Neat Homomorphisms over Dedekind Domains

Salahattin ÖZDEMİR
(Joint work with Engin Mermut)

Dokuz Eylül University, Izmir-Turkey

NCRA, V
12-15 June 2017, Lens
Neat Homomorphisms over Dedekind Domains

1. Neat submodules
2. Neat homomorphisms
3. The class of neat epimorphisms
4. Z-Neat homomorphisms
5. References
Let \mathcal{P} be a class of s.e.s of R-modules. If $E : 0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0$ belongs to \mathcal{P}, then f is called a \mathcal{P}-monom., and g is called a \mathcal{P}-epim.
Let \mathcal{P} be a class of s.e.s of R-modules. If $\mathbb{E} : 0 \longrightarrow A \overset{f}{\longrightarrow} B \overset{g}{\longrightarrow} C \longrightarrow 0$ belongs to \mathcal{P}, then f is called a \mathcal{P}-monom., and g is called a \mathcal{P}-epim.

Proper class

\mathcal{P} is said to be **proper** if

- **P1.** If \mathbb{E} is in \mathcal{P}, then \mathcal{P} contains every s.e.s. isomorphic to \mathbb{E}.
- **P2.** \mathcal{P} contains all splitting s.e.s.
- **P3.** The composite of two \mathcal{P}-monom. (resp. \mathcal{P}-epim.) is a \mathcal{P}-monom. (resp. \mathcal{P}-epim.) if these composites are defined.
- **P4.** If g and f are monom., and gf is a \mathcal{P}-monom., then f is a \mathcal{P}-monom. Moreover, if g and f are epim. and gf is a \mathcal{P}-epim., then g is a \mathcal{P}-epim.
Example of proper classes

1. Split_R: The smallest proper class of modules consists of only splitting s.e.s.

$0 \rightarrow A \rightarrow B \rightarrow C \rightarrow 0$ of abelian groups s.t. $\text{Im}f$ is a pure subgroup of B, where a subgroup $A \subseteq B$ is called pure in B if $A \cap nB = nA$ for all integers n.
Example of proper classes

1. Split_R: The smallest proper class of modules consists of only splitting s.e.s.

2. Abs_R: The largest proper class of modules consists of all s.e.s.
Example of proper classes

1. Split_R: The smallest proper class of modules consists of only splitting s.e.s.

2. Abs_R: The largest proper class of modules consists of all s.e.s.

3. $\mathcal{P}_{\text{ure}}_\mathbb{Z}$: The proper class of all s.e.s.

\[
0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0
\]

of abelian groups s.t. $\text{Im} \, f$ is a pure subgroup of B,
Example of proper classes

1. Split_R: The smallest proper class of modules consists of only splitting s.e.s.

2. Abs_R: The largest proper class of modules consists of all s.e.s.

3. $\text{Pure}_\mathbb{Z}$: The proper class of all s.e.s.

\[0 \to A \stackrel{f}{\to} B \stackrel{g}{\to} C \to 0 \]

of abelian groups s.t. $\text{Im } f$ is a pure subgroup of B, where a subgroup $A \subseteq B$ is called pure in B if $A \cap nB = nA$ for all integers n.
Example of proper classes

1. \textit{Split}_R: The smallest proper class of modules consists of only splitting s.e.s.

2. \textit{Abs}_R: The largest proper class of modules consists of all s.e.s.

3. $\textit{Pure}_\mathbb{Z}$: The proper class of all s.e.s.

\[
\begin{array}{ccc}
0 & \rightarrow & A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0
\end{array}
\]

of abelian groups s.t. $\text{Im } f$ is a pure subgroup of B, where a subgroup $A \subseteq B$ is called pure in B if $A \cap nB = nA$ for all integers n.
Let \mathcal{M} be a class of modules.

proj., inj., flatly generated proper classes

- $\pi^{-1}(\mathcal{M})$: the class of all s.e.s. E s.t. $\text{Hom}_R(L, E)$ is exact $\forall L \in \mathcal{M}$ (proper class proj. gen. by \mathcal{M});
- $\iota^{-1}(\mathcal{M})$: the class of all s.e.s. E s.t. $\text{Hom}_R(E, L)$ is exact $\forall L \in \mathcal{M}$ (proper class inj. gen. by \mathcal{M});
- $\tau^{-1}(\mathcal{M})$: the class of all s.e.s. E s.t. $L \otimes E$ is exact $\forall L \in \mathcal{M}$ (proper class flatly gen. by the class \mathcal{M} of right modules).
A subgroup $A \subseteq B$ is called neat in B if $A \cap pB = pA$ for all primes p [Honda(1956)].

