag(h) is needed:

x̂ = arg min
x∈S
‖y − xdiag(h)‖2.
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Communication Channel: Fading Channel (II)
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• Reliability is modeled by the pairwise probability of error,
bounded by

P(x→ x̂) ≤ 1

2

∏
xi 6=x̂i

8σ2

(xi − x̂i )2
=

1

2

(8σ2)l∏
xi 6=x̂i

|xi − x̂i |2

when the two codewords differ in l components.
• Design criterion: Maximize the modulation diversity
L = min(l), ideally L = n.

[ X. Giraud and J.-C. Belfiore, Constellations Matched to the Rayleigh fading

channel, 1996. ]



Space-Time Coding Division Algebras

Algebraic lattices

• Let K be a number field of degree n and signature (r1, r2).
The canonical embedding σ : K → Rn is defined by

σ(α) = (σ1(α), . . . , σr1(α),<σr1+1(α),=σr1+1(α), . . .)

• Let OK be the ring of integers of K with integral basis
{ω1, . . . , ωn}. An algebraic lattice Λ = σ(OK ) has generator
matrix

M =

 σ1(ω1) . . . σr1(ω1) . . . =σr1+r2(ω1)
...

...
...

σ1(ωn) . . . σn(ωr1) . . . =σr1+r2(ωn)

 .
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Space-Time Coding Division Algebras

The modulation diversity

• Let K be a number field of signature (r1, r2).
Theorem. Algebraic lattices exhibit a diversity

L = r1 + r2.

• In order to guarantee maximal diversity, we consider totally
real number fields.

F. Oggier and E. Viterbo, Algebraic number theory and code design for

Rayleigh fading channels.
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Space-Time Coding Division Algebras

A Quadratic Field

• Consider the ring Z[1+
√
5

2 ] = {a + b 1+
√
5

2 , a, b ∈ Z}.
• It is a subset of the field Q(

√
5) = {a + b

√
5, a, b ∈ Q}.

• Intuitively, Q(
√

5) is obtained from Q by adding
√

5, which is
the root of the polynomial X 2 − 5 = (X −

√
5)(X +

√
5).

• This gives us two ways of embedding Q(
√

5) into R:

σ1 :
√

5 7→
√

5, σ2 :
√

5 7→ −
√

5.
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Its Corresponding Lattice (I)

• Embed Z[1+
√
5

2 ] into R2 using the two embeddings σ1, σ2.

• We get a generator matrix

M =

[
1 1

σ1(1+
√
5

2 ) σ2(1+
√
5

2 )

]
.

• The lattice is made of integral linear combinations of (1, 1)

and (1+
√
5

2 , 1−
√
5

2 ).
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Its Corresponding Lattice (II)

• Its corresponding Gram matrix is

G = MMT =

[
1 1

σ1(1+
√
5

2 ) σ2(1+
√
5

2 )

][
1 σ1(1+

√
5

2 )

1 σ2(1+
√
5

2 )

]
.

• Note that all entries are integers, because of the choice of

Z[1+
√
5

2 ]. In particular

(X − 1+
√
5

2 )(X − 1−
√
5

2 ) = X 2 − X + 1.
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Summary so far

• What is the channel? which alphabet? how do we decode?
code design.

• How to construct lattices from number fields (embeddings,
Z-basis).



Space-Time Coding Division Algebras

MIMO Channel Model(I)

Sender, message=x → Channel → Receiver, message=y

• Multiple Input Multiple Output
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MIMO Channel Model (II)

1
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MIMO Channel Model (II)

x1

x3

h11

h11x1 + h12x3 + n1

h21x1 + h22x3 + n2

h21

h12

h22

1
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MIMO Channel Model (II)

x2

x4

h11

h11x2 + h12x4 + n3

h21x2 + h22x4 + n4

h21

h12

h22

h11x1 + h12x3 + n1

h21x1 + h22x3 + n2

1
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MIMO Channel Model (III)

1. At t = 1, 2, we get:(
y11 y12
y21 y22

)
︸ ︷︷ ︸

Y

=

(
h11 h12
h21 h22

) (
x1 x2
x3 x4

)
︸ ︷︷ ︸

space−time codeword X

+

(
n1 n3
n2 n4

)
.

[ E. Telatar,Capacity of multi-antenna Gaussian channels , 1999. ]
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The Coding Problem

The goal is to obtain a family C of codewords:

C =

X =

(
x11 x12
x21 x22

)
︸ ︷︷ ︸

space-time codeword

|x11, x12, x21, x22 ∈ C


where the xi are functions of the information symbols.

• Encoding consists of associating the information symbols to
the coefficients x11, x12, x21, x22.

