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Introduction

Throughout this talk, G is a finite group with identity element e, R is a
commutative ring with unity 1, M is an R—module, RG is the group ring,
H < G denotes that H is a subgroup of G and S is a G—set with a group

action of G on S. If N is an R—submodule of M, it is denoted by
Nr < Mg.
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G-set Modules

@ MS denote the set of all formal expression of the form Z mss where
seS
ms € M and ms = 0 for almost every s.

@ For elements y = Z mss, 1§ = Z nss € MS, by writing y =1 we
scS se€S
mean ms = ns for all s € S.

o We define the sum in MS componentwise j +1 = Y _ (ms + ns)s

seS
and the scalar product of )} mgs by r € R thatis ) _ (rms)s.
s€S scS

Clearly, MS is an R—module with the sum and the scalar product defined
above.
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G-set Modules

For p = Z re& € RG, the product of Z mss by p is
geG seS

pop = Y rgms(sg), sg =5 €8,

seS

= 2 ms/s/ e MS

s'eS
So, MS is a left module over RG, and also as an R—module, it is denoted
by (MS)ge and (MS)g, respectively.
Definition
The RG—module MS is called G—set module of S by M over RG.

If S is a G—set and H is a subgroup of G, then S is also an H-set and MS
is an RH—module.

If S is a G—set and a group, and M = R, then RS is a group algebra. If a
group acts on itself by multiplication then naturally we have

(MS)re = (MG)gg.
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Examples for G-set Modules

Let M be an R-module, G = Dg = (a,b:a> =b>=e, b lab=a!)
and r = Z rgg = ne-+rna+ r3a® + rb + rsba+ reba® € RDs.
g€Dg

@ Let S = G and let the group act itself by multiplication. Then
MS = MG is an RG—module.

Q Let S = {Kl = {e, b}, Ko = {a ba}, K5 = {az, baz}} that is the
set of right cosets of a fixed subgroup H = (; = <b c b2 = e> < Dg
and let G act on S by g x (Hx) = H(gx) for x,g € G. Then
MS = {Z mss = my, K1 + my, Ko + m, K3 | ms € M} and we

seS
have the following relations such that
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Example Continues

Kil =K Kol = Ka K3l = K3
Kla = K2 K23 = K1 K3a = K1
K182 = K3 K232 = K3 K382 = K2
Kib = Ki Kob = K3 K3zb = K>
Klba = K2 Kgba = Kl K3ba = K3
K1b32 = K3 K2b32 = K2 K3b82 = Kl.

So, we get

ru = (nmg, + nmg, + rsmg, + rsmg, + nmg, + remg;,) Ki

+ (rnmk, + rsmg, + nmg, + remg, + r3mg, + ramg;, ) Kz

+ (my, + remk, + rnmyg, + ramg, + rnmg, + rsmy;) Ks.
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Some relations on G—set modules

Let M be an R—module, N an R—submodule of M, G a finite group, S a
G-set. Then M2 ~ (})s.
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Some relations on G—set modules

Lemma

Let M be an R—module, N an R—submodule of M, G a finite group, S a

G-set. Then M2 ~ (})s.

Proof.
We know that NS is an RG—submodule of MS. Define a map 0 such that

6: Ms — (Mys, K=Y ms — 0(u) =} (ms+N)s

ses ses

O(gp) = 6(g ) mss)

seS
= g0(n)
So, 6 is a G—set homomorphism. It is clear that 0 is a G—set
epimomorphism. 6 is an RG—epimorphism and we get ker = NS. [

v
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Some relations on G—set modules

Let N be an R—submodule of an R—module M, S a G—set. Let | denote

the index of disjoint orbits of S, J a subset of | and S" = |J Gs; and let
jeJd

Gs; be an orbit Gs of s; € S for i € |. Then we have the following results:
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Some relations on G—set modules

Let N be an R—submodule of an R—module M, S a G—set. Let | denote
the index of disjoint orbits of S, J a subset of | and S" = |J Gs; and let
jed
Gs; be an orbit Gs of s; € S for i € |. Then we have the following results:
@ NGs; is an RG—submodule of MS for s; € S. Moreover, NGs; is a

minimal RG—submodule of MS containg N under the action induced
from that on S.
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Some relations on G—set modules

Let N be an R—submodule of an R—module M, S a G—set. Let | denote
the index of disjoint orbits of S, J a subset of | and S" = |J Gs; and let
jed
Gs; be an orbit Gs of s; € S for i € |. Then we have the following results:
@ NGs; is an RG—submodule of MS for s; € S. Moreover, NGs; is a
minimal RG—submodule of MS containg N under the action induced

from that on S.