The class of all neat-exact sequences of abelian groups forms a proper class, denoted $\mathcal{N}eat\mathbb{Z}$.
A subgroup $A \subseteq B$ is called neat in B if $A \cap pB = pA$ for all primes p [Honda(1956)].
The class of all neat-exact sequences of abelian groups forms a proper class, denoted $\mathcal{N}eat_\mathbb{Z}$.

- A is closed in B if A has no proper essential extension in B.

$Closed_\mathbb{Z} = \mathcal{N}eat_\mathbb{Z}$

The proper class $Closed_\mathbb{Z} = \mathcal{N}eat_\mathbb{Z}$ is proj., inj. and flatly generated by all simple groups $\mathbb{Z}/p\mathbb{Z}$ (p prime number):

\[
Closed_\mathbb{Z} = \mathcal{N}eat_\mathbb{Z} \\
= \pi^{-1}(\{\mathbb{Z}/p\mathbb{Z} \mid p \text{ prime}\}) \\
= \tau^{-1}(\{\mathbb{Z}/p\mathbb{Z} \mid p \text{ prime}\}) \\
= \iota^{-1}(\{\mathbb{Z}/p\mathbb{Z} \mid p \text{ prime}\}).
\]
Neat submodules [Stenstrom(1967)]

A monomorphism $f : A \rightarrow B$ is called neat if any simple module S is projective w.r.t $B \rightarrow B/\text{Im } f$.
A monomorphism \(f : A \to B \) is called neat if any simple module \(S \) is projective w.r.t \(B \to B/\text{Im } f \):

\[
\begin{array}{ccc}
S & \to & B/\text{Im } f \\
\downarrow & & \downarrow \\
B & \to & 0
\end{array}
\]
A monomorphism $f : A \to B$ is called neat if any simple module S is projective w.r.t $B \to B/\text{Im } f$:

$$\begin{array}{c}
S \\
\downarrow \\
B \longrightarrow B/\text{Im } f \longrightarrow 0
\end{array}$$

$A \subseteq B$ is called a neat submodule of B if the inclusion $A \hookrightarrow B$ is neat.
Neat submodules [Stenstrom(1967)]

A monomorphism \(f : A \to B \) is called neat if any simple module \(S \) is projective w.r.t \(B \to B/\text{Im } f \):

\[
\begin{array}{ccc}
S & \longrightarrow & B \\
\downarrow & & \downarrow \\
B & \longrightarrow & B/\text{Im } f & \longrightarrow & 0
\end{array}
\]

\(A \subseteq B \) is called a neat submodule of \(B \) if the inclusion \(A \hookrightarrow B \) is neat.

\[\mathcal{N}eat_R \]

The class of all s.e.s. \(0 \longrightarrow A \xrightarrow{f} B \xrightarrow{g} C \longrightarrow 0 \) s.t. \(\text{Im } f \) is a neat submodule of \(B \) forms a proper class:

\[\mathcal{N}eat_R = \pi^{-1}(\{ \text{all simple } R\text{-modules}\}) \]
Torsion free covers of modules [Enochs(1971)]

Over a commutative domain R, a homomorphism $\varphi : T \to M$, where T is a torsion free R-module, is called a torsion free cover of M if

(i) for every torsion free R-module G and a homomorphism $f : G \to M$ there is a homomorphism $g : G \to T$ s.t. $\varphi g = f$:

\[
\begin{array}{ccc}
G & \xrightarrow{f} & M \\
\downarrow{g} & & \\
T & \xrightarrow{\varphi} & M
\end{array}
\]
Neat Homomorphisms over Dedekind Domains

Neat homomorphisms

Over a commutative domain \(R \), a homomorphism \(\varphi : T \rightarrow M \), where \(T \) is a torsion free \(R \)-module, is called a torsion free cover of \(M \) if

(i) for every torsion free \(R \)-module \(G \) and a homomorphism \(f : G \rightarrow M \) there is a homomorphism \(g : G \rightarrow T \) s.t. \(\varphi g = f \):

\[
\begin{array}{ccc}
G & \xrightarrow{g} & T \\
\downarrow & & \downarrow \varphi \\
\downarrow f & & \\
M & & M
\end{array}
\]

(ii) \(\text{Ker} \varphi \) contains no non-trivial submodule \(S \) of \(T \) s.t. \(rS = rT \cap S \) for all \(r \in R \) (i.e. \(S \) is an \textit{RD}-submodule (relatively divisible submodule) of \(T \)).
Neat homomorphisms of Enochs and Bowe

