▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

Introduction to Space-Time Coding

Frédérique Oggier frederique@ntu.edu.sg

Division of Mathematical Sciences Nanyang Technological University, Singapore

Noncommutative Rings and their Applications V, Lens, 12-15 June 2017 Space-Time Coding

Division Algebras

Outline

Space-Time Coding

Coding over Different Channels Lattices from Number Fields MIMO and Space-Time Coding Division Algebras

Hamilton's Quaternion Algebra

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

Communication Channel: Discrete Channel (I)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

$$\fbox{Sender, message=x} \rightarrow \fbox{Channel} \rightarrow \fbox{Receiver, message=y}$$

Communication Channel: Discrete Channel (I)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

$$\fbox{Sender, message=x} \rightarrow \fbox{Channel} \rightarrow \fbox{Receiver, message=y}$$

• Discrete Channel: $\mathbf{y} = \mathbf{x} + \mathbf{w}, \ \mathbf{x} \in \mathbb{F}_2^n, \ \mathbb{F}_2 = \{0, 1\}, \ \mathbf{w} \text{ models}$ erasures or errors.

Communication Channel: Discrete Channel (I)

$$\fbox{Sender, message=x} \rightarrow \fbox{Channel} \rightarrow \fbox{Receiver, message=y}$$

- Discrete Channel: $\mathbf{y} = \mathbf{x} + \mathbf{w}, \ \mathbf{x} \in \mathbb{F}_2^n, \ \mathbb{F}_2 = \{0, 1\}, \ \mathbf{w} \text{ models}$ erasures or errors.
- Encoding: The sender encodes an information vector u ∈ 𝔽^k₂ into a codeword x belonging to a code C.
- Decoding: The receiver compares **y** with the list of possible **x**.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Communication Channel: Discrete Channel (II)

• For example: $\mathbf{u} \in \{00, 10, 01, 11\}$, $\mathbf{x} \in \{000, 101, 011, 110\}$.

Communication Channel: Discrete Channel (II)

- For example: $\mathbf{u} \in \{00, 10, 01, 11\}$, $\mathbf{x} \in \{000, 101, 011, 110\}$.
- Suppose there is one erasure: $\mathbf{y} = *00$. There is no doubt, $\mathbf{x} = 000$ and $\mathbf{u} = 00$.
- Suppose there is one error: y=100. It could have been x=000,110,101.

Communication Channel: Discrete Channel (II)

- For example: $\mathbf{u} \in \{00, 10, 01, 11\}$, $\mathbf{x} \in \{000, 101, 011, 110\}$.
- Suppose there is one erasure: $\mathbf{y} = *00$. There is no doubt, $\mathbf{x} = 000$ and $\mathbf{u} = 00$.
- Suppose there is one error: $\mathbf{y} = 100$. It could have been $\mathbf{x} = 000, 110, 101$.
- Design Criterion: Hamming distance (and rate).

Communication Channel: Gaussian Channel (I)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

$$\fbox{Sender, message=x} \rightarrow \fbox{Channel} \rightarrow \fbox{Receiver, message=y}$$

• Gaussian Channel (AWGN): $\mathbf{y} = \mathbf{x} + \mathbf{w} \in \mathbb{R}^n$, where \mathbf{w} is Gaussian distributed.

Communication Channel: Gaussian Channel (I)

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

$$\fbox{Sender, message=x} \rightarrow \fbox{Channel} \rightarrow \fbox{Receiver, message=y}$$

- Gaussian Channel (AWGN): $\mathbf{y} = \mathbf{x} + \mathbf{w} \in \mathbb{R}^n$, where \mathbf{w} is Gaussian distributed.
- Decoding: The receiver compares **y** with the list of possible **x**.

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

Communication Channel: Gaussian Channel (II)

• The decoding is a closest neighbour decoding (Euclidean distance).