(2] NS’ = N(U GSj) = U (/VGSJ').
jed jeJ
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Some relations on G—set modules

Let N be an R—submodule of an R—module M, S a G—set. Let | denote

the index of disjoint orbits of S, J a subset of | and S" = |J Gs; and let
jeJd

Gs; be an orbit Gs of s; € S for i € |. Then we have the following results:

@ NGs; is an RG—submodule of MS for s; € S. Moreover, NGs; is a
minimal RG—submodule of MS containg N under the action induced
from that on S.

Q NS' = N( U GSj) = U (/VGSj).

j€d j€J
@ NS’ is an RG-submodule of MS.
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Some relations on G—set modules

© It is clear that NGs; C MS. Let ny = Z nggsi € NGs; , r € R,

h € G. Then we have ry € NGs; and
hy =h( Y nggsi) = Y, nghgsi= Y. ngg'si € NGs;. Hence,
geaG geai hg=g'€G

NGs; is an RG—submodule of MS. Assume that there is an
RG-submodule Ny of MS such that Ng < (N1)re < (NGs;)re.
Take an element n € N, and so nhs; € N; for some h € G since
(Nl)RG < (NGS,')Rg. Then h_l(nhs,-) = (nes,-) = ns; € Ny and
g(ns;) = ngs; € Ny for all g € G. This means that N; = NGs;.
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Some relations on G—set modules

© It is clear that NGs; C MS. Let ny = ): nggsi € NGs; , r € R,

h € G. Then we have ry € NGs; and
hy =h( Y nggsi) = Y, nghgsi= Y. ngg'si € NGs;. Hence,
geG geai hg=g'€G

NGs; is an RG—submodule of MS. Assume that there is an
RG-submodule Ny of MS such that Ng < (N1)re < (NGs;)re.
Take an element n € N, and so nhs; € N; for some h € G since
(Nl)RG < (NGS,')Rg. Then h_l(nhs,-) = (nes,-) = ns; € Ny and
g(ns;) = ngs; € Ny for all g € G. This means that N; = NGs;.

@ 2, 3 are clear by the definition of MS.

Uc, Alkan (Mehmet Akif Ersoy University, DeOn The Semisimplicity And The Submodule ¢ June 2017



Some relations on G—set modules

(L1) Let L be an RG—submodule of MS, a fixed s € S. Then,
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Some relations on G—set modules

(L1) Let L be an RG—submodule of MS, a fixed s € S. Then,

Q Ls={x€ M| thereisy € L such thaty = xs+ k, k € MS} is an
R—submodule of M.
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Some relations on G—set modules

(L1) Let L be an RG—submodule of MS, a fixed s € S. Then,
Q Ls={x€ M| thereisy € L such thaty = xs+ k, k € MS} is an
R—-submodule of M.

@ S, = {s € S|thereis x € M, and also k € L such that
y=xs+kelL}isaG-setin$S under the action induced from that

on 5 4
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Some relations on G—set modules

Lemma

(L2) Let M be an R—module and S a G—set. Let | denote the index of
disjoint orbits of S such that S = U Gs; and let Gs; be an orbit of s; € S

fori € I. If NGs; is a simple RG—submoduIe of MS, then N is a simple

R—-submodule of M and G is a finite group whose order is invertible in
Endgr(M) (|G|~ € Endr(M)).
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Some relations on G—set modules

Lemma

(L2) Let M be an R—module and S a G—set. Let | denote the index of
disjoint orbits of S such that S = U Gs; and let Gs; be an orbit of s; € S

fori € I. If NGs; is a simple RG—submoduIe of MS, then N is a simple
R—-submodule of M and G is a finite group whose order is invertible in
Endr(M) (|G|~ € Endr(M)).