A homomorphism \(f : M \to N \) is neat if given any proper submodule \(H \) of \(G \) and any homomorphism \(\sigma : H \to M \), the homomorphism \(f \circ \sigma \) has a proper extension in \(G \) iff \(\sigma \) has a proper extension in \(G \).
Neat homomorphisms of Enochs and Bowe

A homomorphism $f : M \rightarrow N$ is neat if given any proper submodule H of G and any homomorphism $\sigma : H \rightarrow M$, the homomorphism $f \circ \sigma$ has a proper extension in G iff σ has a proper extension in G. That is, a commutative diagram (1):

\[
\begin{array}{ccc}
H & \rightarrow & G' \\
\sigma \downarrow & & f \downarrow \\
M & \rightarrow & N
\end{array}
\]

always guarantees the existence of a commutative diagram (2):

\[
\begin{array}{ccc}
H & \rightarrow & G'' \\
\sigma \downarrow & & f \downarrow \\
M & \rightarrow & N
\end{array}
\]
Remark

These neat homomorphisms need not be monic or epic. It is different from our definition of neat, so we call them E-neat homomorphisms.
Remark

These neat homomorphisms need not be monic or epic. It is different from our definition of neat, so we call them E-neat homomorphisms.

E-neat submodule

A submodule $A \subseteq B$ is called E-neat if the monom. $A \hookrightarrow B$ is E-neat.
Remark
These neat homomorphisms need not be monic or epic. It is different from our definition of neat, so we call them E-neat homomorphisms.

E-neat submodule
A submodule $A \subseteq B$ is called E-neat if the monom. $A \hookrightarrow B$ is E-neat.

Examples
1. Every torsion free cover is an E-neat homomorphism, over a commutative domain.
Remark

These neat homomorphisms need not be monic or epic. It is different from our definition of neat, so we call them E-neat homomorphisms.

E-neat submodule

A submodule $A \subseteq B$ is called E-neat if the monom. $A \hookrightarrow B$ is E-neat.

Examples

1. Every torsion free cover is an E-neat homomorphism, over a commutative domain.

2. A is a neat subgroup of B iff the monom. $A \hookrightarrow B$ is E-neat.
Remark

These neat homomorphisms need not be monic or epic. It is different from our definition of neat, so we call them E-neat homomorphisms.

E-neat submodule

A submodule $A \subseteq B$ is called E-neat if the monom. $A \hookrightarrow B$ is E-neat.

Examples

1. Every torsion free cover is an E-neat homomorphism, over a commutative domain.
2. A is a neat subgroup of B iff the monom. $A \hookrightarrow B$ is E-neat.
3. A is a closed submodule of B iff the monom. $A \hookrightarrow B$ is E-neat (i.e. A is E-neat submodule).
C-ring of Renault (1964)

R is called a left C-ring if $\text{Soc}(R/I) \neq 0$, for every essential proper left ideal I of R.

<table>
<thead>
<tr>
<th>C-ring of Renault (1964)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R is called a left C-ring if $\text{Soc}(R/I) \neq 0$, for every essential proper left ideal I of R.</td>
</tr>
<tr>
<td>For example, a commutative Noetherian ring in which every nonzero prime ideal is maximal is a C-ring. So, in particular, a Dedekind domain is also a C-ring.</td>
</tr>
</tbody>
</table>
Neat Homomorphisms over Dedekind Domains

Neat homomorphisms

C-ring of Renault (1964)

R is called a left C-ring if $\text{Soc}(R/I) \neq 0$, for every essential proper left ideal I of R.

For example, a commutative Noetherian ring in which every nonzero prime ideal is maximal is a C-ring. So, in particular, a Dedekind domain is also a C-ring.

neat = E-neat

- R is a left C-ring iff $\text{Closed} = \mathcal{N}eat_R$. [Generolov (1978)]
Neat Homomorphisms over Dedekind Domains

Neat homomorphisms

C-ring of Renault (1964)

R is called a left C-ring if $\text{Soc}(R/I) \neq 0$, for every essential proper left ideal I of R.