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Communication Channel: Gaussian Channel (II)

- The decoding is a closest neighbour decoding (Euclidean distance).
- Knowing the noise variance, place the codewords accordingly.
- Energy constraint: this is packing problem.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Communication Channel: Fading Channel (I)

 $\begin{array}{c|c} \mathsf{Sender,\ message}{=}\mathbf{x} \rightarrow \hline \mathsf{Channel} \rightarrow \hline \mathsf{Receiver,\ message}{=}\mathbf{y} \end{array}$

 Fading Channel: y = diag(h)x + w ∈ ℝⁿ, w ~ N(0, σ²I) is the noise and diag(h₁,..., h_n) is the channel fading matrix, h_i Rayleigh distributed.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Communication Channel: Fading Channel (I)

 $\begin{array}{c|c} \mathsf{Sender,\ message}{=}\mathbf{x} \rightarrow \hline \mathsf{Channel} \rightarrow \hline \mathsf{Receiver,\ message}{=}\mathbf{y} \end{array}$

- Fading Channel: y = diag(h)x + w ∈ ℝⁿ, w ~ N(0, σ²I) is the noise and diag(h₁,..., h_n) is the channel fading matrix, h_i Rayleigh distributed.
- Decoding: The receiver compares y with the list of possible x, but knowing diag(h) is needed:

$$\hat{\mathbf{x}} = \arg \min_{\mathbf{x} \in S} \|\mathbf{y} - \mathbf{x} \operatorname{diag}(\mathbf{h})\|^2.$$

Communication Channel: Fading Channel (II)

• *Reliability* is modeled by the *pairwise probability of error*, bounded by

$$P(\mathbf{x} \rightarrow \hat{\mathbf{x}}) \leq \frac{1}{2} \prod_{x_i \neq \hat{x}_i} \frac{8\sigma^2}{(x_i - \hat{x}_i)^2} = \frac{1}{2} \frac{(8\sigma^2)^l}{\prod_{x_i \neq \hat{x}_i} |x_i - \hat{x}_i|^2}$$

when the two codewords differ in / components.

 Design criterion: Maximize the modulation diversity L = min(l), ideally L = n.

[X. Giraud and J.-C. Belfiore, Constellations Matched to the Rayleigh fading channel, 1996.]

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

Algebraic lattices

 Let K be a number field of degree n and signature (r₁, r₂). The canonical embedding σ : K → ℝⁿ is defined by

$$\sigma(\alpha) = (\sigma_1(\alpha), \ldots, \sigma_{r_1}(\alpha), \Re \sigma_{r_1+1}(\alpha), \Im \sigma_{r_1+1}(\alpha), \ldots)$$

Algebraic lattices

 Let K be a number field of degree n and signature (r₁, r₂). The canonical embedding σ : K → ℝⁿ is defined by

$$\sigma(\alpha) = (\sigma_1(\alpha), \ldots, \sigma_{r_1}(\alpha), \Re \sigma_{r_1+1}(\alpha), \Im \sigma_{r_1+1}(\alpha), \ldots)$$

Let O_K be the ring of integers of K with integral basis {ω₁,..., ω_n}. An algebraic lattice Λ = σ(O_K) has generator matrix

$$M = \begin{pmatrix} \sigma_1(\omega_1) & \dots & \sigma_{r_1}(\omega_1) & \dots & \Im \sigma_{r_1+r_2}(\omega_1) \\ \vdots & \vdots & & \vdots \\ \sigma_1(\omega_n) & \dots & \sigma_n(\omega_{r_1}) & \dots & \Im \sigma_{r_1+r_2}(\omega_n) \end{pmatrix}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The modulation diversity

Let K be a number field of signature (r₁, r₂).
 Theorem. Algebraic lattices exhibit a diversity

$$L=r_1+r_2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

The modulation diversity

Let K be a number field of signature (r₁, r₂).
 Theorem. Algebraic lattices exhibit a diversity

$$L=r_1+r_2.$$

- In order to guarantee *maximal diversity*, we consider *totally real* number fields.
- F. Oggier and E. Viterbo, *Algebraic number theory and code design for Rayleigh fading channels.*