By these two Lemmas L1 and L2, we get the following theorem.

Let L be a simple RG—submodule of MS. Then there is a unique simple
R—-submodule N of M and a unique orbit Gs such that L = NGs.
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Some relations on G—set modules

Proof.

For some s € S, by Lemma L1 L; is a non-zero R—module. And so,

LsGs # 0 is an RG—submodule of L. Since L is simple RG—submodule, we
have LsGs = L. Then, by Lemma L2 L; is a simple R—submodule of M.
Take an element s’ € S such that Ly is non-zero R—submodule of M.
Hence, Ly Gs' = L = LsGs. Take an element x € Ly Gs’'. And so, we write

n n
x=Y_ligis =Y kigis
i=1 i=1

where [; € Ly, ki € Ls, gi € G and n = |G|. Then, there exists gj € G
such that g1s = gjs’, and s = g; 'gjs’. So, we get Gs = Gs'. That is why
we can write

Gs =5, ={s € S|thereis x € M, and also k € L such that y = xs+ k &

Moreover, N = Ls = Ly is unique by the definition of MS. O
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Some relations on G—set modules

On the other hand, the following example shows that the converse of the
theorem above does not hold.

Example

Let R=7Z3, M =273, G = C2:<a:32:e> and RG = Z3G. If

S = G and G acts on itself by group multiplication then MS = Z3(G
where Z3C; is semisimple RG—module since |G| < oo and characteristic of
R does not divide |G| by Maschke's Theorem. Since Z3C,; is semisimple
there is a unique decomposition of Z3(, by Artin-Weddernburn Theorem.
Then, Z3Cy ~ Z3 @& Z3 as R—-module since |G| = 2. Here, Z3 is a simple
R—submodule of Z3C>. We have Z3C, ~ Z3C2(1+"”) D Z3C2(1 2) as
RG-module where Z3C,(142) and Z3Co(152) are simple
RG-submodules of Z3C,. Let N = Zj3 that is a simple R—submodule of
M. Hovewer, NGs = Z3(C; is not simple RG—module.
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Decomposition of G-set modules

Let ey = ﬁ , where |H| is the order of H and H = h. EndrgMS

denotes all the RG—endomorphisms of MS.

(L3) Let M be an R-module and H a normal subgroup of finite group G.
If |[H|, the order of H, is invertible in R then ey = ﬁ is an idempotent in
Endrg(MS). Moreover, €y is central in Endrg(MS).
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Decomposition of G-set modules

Let H be a normal subgroup of G. It is well known that on G/H we have
the group action g(tH) = gtH for g, t € G. Consider
g( Y ms(sH)) = ( ZS ms(gsH)) for ms € M.

s

seS
Let S C S bea G/H-set. Then S' = |J G/Hs] where J denotes the
jed
index of disjoint orbits of S" and MS" = M( U G/Hs;). Then for
jed
n= Y mgs € MS,wecanwritey =Y, Y mgs’. Hence,
s'eS’ jGJs’EG/Hst
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Decomposition of G-set modules

Let H be a normal subgroup of G. It is well known that on G/H we have
the group action g(tH) = gtH for g, t € G. Consider

gl Z ms(sH)) = ( Z ms(gsH)) for mg € M.
Let 5/ C Sbea G/H—set Then §" = U G/Hs; where J denotes the

jed
index of disjoint orbits of S" and MS" = M( U G/Hs;). Then for
jeJ

Y. mgs' € MS, wecanwritey =Y Y. mgs’. Hence,
s'eS’ jGJs’EG/Hst

Lemma

Let M be an R—module, G a finite group, H a normal subgroup of G, S a

G-set and S' € S a G/H-set. Then MS' is an RG—-module with action
defined as

gW:g(Z Z m5’5/>:Z Z msl(gtHS_/{)

jEJs/eG/Hst jEJs/eG/Hst
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Decomposition of G-set modules

Theorem

Let H be a normal subgroup of G, |H| invertible in R and €y, defined
above, then we have MS = éy.MS @ (1 — éy).MS and there exists a
G/H-set S’ C S such that €4.MS ~ MS’. More precisely,

ey.MS = ey (M(U GS,')) = M(UEHGSI)

iel icl
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Decomposition of G-set modules

Proof.