For example, a commutative Noetherian ring in which every nonzero prime ideal is maximal is a C-ring. So, in particular, a Dedekind domain is also a C-ring.

neat = E-neat

- R is a left C-ring iff $\text{Closed} = \mathcal{N}eat_R$. [Generolov (1978)]
- So, over a left C-ring, neat submodules and E-neat submodules coincide.
Theorem [Bowe(1972)]
Let \(f : A \to B \) be a homom. of modules. TFAE:

1. \(f \) is \(E \)-neat.
2. In the defn. of \(E \)-neat homom., it suffices to take \(G = R \) and \(H \) a left ideal of \(R \).
3. In the defn. of \(E \)-neat homom., it suffices to take \(\sigma \) a monom. and \(G \) as an essential extension of \(H \).
4. There are no proper extensions of \(f \) in the injective envelope \(E(A) \) of \(A \).
We usually use the characterization (4) for E-neat homom.

useful char. (4)

A homom. $f : A \to B$ is E-neat iff there are no proper extensions of f in $E(A)$, that is,
We usually use the characterization (4) for E-neat homom.

useful char. (4)

A homom. $f : A \to B$ is E-neat iff there are no proper extensions of f in $E(A)$, that is, if the diagram

\[
\begin{array}{ccc}
E(A) & & \\
\uparrow & & \\
L & & \\
\uparrow & & \\
A & f & B
\end{array}
\]

commutates, then $A = L$.
Neat Homomorphisms over Dedekind Domains

The class of neat epimorphisms

• Since a monomorphism $f : A \to B$ is E-neat iff $\text{Im } f$ is a closed submodule, the class of all s.e.s. $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ s.t. $f : A \to B$ is E-neat forms the proper class Closed.
Since a monomorphism $f : A \to B$ is E-neat iff $\text{Im} \, f$ is a closed submodule, the class of all s.e.s. $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ s.t. $f : A \to B$ is E-neat forms the proper class $Closed$.

So, we investigate the class of all such s.e.s. s.t. $g : B \to C$ is E-neat, denoted by $ENeat$.

The projection epimorphism $f : A \oplus B \to A$ is E-neat iff $\text{Ker} \, f \cong B$ is injective.

$ENeat$ is not proper in general. The class $ENeat$ satisfies the conditions $P1$ and $P3$ for every ring R, and $P4$ for left hereditary rings, but it does not satisfy the condition $P2$ unless the ring R is semisimple. Thus, $ENeat$ forms a proper class if and only if R is semisimple.
Since a monomorphism $f : A \to B$ is E-neat iff $\text{Im} f$ is a closed submodule, the class of all s.e.s. $0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0$ s.t. $f : A \to B$ is E-neat forms the proper class $Closed$.

So, we investigate the class of all such s.e.s. s.t. $g : B \to C$ is E-neat, denoted by $ENeat$.

Theorem

The projection epimorphism $f : A \oplus B \to A$ is E-neat iff $\text{Ker} f \cong B$ is injective.
- Since a monomorphism \(f : A \rightarrow B \) is \(E \)-neat iff \(\text{Im} f \) is a closed submodule, the class of all s.e.s. \(0 \rightarrow A \xrightarrow{f} B \xrightarrow{g} C \rightarrow 0 \) s.t. \(f : A \rightarrow B \) is \(E \)-neat forms the proper class \(\text{Closed} \).
- So, we investigate the class of all such s.e.s. s.t. \(g : B \rightarrow C \) is \(E \)-neat, denoted by \(\mathcal{ENeat} \).

Theorem

The projection epimorphism \(f : A \oplus B \rightarrow A \) is \(E \)-neat iff \(\text{Ker} f \cong B \) is injective.

\(\mathcal{ENeat} \) is not proper in general

The class \(\mathcal{ENeat} \) satisfies the conditions P1 and P3 for every ring \(R \), and P4 for left hereditary rings, but it does not satisfy the condition P2 unless the ring \(R \) is semisimple.
• Since a monomorphism \(f : A \to B \) is \(E \)-neat iff \(\text{Im} \, f \) is a closed submodule, the class of all s.e.s. \(0 \to A \xrightarrow{f} B \xrightarrow{g} C \to 0 \) s.t. \(f : A \to B \) is \(E \)-neat forms the proper class \(\text{Closed} \).
• So, we investigate the class of all such s.e.s. s.t. \(g : B \to C \) is \(E \)-neat, denoted by \(\mathcal{ENeat} \).

Theorem

The projection epimorphism \(f : A \oplus B \to A \) is \(E \)-neat iff \(\ker f \cong B \) is injective.