A Quadratic Field

- Consider the ring $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] = \{a + b\frac{1+\sqrt{5}}{2}, a, b \in \mathbb{Z}\}.$
- It is a subset of the field $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5}, a, b \in \mathbb{Q}\}.$

A Quadratic Field

- Consider the ring $\mathbb{Z}[\frac{1+\sqrt{5}}{2}] = \{a + b\frac{1+\sqrt{5}}{2}, a, b \in \mathbb{Z}\}.$
- It is a subset of the field $\mathbb{Q}(\sqrt{5}) = \{a + b\sqrt{5}, a, b \in \mathbb{Q}\}.$
- Intuitively, $\mathbb{Q}(\sqrt{5})$ is obtained from \mathbb{Q} by adding $\sqrt{5}$, which is the root of the polynomial $X^2 5 = (X \sqrt{5})(X + \sqrt{5})$.
- This gives us two ways of embedding $\mathbb{Q}(\sqrt{5})$ into \mathbb{R} :

$$\sigma_1: \sqrt{5} \mapsto \sqrt{5}, \ \sigma_2: \sqrt{5} \mapsto -\sqrt{5}.$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Its Corresponding Lattice (I)

- Embed $\mathbb{Z}[\frac{1+\sqrt{5}}{2}]$ into \mathbb{R}^2 using the two embeddings σ_1, σ_2 .
- We get a generator matrix

$$M = \begin{bmatrix} 1 & 1\\ \sigma_1(\frac{1+\sqrt{5}}{2}) & \sigma_2(\frac{1+\sqrt{5}}{2}) \end{bmatrix}$$

• The lattice is made of integral linear combinations of (1,1) and $(\frac{1+\sqrt{5}}{2},\frac{1-\sqrt{5}}{2})$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Its Corresponding Lattice (II)

• Its corresponding Gram matrix is

$$G = MM^{T} = \begin{bmatrix} 1 & 1\\ \sigma_1(\frac{1+\sqrt{5}}{2}) & \sigma_2(\frac{1+\sqrt{5}}{2}) \end{bmatrix} \begin{bmatrix} 1 & \sigma_1(\frac{1+\sqrt{5}}{2})\\ 1 & \sigma_2(\frac{1+\sqrt{5}}{2}) \end{bmatrix}.$$

• Note that all entries are integers, because of the choice of $\mathbb{Z}[\frac{1+\sqrt{5}}{2}].$ In particular

$$(X - \frac{1+\sqrt{5}}{2})(X - \frac{1-\sqrt{5}}{2}) = X^2 - X + 1.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Summary so far

- What is the channel? which alphabet? how do we decode? code design.
- How to construct lattices from number fields (embeddings, $\mathbb{Z}\text{-}\mathsf{basis}).$

Space-Time Coding

Division Algebras

MIMO Channel Model(I)

• Multiple Input Multiple Output

Space-Time Coding

Division Algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

MIMO Channel Model (II)

Division Algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

MIMO Channel Model (II)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

MIMO Channel Model (II)

Division Algebras

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

MIMO Channel Model (III)

[E. Telatar, Capacity of multi-antenna Gaussian channels, 1999.]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The Coding Problem

The goal is to obtain a family C of codewords:

$$C = \left\{ \mathbf{X} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} | x_{11}, x_{12}, x_{21}, x_{22} \in \mathbb{C} \right\}$$
space-time codeword

where the x_i are functions of the information symbols.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

The Coding Problem

The goal is to obtain a family C of codewords:

$$C = \left\{ \mathbf{X} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} | x_{11}, x_{12}, x_{21}, x_{22} \in \mathbb{C} \right\}$$
space-time codeword

where the x_i are functions of the information symbols.

