Introduction to Space-Time Coding

Frédérique Oggier
frederique@ntu.edu.sg
Division of Mathematical Sciences
Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017

Outline

Space-Time Coding

Coding over Different Channels Lattices from Number Fields MIMO and Space-Time Coding Division Algebras

Hamilton's Quaternion Algebra

Communication Channel: Discrete Channel (I)

$$
\text { Sender, message }=\mathbf{x} \rightarrow \text { Channel } \rightarrow \text { Receiver, message }=\mathbf{y}
$$

Communication Channel: Discrete Channel (I)

Sender, message $=\mathbf{x} \rightarrow$ Channel \rightarrow Receiver, message $=\mathbf{y}$

- Discrete Channel: $\mathbf{y}=\mathbf{x}+\mathbf{w}, \mathbf{x} \in \mathbb{F}_{2}^{n}, \mathbb{F}_{2}=\{0,1\}, \mathbf{w}$ models erasures or errors.

Communication Channel: Discrete Channel (I)

- Discrete Channel: $\mathbf{y}=\mathbf{x}+\mathbf{w}, \mathbf{x} \in \mathbb{F}_{2}^{n}, \mathbb{F}_{2}=\{0,1\}, \mathbf{w}$ models erasures or errors.
- Encoding: The sender encodes an information vector $\mathbf{u} \in \mathbb{F}_{2}^{k}$ into a codeword \mathbf{x} belonging to a code \mathcal{C}.
- Decoding: The receiver compares \mathbf{y} with the list of possible \mathbf{x}.

Communication Channel: Discrete Channel (II)

- For example: $\mathbf{u} \in\{00,10,01,11\}, \mathbf{x} \in\{000,101,011,110\}$.

Communication Channel: Discrete Channel (II)

- For example: $\mathbf{u} \in\{00,10,01,11\}, \mathbf{x} \in\{000,101,011,110\}$.
- Suppose there is one erasure: $\mathbf{y}=* 00$. There is no doubt, $\mathbf{x}=000$ and $\mathbf{u}=00$.
- Suppose there is one error: $\mathbf{y}=100$. It could have been $\mathbf{x}=000,110,101$.

Communication Channel: Discrete Channel (II)

- For example: $\mathbf{u} \in\{00,10,01,11\}, \mathbf{x} \in\{000,101,011,110\}$.
- Suppose there is one erasure: $\mathbf{y}=* 00$. There is no doubt, $\mathbf{x}=000$ and $\mathbf{u}=00$.
- Suppose there is one error: $\mathbf{y}=100$. It could have been $\mathbf{x}=000,110,101$.
- Design Criterion: Hamming distance (and rate).

Communication Channel: Gaussian Channel (I)

Sender, message $=\mathbf{x} \rightarrow$ Channel \rightarrow Receiver, message $=\mathbf{y}$

- Gaussian Channel (AWGN): $\mathbf{y}=\mathbf{x}+\mathbf{w} \in \mathbb{R}^{n}$, where \mathbf{w} is Gaussian distributed.

Communication Channel: Gaussian Channel (I)

Sender, message $=\mathbf{x} \rightarrow$ Channel \rightarrow Receiver, message $=\mathbf{y}$

- Gaussian Channel (AWGN): $\mathbf{y}=\mathbf{x}+\mathbf{w} \in \mathbb{R}^{n}$, where \mathbf{w} is Gaussian distributed.
- Decoding: The receiver compares \mathbf{y} with the list of possible \mathbf{x}.

Communication Channel: Gaussian Channel (II)

- The decoding is a closest neighbour decoding (Euclidean distance).

Communication Channel: Gaussian Channel (II)

- The decoding is a closest neighbour decoding (Euclidean distance).
- Knowing the noise variance, place the codewords accordingly.
- Energy constraint: this is packing problem.

Communication Channel: Fading Channel (I)

$$
\text { Sender, message }=\mathbf{x} \rightarrow \text { Channel } \rightarrow \text { Receiver, message }=\mathbf{y}
$$

- Fading Channel: $\mathbf{y}=\operatorname{diag}(\mathbf{h}) \mathbf{x}+\mathbf{w} \in \mathbb{R}^{n}, \mathbf{w} \sim \mathcal{N}\left(0, \sigma^{2}\right.$ I) is the noise and $\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ is the channel fading matrix, h_{i} Rayleigh distributed.