Firstly, we know that MG = &4.MG & (1 — éy).MG and

ey.MG ~ M(G/H) by the theorem in [Uc, Alkan, 2017]. Since €y is a
central idempotent by Lemma L3, we get MS = ey.MS @ (1 — ey).MS.
Now, consider 6 : G — G.ey where g +— géy. This is a group
homomorphism since 0(gh) = ghéy = ghe;, = génhey = 0(g)0(h). It is
clear that 0 is a group epimorphism. We have

ker0 ={g € G|gén=¢ent={g€G| (g —1)~H—O}—Hsince

(g — )|H| =0and gH = A for g € H. Moreover, we get er@ ~ Im6
= Gey. So,

en.MS =&y (I\/I(U Gs,-)) = M(|J Génsi) ~ M(|J(G/H)s;)

icl i€l iel

Ol

v
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Proof Continues

Since gHs; = gHs for s;,s; € S, i,1 € |, we get a G/H-set S’ C S where
U(G/H)sj=S"C S. Hence
jed
éq.MS ~ M(| J(G/H)s;) = M(|J(G/H)sj) = MS'
i€l jed
So, ey.MS ~ MS’. my
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Semisimple G—set Modules

In the theory of the group ring, the augmentation ideal denoted by
A(RG) is the kernel of the usual augmentation map ¢eg such that

er: RG — R, ngg — L rg
geG

The augmentation ideal is always the nontrivial two-sided ideal of the
group ring and we have A(RG) =4 Y. rg(g—1):rg € R, g€ G
geG

The augmentation ideal A(RG) is of use for studying not only the
relationship between the subgroups of G and the ideals of RG but also the
decomposition of RG as direct sum of subrings.
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Augmentation Map on MS

The map

ems: MS — M, sts — st

seS ses

is called augmentation map on MS. The kernel of eys is denoted by
Ag(MS).
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Augmentation Map on MS

The map

ems: MS — M, sts — st

seS ses

is called augmentation map on MS. The kernel of eys is denoted by
Ag(MS).

Lemma

Let M be an R—-module, G a group and S a G—set. Then eys(rp) = €(r)

ems(p) for p = Z mss € MS, r = Z reg& € RG. In particular, eys is
seS geiG
an R—homomorphism.
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Definition
Negn(MS)={Y (h—1)u, | n, € MS} where H is a subgroup of finite
heH

group G.
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Negn(MS)={Y (h—1)u, | n, € MS} where H is a subgroup of finite
heH
group G.

v

Let M be an R—-module, H a subgroup of G, |H| invertible in R, S a
G-set and €y, defined above. Then, Ag y(MS) is an RG-module and
NG H(MS) = (1—2¢y).MS.

A\,

Uc, Alkan (Mehmet Akif Ersoy University, DeOn The Semisimplicity And The Submodule ¢ June 2017 21 /31



Negn(MS)={Y (h—1)u, | n, € MS} where H is a subgroup of finite
heH
group G.

| \

Theorem

Let M be an R—-module, H a subgroup of G, |H| invertible in R, S a
G-set and €y, defined above. Then, Ag y(MS) is an RG-module and
NG H(MS) = (1—2¢y).MS.

A\,

Furthermore, we write Ag c(MS) = Ag(MS). ker(ems) = Ag(MS)
and we have ker(eys) = Ag(MS) = (1 —eg).MS.

We know that Ag(G) is the augmetation ideal of RG and for a normal
subgroup N of G, Ag(G, N) denote the kernel of the natural epimorphism
RG — R(G/N) induced by G — G/N. Moreover, Ar(G,N) is a
two-sided ideal of RG generated by Ag(N).
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If N is a normal subgroup of G, then Ag n(MS) = Ar(N).MS.
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If N is a normal subgroup of G, then Ag n(MS) = Ar(N).MS.