• *Encoding* consists of associating the information symbols to the coefficients *x*₁₁, *x*₁₂, *x*₂₁, *x*₂₂.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

The Coding Problem

The goal is to obtain a family C of codewords:

$$C = \left\{ \mathbf{X} = \begin{pmatrix} x_{11} & x_{12} \\ x_{21} & x_{22} \end{pmatrix} | x_{11}, x_{12}, x_{21}, x_{22} \in \mathbb{C} \right\}$$
space-time codeword

where the x_i are functions of the information symbols.

- *Encoding* consists of associating the information symbols to the coefficients *x*₁₁, *x*₁₂, *x*₂₁, *x*₂₂.
- *Decoding* consists of recovering the information symbols from the noisy coefficients *y*₁₁, *y*₁₂, *y*₂₁, *y*₂₂.

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

How to Design Space-Time Codes

The *reliability* of a code C is modeled by the *probability* of sending X but of decoding X ≠ X.

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

How to Design Space-Time Codes

- The *reliability* of a code C is modeled by the *probability* of sending X but of decoding X ≠ X.
- This *pairwise error probability* (knowing **H**) is upper bounded by

$$P(\mathbf{X} o \hat{\mathbf{X}}) \leq f\left({{\it SNR}}, |\det (\mathbf{X} - \hat{\mathbf{X}})|^{-1}
ight).$$

where SNR=signal to noise ratio.

[V. Tarokh,N. Seshadri,A. R. Calderbank, Space-time codes for high data rate wireless communications: Performance criterion and code construction, 1998.]

Division Algebras

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Fading and Diversity

• Design a *fully-diverse* codebook C such that

$$\det(\mathbf{X} - \mathbf{X}') \neq 0, \ \mathbf{X} \neq \mathbf{X}' \in \mathcal{C}.$$

Division Algebras

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Fading and Diversity

• Design a *fully-diverse* codebook C such that

 $det(\boldsymbol{X}-\boldsymbol{X}')\neq 0, \ \boldsymbol{X}\neq \boldsymbol{X}'\in \mathcal{C}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Code Design Criterion

- We would like *fully diverse* codes:
- $\det(\mathbf{X} \mathbf{X}') \neq 0 \quad \forall \ \mathbf{X} \neq \mathbf{X}'.$ • Furthermore, we would like to maximize the *minimum* determinant

$$\min_{\mathbf{X}\neq\mathbf{X}'}|\det(\mathbf{X}-\mathbf{X}')|^2.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Code Design Criterion

• We would like *fully diverse* codes:

 $\det(\mathbf{X} - \mathbf{X}') \neq 0 \quad \forall \ \mathbf{X} \neq \mathbf{X}'.$ • Furthermore, we would like to maximize the *minimum* determinant

$$\min_{\mathbf{X}\neq\mathbf{X}'} |\det(\mathbf{X}-\mathbf{X}')|^2.$$

[B. Hassibi and B.M. Hochwald, *High-Rate Codes That Are Linear in Space and Time*, 2002. H. El Gamal and M.O. Damen, *Universal space-time coding*, 2003.]

Where Algebraists meet Engineers

 \bullet We need a family of matrices ${\mathcal C}$ such that

$$det(\boldsymbol{X}-\boldsymbol{X}')\neq 0.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Where Algebraists meet Engineers

• We need a family of matrices $\ensuremath{\mathcal{C}}$ such that

$$\det(\mathbf{X} - \mathbf{X}') \neq 0.$$

• Such matrices can be found using *division algebras*.

[A. Sethuraman, B. Sundar Rajan, V. Shashidar, *Full-diversity, high-rate space-time block codes from division algebras,* 2003]

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

Space-Time Coding

Coding over Different Channels Lattices from Number Fields MIMO and Space-Time Coding

Division Algebras

Hamilton's Quaternion Algebra

The idea behind division algebras

• The difficulty: the *non-linearity* of the determinant

 $\det(\boldsymbol{X}-\boldsymbol{X}')\neq 0, \ \boldsymbol{X}\neq \boldsymbol{X}'\in \mathcal{C}.$