\(\mathcal{ENeat} \) is not proper in general

The class \(\mathcal{ENeat} \) satisfies the conditions P1 and P3 for every ring \(R \), and P4 for left hereditary rings, but it does not satisfy the condition P2 unless the ring \(R \) is semisimple. Thus, \(\mathcal{ENeat} \) forms a proper class if and only if \(R \) is semisimple.
A homomorphisms $f : A \rightarrow B$ of modules is E-neat if for every decomposition $f = \beta \alpha$ where α is an essential monomorphism, α is an isomorphism:

\[\begin{array}{c}
L \\
\downarrow \alpha \\
A \\
\downarrow f \\
\alpha \quad \beta \\
\downarrow \\
B
\end{array} \]
Theorem [Zoschinger(1978)]

Let $f : A \rightarrow B$ be a homom. of abelian groups. TFAE:

1. f is E-neat;
2. $\text{Im } f$ is closed in B and $\text{Ker } f \subseteq \text{Rad } A$;
3. $f^{-1}(pB) = pA$ for all prime numbers p;
4. if the following diagram is pushout of f and α, and α is an essential monomorphism, then α' is also an essential monomorphism:

$$
\begin{array}{ccc}
A & \xrightarrow{\alpha} & A' \\
\downarrow f & & \downarrow f' \\
B & \xrightarrow{\alpha'} & B'
\end{array}
$$
Neat Homomorphisms over Dedekind Domains

Theorem

Let \(f : A \to B \) be a homom. of modules. TFAE:

1. \(f : A \to B \) is \(E \)-neat.
2. If

\[
\begin{array}{ccc}
A & \xrightarrow{\alpha} & A' \\
\downarrow{f} & & \downarrow{f'} \\
B & \xrightarrow{\alpha'} & B'
\end{array}
\]

is a pushout diagram of \(f \) and \(\alpha \), where \(\alpha \) is an essential monomorphism, then \(\alpha' \) is also an essential monomorphism.

Corollary

Let \(K \subseteq A \) be a submodule. Then the epim. \(A \to A/K \) is \(E \)-neat iff \(A/K \owns E(A/K) \).
Theorem

Let $f: A \rightarrow B$ be a homom. of modules. TFAE:

1. $f: A \rightarrow B$ is E-neat.
2. If

$$
\begin{array}{ccc}
A & \xrightarrow{\alpha} & A' \\
\downarrow f & & \downarrow f' \\
B & \xrightarrow{\alpha'} & B'
\end{array}
$$

is a pushout diagram of f and α, where α is an essential monomorphism, then α' is also an essential monomorphism.

Corollary

Let $K \subseteq A$ be a submodule. Then the epim. $A \rightarrow A/K$ is E-neat iff $A/K \leq E(A)/K$.
Z-neat homomorphisms (condition-(2))

We call a homomorphism \(f : A \rightarrow B \) of modules Z-neat if \(\text{Im} \ f \) is closed in \(B \) and \(\text{Ker} \ f \subseteq \text{Rad} \ A \).
Z-neat homomorphisms (condition-(2))

We call a homomorphism \(f : A \to B \) of modules \(\mathbb{Z} \)-neat if \(\text{Im} \ f \) is closed in \(B \) and \(\text{Ker} \ f \subseteq \text{Rad} \ A \).

Proposition [Bowe(1972)]

\(R \) is left hereditary (i.e. every left ideal of \(R \) is projective) iff being the natural decomp. \(f = ip \) with \(p \) epim. and \(i \) mono. \(E \)-neat homomorphism implies that \(p \) and \(i \) are \(E \)-neat homomorphisms.
Z-neat homomorphisms (condition-(2))

We call a homomorphism $f : A \rightarrow B$ of modules **Z-neat** if $\text{Im } f$ is closed in B and $\text{Ker } f \subseteq \text{Rad } A$.

Proposition [Bowe(1972)]

R is left hereditary (i.e. every left ideal of R is projective) iff being the natural decomp. $f = ip$ with p epim. and i mono. E-neat homomorphism implies that p and i are E-neat homomorphisms.

Proposition

If $h = gf$ is an E-neat homomorphism, then f is always E-neat.
Theorem

Over a Dedekind domain, the natural epimorphism $f : A \to A/K$ is E-neat iff $K \subseteq \text{Rad } A$.
Theorem

Over a Dedekind domain, the natural epimorphism $f : A \to A/K$ is E-neat iff $K \subseteq \text{Rad} A$.

THEOREM: E-neat $= Z$-neat over Dedekind domains

Let R be a Dedekind domain. A homomorphism $f : A \to B$ of R-modules is E-neat if and only if it is Z-neat, i.e., $\text{Im} f$ is closed in B and $\text{Ker} f \subseteq \text{Rad} A$.

THANK YOU FOR YOUR ATTENTION