Communication Channel: Fading Channel (I)

$$
\text { Sender, message }=\mathbf{x} \rightarrow \text { Channel } \rightarrow \text { Receiver, message }=\mathbf{y}
$$

- Fading Channel: $\mathbf{y}=\operatorname{diag}(\mathbf{h}) \mathbf{x}+\mathbf{w} \in \mathbb{R}^{n}, \mathbf{w} \sim \mathcal{N}\left(0, \sigma^{2}\right.$ I) is the noise and $\operatorname{diag}\left(h_{1}, \ldots, h_{n}\right)$ is the channel fading matrix, h_{i} Rayleigh distributed.
- Decoding: The receiver compares \mathbf{y} with the list of possible \mathbf{x}, but knowing $\operatorname{diag}(\mathbf{h})$ is needed:

$$
\hat{\mathbf{x}}=\arg \min _{\mathbf{x} \in S}\|\mathbf{y}-\mathbf{x d i a g}(\mathbf{h})\|^{2}
$$

Communication Channel: Fading Channel (II)

- Reliability is modeled by the pairwise probability of error, bounded by

$$
P(\mathbf{x} \rightarrow \hat{\mathbf{x}}) \leq \frac{1}{2} \prod_{x_{i} \neq \hat{x}_{i}} \frac{8 \sigma^{2}}{\left(x_{i}-\hat{x}_{i}\right)^{2}}=\frac{1}{2} \frac{\left(8 \sigma^{2}\right)^{\prime}}{\prod_{x_{i} \neq \hat{x}_{i}}\left|x_{i}-\hat{x}_{i}\right|^{2}}
$$

when the two codewords differ in I components.

- Design criterion: Maximize the modulation diversity $L=\min (I)$, ideally $L=n$.
[X. Giraud and J.-C. Belfiore, Constellations Matched to the Rayleigh fading channel, 1996.]

Algebraic lattices

- Let K be a number field of degree n and signature $\left(r_{1}, r_{2}\right)$. The canonical embedding $\sigma: K \rightarrow \mathbb{R}^{n}$ is defined by

$$
\sigma(\alpha)=\left(\sigma_{1}(\alpha), \ldots, \sigma_{r_{1}}(\alpha), \Re \sigma_{r_{1}+1}(\alpha), \Im \sigma_{r_{1}+1}(\alpha), \ldots\right)
$$

Algebraic lattices

- Let K be a number field of degree n and signature $\left(r_{1}, r_{2}\right)$. The canonical embedding $\sigma: K \rightarrow \mathbb{R}^{n}$ is defined by

$$
\sigma(\alpha)=\left(\sigma_{1}(\alpha), \ldots, \sigma_{r_{1}}(\alpha), \Re \sigma_{r_{1}+1}(\alpha), \Im \sigma_{r_{1}+1}(\alpha), \ldots\right)
$$

- Let \mathcal{O}_{K} be the ring of integers of K with integral basis $\left\{\omega_{1}, \ldots, \omega_{n}\right\}$. An algebraic lattice $\Lambda=\sigma\left(\mathcal{O}_{K}\right)$ has generator matrix

$$
M=\left(\begin{array}{ccccc}
\sigma_{1}\left(\omega_{1}\right) & \ldots & \sigma_{r_{1}}\left(\omega_{1}\right) & \ldots & \Im \sigma_{r_{1}+r_{2}}\left(\omega_{1}\right) \\
\vdots & & \vdots & & \vdots \\
\sigma_{1}\left(\omega_{n}\right) & \ldots & \sigma_{n}\left(\omega_{r_{1}}\right) & \ldots & \Im \sigma_{r_{1}+r_{2}}\left(\omega_{n}\right)
\end{array}\right)
$$

The modulation diversity

- Let K be a number field of signature $\left(r_{1}, r_{2}\right)$. Theorem. Algebraic lattices exhibit a diversity

$$
L=r_{1}+r_{2}
$$

The modulation diversity

- Let K be a number field of signature $\left(r_{1}, r_{2}\right)$. Theorem. Algebraic lattices exhibit a diversity

$$
L=r_{1}+r_{2}
$$

- In order to guarantee maximal diversity, we consider totally real number fields.
F. Oggier and E. Viterbo, Algebraic number theory and code design for Rayleigh fading channels.