The idea behind division algebras

• The difficulty: the *non-linearity* of the determinant

$$\det(\boldsymbol{X}-\boldsymbol{X}')\neq 0, \ \boldsymbol{X}\neq \boldsymbol{X}'\in \mathcal{C}.$$

• If *C* is taken inside an *algebra* of matrices, the problem simplifies to

 $det(\mathbf{X}) \neq 0, \ \mathbf{0} \neq \mathbf{X} \in \mathcal{C}.$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

The idea behind division algebras

• The difficulty: the *non-linearity* of the determinant

$$\det(\boldsymbol{\mathsf{X}}-\boldsymbol{\mathsf{X}}')\neq 0, \ \boldsymbol{\mathsf{X}}\neq \boldsymbol{\mathsf{X}}'\in\mathcal{C}.$$

• If \mathcal{C} is taken inside an *algebra* of matrices, the problem simplifies to

 $det(\mathbf{X}) \neq 0, \ \mathbf{0} \neq \mathbf{X} \in \mathcal{C}.$

• A *division algebra* is a non-commutative field.

The Hamiltonian Quaternions: the definition (I)

• Recall: C?

The Hamiltonian Quaternions: the definition (I)

- Recall: C?
- \mathbb{C} =vector space of dimension 2 over \mathbb{R} , with basis

 $\{1, i\}.$

The Hamiltonian Quaternions: the definition (I)

- Recall: C?
- \mathbb{C} =vector space of dimension 2 over \mathbb{R} , with basis

 $\{1, i\}.$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- \mathbb{C} =vector space of dimension 2 over \mathbb{R} , with basis

 $\{1, i\}.$

- $i^2 = -1$.
- Now: Ⅲ?

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- \mathbb{C} =vector space of dimension 2 over \mathbb{R} , with basis

 $\{1,i\}.$

- $i^2 = -1$.
- Now: Ⅲ?
- \mathbb{H} =vector space of dimension 4 over \mathbb{R} , with basis

 $\{1,i,j,k\}.$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The Hamiltonian Quaternions: the definition (I)

- Recall: \mathbb{C} ?
- \mathbb{C} =vector space of dimension 2 over \mathbb{R} , with basis

 $\{1,i\}.$

- $i^2 = -1$.
- Now: Ⅲ?
- \mathbb{H} =vector space of dimension 4 over \mathbb{R} , with basis

 $\{1,i,j,k\}.$

• Rules: $i^2 = -1$, $j^2 = -1$, k = ij = -ji.

The Hamiltonian Quaternions: the definition (II)

Complex Numbers

Hamiltonian Quaternions

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

 $\mathbb{C} = \{x + yi \mid x, y \in \mathbb{R}\} \quad \mathbb{H} = \{x + yi + zj + wk \mid x, y, z, w \in \mathbb{R}\}$

Hamiltonian Quaternions are a division algebra

• To see: $q = x + yi + wk \neq 0$ is invertible.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Hamiltonian Quaternions are a division algebra

- To see: $q = x + yi + wk \neq 0$ is invertible.
- Define the *conjugate* of *q*:

$$\bar{q} = x - yi - zj - wk.$$

Hamiltonian Quaternions are a division algebra

- To see: $q = x + yi + wk \neq 0$ is invertible.
- Define the *conjugate* of *q*:

$$\bar{q} = x - yi - zj - wk.$$

• Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

▲ロ▶ ▲冊▶ ▲ヨ▶ ▲ヨ▶ ヨー の々ぐ

Hamiltonian Quaternions are a division algebra

- To see: $q = x + yi + wk \neq 0$ is invertible.
- Define the *conjugate* of *q*:

$$\bar{q} = x - yi - zj - wk.$$

• Compute that

$$q\bar{q} = x^2 + y^2 + z^2 + w^2, \ x, y, z, w \in \mathbb{R}.$$

• The inverse of the quaternion q is given by

$$q^{-1} = rac{ar q}{qar q}.$$

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

$$(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

$$(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.$$

• Now compute the *multiplication* by *q*:

$$\underbrace{(\alpha + j\beta)}_{q}(\gamma + j\delta) = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^{2}\bar{\beta}\delta$$
$$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