• Decoding consists of recovering the information symbols from
the noisy coefficients y11, y12, y21, y22.
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Space-Time Coding Division Algebras

How to Design Space-Time Codes

• The reliability of a code C is modeled by the probability of
sending X but of decoding X̂ 6= X.

• This pairwise error probability (knowing H) is upper bounded
by

P(X→ X̂) ≤ f
(
SNR, | det(X− X̂)|−1

)
.

where SNR=signal to noise ratio.

[ V. Tarokh,N. Seshadri,A. R. Calderbank, Space-time codes for high data rate
wireless communications: Performance criterion and code construction, 1998. ]
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Fading and Diversity

• Design a fully-diverse codebook C such that

det(X− X′) 6= 0, X 6= X′ ∈ C.
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Space-Time Coding Division Algebras

Code Design Criterion

• We would like fully diverse codes:

det(X− X′) 6= 0 ∀ X 6= X′.
• Furthermore, we would like to maximize the minimum
determinant

min
X6=X′

| det(X− X′)|2.

[ B. Hassibi and B.M. Hochwald, High-Rate Codes That Are Linear in Space
and Time, 2002.
H. El Gamal and M.O. Damen, Universal space-time coding , 2003. ]
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Where Algebraists meet Engineers

• We need a family of matrices C such that

det(X− X′) 6= 0.

• Such matrices can be found using division algebras.

[ A. Sethuraman, B. Sundar Rajan, V. Shashidar, Full-diversity, high-rate

space-time block codes from division algebras, 2003 ]
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Space-Time Coding Division Algebras

The idea behind division algebras

• The difficulty: the non-linearity of the determinant

det(X− X′) 6= 0, X 6= X′ ∈ C.

• If C is taken inside an algebra of matrices, the problem
simplifies to

det(X) 6= 0, 0 6= X ∈ C.

• A division algebra is a non-commutative field.
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The Hamiltonian Quaternions: the definition (I)

• Recall: C?

• C=vector space of dimension 2 over R, with basis

{1, i}.

• i2 = −1.

• Now: H?

• H=vector space of dimension 4 over R, with basis

{1, i , j , k}.

• Rules: i2 = −1, j2 = −1, k = ij = −ji .
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The Hamiltonian Quaternions: the definition (II)

Complex Numbers Hamiltonian Quaternions

C = {x + yi | x , y ∈ R} H = {x + yi + zj + wk | x , y , z ,w ∈ R}
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Hamiltonian Quaternions are a division algebra

• To see: q = x + yi + wk 6= 0 is invertible.

• Define the conjugate of q:

q̄ = x − yi − zj − wk .

• Compute that

qq̄ = x2 + y2 + z2 + w2, x , y , z ,w ∈ R.

• The inverse of the quaternion q is given by

q−1 =
q̄

qq̄
.
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Space-Time Coding Division Algebras

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

(x + yi) + j(z − wi) = α + jβ, α, β ∈ C.

• Now compute the multiplication by q:

(α + jβ)︸ ︷︷ ︸
q

(γ + jδ) = αγ + jᾱδ + jβγ + j2β̄δ

= (αγ − β̄δ) + j(ᾱδ + βγ)

• Write this equality in the basis {1, j}:(
α −β̄
β ᾱ

)(
γ
δ

)
=

(
αγ − β̄δ
ᾱδ + βγ

)
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The Hamiltonian Quaternions: Check list (I)

• Design of the codebook C:

C =

{
X =

(
x1 x2
x3 x4

)
|x1, x2, x3, x4 ∈ C

}

• Codebook from Quaternions:

C =

{
X =

(
α −β̄
β ᾱ

)
|α, β ∈ C

}
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The Hamiltonian Quaternions: Check list (II)

• Diversity:
det(X− X′) =?

• By linearity:

det

((
α −β̄
β ᾱ

)
−
(
α′ −β̄′
β′ ᾱ′

))
= det

(
α− α′ −(β − β′)
β − β′ α− α′

)
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The Hamiltonian Quaternions: Check list (II)

• Diversity:
det(X− X′) =?

• By linearity:
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The Hamiltonian Quaternions: Check list (III)

• Diversity:

det(X− X′) = det

(
α− α′ −(β − β′)
β − β′ α− α′

)
= 0

⇐⇒ |α− α′|2 + |β − β|2 = 0
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The Hamiltonian Quaternions: the Alamouti Code

q = α + jβ, α, β ∈ C ⇐⇒
(
α −β̄
β ᾱ

)
[ S. M. Alamouti, “A simple transmit diversity technique for wireless

communications”, 1998.]
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Summary

1. A fully diverse space-time code is a family C of (square)
complex matrices such that det(X− X′) 6= 0 when X 6= X′.

2. Division algebras whose elements can be represented as
matrices satisfy full diversity by definition.

3. Hamilton’s quaternions provide such a family of fully diverse
space-time codes.
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Thank you for your attention!
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