A Quadratic Field

- Consider the ring $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]=\left\{a+b \frac{1+\sqrt{5}}{2}, a, b \in \mathbb{Z}\right\}$.
- It is a subset of the field $\mathbb{Q}(\sqrt{5})=\{a+b \sqrt{5}, a, b \in \mathbb{Q}\}$.

A Quadratic Field

- Consider the ring $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]=\left\{a+b \frac{1+\sqrt{5}}{2}, a, b \in \mathbb{Z}\right\}$.
- It is a subset of the field $\mathbb{Q}(\sqrt{5})=\{a+b \sqrt{5}, a, b \in \mathbb{Q}\}$.
- Intuitively, $\mathbb{Q}(\sqrt{5})$ is obtained from \mathbb{Q} by adding $\sqrt{5}$, which is the root of the polynomial $X^{2}-5=(X-\sqrt{5})(X+\sqrt{5})$.
- This gives us two ways of embedding $\mathbb{Q}(\sqrt{5})$ into \mathbb{R} :

$$
\sigma_{1}: \sqrt{5} \mapsto \sqrt{5}, \sigma_{2}: \sqrt{5} \mapsto-\sqrt{5}
$$

Its Corresponding Lattice (I)

- Embed $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$ into \mathbb{R}^{2} using the two embeddings σ_{1}, σ_{2}.
- We get a generator matrix

$$
M=\left[\begin{array}{cc}
1 & 1 \\
\sigma_{1}\left(\frac{1+\sqrt{5}}{2}\right) & \sigma_{2}\left(\frac{1+\sqrt{5}}{2}\right)
\end{array}\right]
$$

- The lattice is made of integral linear combinations of $(1,1)$ and $\left(\frac{1+\sqrt{5}}{2}, \frac{1-\sqrt{5}}{2}\right)$.

Its Corresponding Lattice (II)

- Its corresponding Gram matrix is

$$
G=M M^{T}=\left[\begin{array}{cc}
1 & 1 \\
\sigma_{1}\left(\frac{1+\sqrt{5}}{2}\right) & \sigma_{2}\left(\frac{1+\sqrt{5}}{2}\right)
\end{array}\right]\left[\begin{array}{ll}
1 & \sigma_{1}\left(\frac{1+\sqrt{5}}{2}\right) \\
1 & \sigma_{2}\left(\frac{1+\sqrt{5}}{2}\right)
\end{array}\right] .
$$

- Note that all entries are integers, because of the choice of $\mathbb{Z}\left[\frac{1+\sqrt{5}}{2}\right]$. In particular

$$
\left(X-\frac{1+\sqrt{5}}{2}\right)\left(X-\frac{1-\sqrt{5}}{2}\right)=X^{2}-X+1
$$

Summary so far

- What is the channel? which alphabet? how do we decode? code design.
- How to construct lattices from number fields (embeddings, \mathbb{Z}-basis).

MIMO Channel Model(I)

Sender, message $=\mathbf{x} \rightarrow$ Channel \rightarrow Receiver, message $=\mathbf{y}$

- Multiple Input Multiple Output

MIMO Channel Model (II)

MIMO Channel Model (II)

MIMO Channel Model (II)

MIMO Channel Model (III)

1. At $t=1,2$, we get:
$\underbrace{\left(\begin{array}{ll}y_{11} & y_{12} \\ y_{21} & y_{22}\end{array}\right)}_{\mathbf{Y}}=\left(\begin{array}{ll}h_{11} & h_{12} \\ h_{21} & h_{22}\end{array}\right) \underbrace{\left(\begin{array}{ll}x_{1} & x_{2} \\ x_{3} & x_{4}\end{array}\right)}_{\text {space-time codeword } \mathbf{X}}+\left(\begin{array}{ll}n_{1} & n_{3} \\ n_{2} & n_{4}\end{array}\right)$.
[E. Telatar, Capacity of multi-antenna Gaussian channels, 1999.]