The Hamiltonian Quaternions: how to get matrices

• Any quaternion q = x + yi + zj + wk can be written as

$$(x + yi) + j(z - wi) = \alpha + j\beta, \ \alpha, \ \beta \in \mathbb{C}.$$

• Now compute the *multiplication* by *q*:

$$\underbrace{(\alpha + j\beta)}_{q}(\gamma + j\delta) = \alpha\gamma + j\bar{\alpha}\delta + j\beta\gamma + j^{2}\bar{\beta}\delta$$
$$= (\alpha\gamma - \bar{\beta}\delta) + j(\bar{\alpha}\delta + \beta\gamma)$$

• Write this equality in the basis {1, *j*}:

$$\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} \begin{pmatrix} \gamma \\ \delta \end{pmatrix} = \begin{pmatrix} \alpha\gamma - \bar{\beta}\delta \\ \bar{\alpha}\delta + \beta\gamma \end{pmatrix}$$

The Hamiltonian Quaternions: Check list (I)

• Design of the codebook C:

$$\mathcal{C} = \left\{ \mathbf{X} = \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) | x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}$$

The Hamiltonian Quaternions: Check list (I)

• Design of the codebook C:

$$\mathcal{C} = \left\{ \mathbf{X} = \left(\begin{array}{cc} x_1 & x_2 \\ x_3 & x_4 \end{array} \right) | x_1, x_2, x_3, x_4 \in \mathbb{C} \right\}$$

Codebook from Quaternions:

$$\mathcal{C} = \left\{ \mathbf{X} = \left(\begin{array}{cc} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{array} \right) | \alpha, \beta \in \mathbb{C} \right\}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Hamiltonian Quaternions: Check list (II)

• Diversity:

$$det(\mathbf{X} - \mathbf{X}') = ?$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Hamiltonian Quaternions: Check list (II)

• Diversity:

$$\mathsf{det}(\mathbf{X} - \mathbf{X}') = ?$$

• By linearity:

$$\det \left(\begin{pmatrix} \alpha & -\bar{\beta} \\ \beta & \bar{\alpha} \end{pmatrix} - \begin{pmatrix} \alpha' & -\bar{\beta}' \\ \beta' & \bar{\alpha}' \end{pmatrix} \right) \\ = \det \left(\begin{array}{c} \alpha - \alpha' & -(\overline{\beta} - \beta') \\ \beta - \beta' & \overline{\alpha} - \alpha' \end{array} \right)$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

The Hamiltonian Quaternions: Check list (III)

• Diversity:

$$det(\mathbf{X} - \mathbf{X}') = det \begin{pmatrix} \alpha - \alpha' & -(\overline{\beta - \beta'}) \\ \beta - \beta' & \overline{\alpha - \alpha'} \end{pmatrix} = 0$$
$$\iff |\alpha - \alpha'|^2 + |\beta - \beta|^2 = 0$$

The Hamiltonian Quaternions: the Alamouti Code

$$q=\alpha+j\beta,\ \alpha,\ \beta\in\mathbb{C}\iff \left(\begin{array}{cc}\alpha&-\bar{\beta}\\\beta&\bar{\alpha}\end{array}\right)$$

[S. M. Alamouti, "A simple transmit diversity technique for wireless communications", 1998.]

▲□▶ ▲□▶ ▲□▶ ▲□▶ = のへで

Summary

- 1. A fully diverse space-time code is a family C of (square) complex matrices such that $det(\mathbf{X} \mathbf{X}') \neq 0$ when $\mathbf{X} \neq \mathbf{X}'$.
- 2. Division algebras whose elements can be represented as matrices satisfy full diversity by definition.
- 3. Hamilton's quaternions provide such a family of fully diverse space-time codes.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Thank you for your attention!