The Coding Problem

The goal is to obtain a family \mathcal{C} of codewords:

$$
\mathcal{C}=\{\left.\mathbf{X}=\underbrace{\left(\begin{array}{cc}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)}_{\text {space-time codeword }} \quad \right\rvert\, x_{11}, x_{12}, x_{21}, x_{22} \in \mathbb{C}\}
$$

where the x_{i} are functions of the information symbols.

The Coding Problem

The goal is to obtain a family \mathcal{C} of codewords:

$$
\mathcal{C}=\{\left.\mathbf{X}=\underbrace{\left(\begin{array}{cc}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)}_{\text {space-time codeword }} \quad \right\rvert\, x_{11}, x_{12}, x_{21}, x_{22} \in \mathbb{C}\}
$$

where the x_{i} are functions of the information symbols.

- Encoding consists of associating the information symbols to the coefficients $x_{11}, x_{12}, x_{21}, x_{22}$.

The Coding Problem

The goal is to obtain a family \mathcal{C} of codewords:

$$
\mathcal{C}=\{\left.\mathbf{X}=\underbrace{\left(\begin{array}{ll}
x_{11} & x_{12} \\
x_{21} & x_{22}
\end{array}\right)}_{\text {space-time codeword }} \quad \right\rvert\, x_{11}, x_{12}, x_{21}, x_{22} \in \mathbb{C}\}
$$

where the x_{i} are functions of the information symbols.

- Encoding consists of associating the information symbols to the coefficients $x_{11}, x_{12}, x_{21}, x_{22}$.
- Decoding consists of recovering the information symbols from the noisy coefficients $y_{11}, y_{12}, y_{21}, y_{22}$.

How to Design Space-Time Codes

- The reliability of a code \mathcal{C} is modeled by the probability of sending \mathbf{X} but of decoding $\hat{\mathbf{X}} \neq \mathbf{X}$.

How to Design Space-Time Codes

- The reliability of a code \mathcal{C} is modeled by the probability of sending \mathbf{X} but of decoding $\hat{\mathbf{X}} \neq \mathbf{X}$.
- This pairwise error probability (knowing \mathbf{H}) is upper bounded by

$$
P(\mathbf{X} \rightarrow \hat{\mathbf{X}}) \leq f\left(S N R,|\operatorname{det}(\mathbf{X}-\hat{\mathbf{X}})|^{-1}\right)
$$

where $S N R=$ signal to noise ratio.
[V. Tarokh,N. Seshadri,A. R. Calderbank, Space-time codes for high data rate wireless communications: Performance criterion and code construction, 1998.]

Fading and Diversity

- Design a fully-diverse codebook \mathcal{C} such that

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0, \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

Fading and Diversity

- Design a fully-diverse codebook \mathcal{C} such that

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0 . \quad \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

Code Design Criterion

- We would like fully diverse codes:

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0 \quad \forall \mathbf{X} \neq \mathbf{X}^{\prime}
$$

- Furthermore, we would like to maximize the minimum determinant

$$
\min _{\mathbf{X} \neq \mathbf{X}^{\prime}}\left|\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right)\right|^{2} .
$$

Code Design Criterion

- We would like fully diverse codes:

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0 \quad \forall \mathbf{X} \neq \mathbf{X}^{\prime}
$$

- Furthermore, we would like to maximize the minimum determinant

$$
\min _{\mathbf{X} \neq \mathbf{X}^{\prime}}\left|\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right)\right|^{2}
$$

[B. Hassibi and B.M. Hochwald, High-Rate Codes That Are Linear in Space and Time, 2002.
H. El Gamal and M.O. Damen, Universal space-time coding , 2003.]

Where Algebraists meet Engineers

- We need a family of matrices \mathcal{C} such that

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0
$$

Where Algebraists meet Engineers

- We need a family of matrices \mathcal{C} such that

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0
$$

- Such matrices can be found using division algebras.
[A. Sethuraman, B. Sundar Rajan, V. Shashidar, Full-diversity, high-rate space-time block codes from division algebras, 2003]

Space-Time Coding
 Coding over Different Channels Lattices from Number Fields MIMO and Space-Time Coding

Division Algebras
Hamilton's Quaternion Algebra

The idea behind division algebras

- The difficulty: the non-linearity of the determinant

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0, \quad \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

The idea behind division algebras

- The difficulty: the non-linearity of the determinant

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0, \quad \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

- If \mathcal{C} is taken inside an algebra of matrices, the problem simplifies to

$$
\operatorname{det}(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}
$$

The idea behind division algebras

- The difficulty: the non-linearity of the determinant

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0, \quad \mathbf{X} \neq \mathbf{X}^{\prime} \in \mathcal{C}
$$

- If \mathcal{C} is taken inside an algebra of matrices, the problem simplifies to

$$
\operatorname{det}(\mathbf{X}) \neq 0, \quad \mathbf{0} \neq \mathbf{X} \in \mathcal{C}
$$

- A division algebra is a non-commutative field.

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- $\mathbb{C}=$ vector space of dimension 2 over \mathbb{R}, with basis

$$
\{1, i\} .
$$

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- $\mathbb{C}=$ vector space of dimension 2 over \mathbb{R}, with basis

$$
\{1, i\} .
$$

- $i^{2}=-1$.

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- $\mathbb{C}=$ vector space of dimension 2 over \mathbb{R}, with basis

$$
\{1, i\} .
$$

- $i^{2}=-1$.
- Now: \mathbb{H} ?

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- $\mathbb{C}=$ vector space of dimension 2 over \mathbb{R}, with basis

$$
\{1, i\} .
$$

- $i^{2}=-1$.
- Now: \mathbb{H} ?
- $\mathbb{H}=$ vector space of dimension 4 over \mathbb{R}, with basis

$$
\{1, i, j, k\}
$$

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- $\mathbb{C}=$ vector space of dimension 2 over \mathbb{R}, with basis

$$
\{1, i\} .
$$

- $i^{2}=-1$.
- Now: \mathbb{H} ?
- $\mathbb{H}=$ vector space of dimension 4 over \mathbb{R}, with basis

$$
\{1, i, j, k\}
$$

- Rules: $i^{2}=-1, j^{2}=-1, k=i j=-j i$.

The Hamiltonian Quaternions: the definition (II)

Complex Numbers
Hamiltonian Quaternions

$$
\mathbb{C}=\{x+y i \mid x, y \in \mathbb{R}\} \quad \mathbb{H}=\{x+y i+z j+w k \mid x, y, z, w \in \mathbb{R}\}
$$

Hamiltonian Quaternions are a division algebra

- To see: $q=x+y i+w k \neq 0$ is invertible.

Hamiltonian Quaternions are a division algebra

- To see: $q=x+y i+w k \neq 0$ is invertible.
- Define the conjugate of q :

$$
\bar{q}=x-y i-z j-w k
$$

Hamiltonian Quaternions are a division algebra

- To see: $q=x+y i+w k \neq 0$ is invertible.
- Define the conjugate of q :

$$
\bar{q}=x-y i-z j-w k
$$

- Compute that

$$
q \bar{q}=x^{2}+y^{2}+z^{2}+w^{2}, x, y, z, w \in \mathbb{R} .
$$

Hamiltonian Quaternions are a division algebra

- To see: $q=x+y i+w k \neq 0$ is invertible.
- Define the conjugate of q :

$$
\bar{q}=x-y i-z j-w k
$$

- Compute that

$$
q \bar{q}=x^{2}+y^{2}+z^{2}+w^{2}, x, y, z, w \in \mathbb{R} .
$$

- The inverse of the quaternion q is given by

$$
q^{-1}=\frac{\bar{q}}{q \bar{q}}
$$

The Hamiltonian Quaternions: how to get matrices

- Any quaternion $q=x+y i+z j+w k$ can be written as

$$
(x+y i)+j(z-w i)=\alpha+j \beta, \alpha, \beta \in \mathbb{C} .
$$

The Hamiltonian Quaternions: how to get matrices

- Any quaternion $q=x+y i+z j+w k$ can be written as

$$
(x+y i)+j(z-w i)=\alpha+j \beta, \alpha, \beta \in \mathbb{C} .
$$

- Now compute the multiplication by q :

$$
\begin{aligned}
\underbrace{(\alpha+j \beta)}_{q}(\gamma+j \delta) & =\alpha \gamma+j \bar{\alpha} \delta+j \beta \gamma+j^{2} \bar{\beta} \delta \\
& =(\alpha \gamma-\bar{\beta} \delta)+j(\bar{\alpha} \delta+\beta \gamma)
\end{aligned}
$$

The Hamiltonian Quaternions: how to get matrices

- Any quaternion $q=x+y i+z j+w k$ can be written as

$$
(x+y i)+j(z-w i)=\alpha+j \beta, \alpha, \beta \in \mathbb{C} .
$$

- Now compute the multiplication by q :

$$
\begin{aligned}
\underbrace{(\alpha+j \beta)}_{q}(\gamma+j \delta) & =\alpha \gamma+j \bar{\alpha} \delta+j \beta \gamma+j^{2} \bar{\beta} \delta \\
& =(\alpha \gamma-\bar{\beta} \delta)+j(\bar{\alpha} \delta+\beta \gamma)
\end{aligned}
$$

- Write this equality in the basis $\{1, j\}$:

$$
\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)\binom{\gamma}{\delta}=\binom{\alpha \gamma-\bar{\beta} \delta}{\bar{\alpha} \delta+\beta \gamma}
$$

The Hamiltonian Quaternions: Check list (I)

- Design of the codebook \mathcal{C} :

$$
\mathcal{C}=\left\{\left.\mathbf{X}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \right\rvert\, x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

The Hamiltonian Quaternions: Check list (I)

- Design of the codebook \mathcal{C} :

$$
\mathcal{C}=\left\{\left.\mathbf{X}=\left(\begin{array}{ll}
x_{1} & x_{2} \\
x_{3} & x_{4}
\end{array}\right) \right\rvert\, x_{1}, x_{2}, x_{3}, x_{4} \in \mathbb{C}\right\}
$$

- Codebook from Quaternions:

$$
\mathcal{C}=\left\{\left.\mathbf{X}=\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right) \right\rvert\, \alpha, \beta \in \mathbb{C}\right\}
$$

The Hamiltonian Quaternions: Check list (II)

- Diversity:

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right)=?
$$

The Hamiltonian Quaternions: Check list (II)

- Diversity:

$$
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right)=?
$$

- By linearity:

$$
\begin{aligned}
& \operatorname{det}\left(\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)-\left(\begin{array}{cc}
\alpha^{\prime} & -\bar{\beta}^{\prime} \\
\beta^{\prime} & \bar{\alpha}^{\prime}
\end{array}\right)\right) \\
& \quad=\operatorname{det}\left(\begin{array}{cc}
\alpha-\alpha^{\prime} & -\left(\overline{\beta-\beta^{\prime}}\right) \\
\beta-\beta^{\prime} & \underline{\alpha-\alpha^{\prime}}
\end{array}\right)
\end{aligned}
$$

The Hamiltonian Quaternions: Check list (III)

- Diversity:

$$
\begin{gathered}
\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right)=\operatorname{det}\left(\begin{array}{cc}
\alpha-\alpha^{\prime} & -\left(\overline{\beta-\beta^{\prime}}\right) \\
\beta-\beta^{\prime} & \overline{\alpha-\alpha^{\prime}}
\end{array}\right)=0 \\
\Longleftrightarrow\left|\alpha-\alpha^{\prime}\right|^{2}+|\beta-\beta|^{2}=0
\end{gathered}
$$

The Hamiltonian Quaternions: the Alamouti Code

$$
q=\alpha+j \beta, \alpha, \beta \in \mathbb{C} \Longleftrightarrow\left(\begin{array}{cc}
\alpha & -\bar{\beta} \\
\beta & \bar{\alpha}
\end{array}\right)
$$

[S. M. Alamouti, "A simple transmit diversity technique for wireless communications", 1998.]

Summary

1. A fully diverse space-time code is a family \mathcal{C} of (square) complex matrices such that $\operatorname{det}\left(\mathbf{X}-\mathbf{X}^{\prime}\right) \neq 0$ when $\mathbf{X} \neq \mathbf{X}^{\prime}$.
2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.
3. Hamilton's quaternions provide such a family of fully diverse space-time codes.

Thank you for your attention!