We know that Ag(N)={ ¥ r(n—1)| r, € R} and
neN

£6n(MS) = { T (h= Dty | py € MS). For
S
a= Y r(n—1) € Ar(N), u= Y mss € MS,
seS

neN

o = (L) (Eme) = Lo-n (g oome)

neN seS neN seS
= 2 (n - 1)‘1/!,7
neN
where i, = Y. (r,ms)s € MS. O
sES

v
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Semisimple G—set Modules

(L4) Let M be a nonzero R—module, G a group, S a G—set. If
XN Ag(MS) =0 for some nonzero RG—submodule X of (MS)gg, then
G is a finite group.
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Semisimple G—set Modules

(L4) Let M be a nonzero R—-module, G a group, S a G—set. If
XN Ag(MS) =0 for some nonzero RG—submodule X of (MS)gg, then
G is a finite group.

Proof.

Firstly, we know that Ag(MS) is an RG—submodule of (MS)gs. Assume

that G is an infinite group. Then for any 0 #£ x = mys; + ... + mgs, € X

where s1, ..., s € S are distinct and m;s; # 0, there is an element g of G

such that s;g # s; for 1 < i < k. Hence,

(1—g)x= Y. misi— ¥ migsi #0, and also (1 —g)x € Y . On the
si€S si€ES

other hand,

0#(1—g)x= Y mi(si—1)— Y mji(gsi—1) € Ag(MS). Then,

si€S s;i€S

X N Ag(MS) # 0 and this is a contradiction.

v
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Semisimple G—set Modules

(L4) Let M be a nonzero R—-module, G a group, S a G—set. If
XN Ag(MS) =0 for some nonzero RG—submodule X of (MS)gg, then
G is a finite group.

Proof.

Firstly, we know that Ag(MS) is an RG—submodule of (MS)gs. Assume
that G is an infinite group. Then for any 0 #£ x = mys; + ... + mgs, € X
where s1, ..., s € S are distinct and m;s; # 0, there is an element g of G
such that s;g # s; for 1 < i < k. Hence,

(1—g)x= Y. misi— ¥ migsi #0, and also (1 —g)x € Y . On the

si€S si€ES
other hand,
0#(1—g)x= Y mi(si—1)— Y mji(gsi—1) € Ag(MS). Then,
si€S s;i€S
X N Ag(MS) # 0 and this is a contradiction. O

v
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Semisimple G—set Modules

Let M be a nonzero R—-module, G a group, S a G—set. Then, MS is a
semisimple module over RG if and only if M is a semisimple R—module, G
is a finite group whose order is invertible in Endg(M) (|G|™* € Endgr(M)).
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Semisimple G—set Modules

Let M be a nonzero R—-module, G a group, S a G—set. Then, MS is a
semisimple module over RG if and only if M is a semisimple R—module, G
is a finite group whose order is invertible in Endg(M) (|G|™* € Endgr(M)).

Proof.

Assume that M is a semisimple R—module, G is a finite group whose order
is invertible in Endg(M). Let Y be an RG—submodule of MS. Firstly,
(MS)R is semisimple since Mg is semisimple. Hence, Yk is a direct
summand of (MS)g. Moreover, |G|~ € Endg(MS) since G is finite and
|G|™! € Endr(M). So, Yrg is a direct summand of (MS)g¢ by Lemma
L5 (Lam, 2001) that means (MS)gg is semisimple. O

v
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Proof Continuous

Proof.

Assume that MS is a semisimple module over RG. Ag(MS) is an
RG—submodule of MS and we know that Ag(MS) # MS. So, Ag(MS)
is a proper direct summand of (MS)gg. Hence, G is a finite group by
Lemma L4.

Let N be an R-submodule of M. Then, (NS)gc is an RG—submodule of
(MS)rc. (NS)gg is a direct summand of (MS)g¢ because (MS)gg is
semisimple, so there is a> = & € Endrg(MS) such that NS = a(MS).
Let « |p be the restriction of a. Consider the composition such that

v MM MS S 0 and so € Endg(M). It is clear that (M) C N.
For any z € N, write z = a(y) where y € MG. Then

7(2) = emsa(a(y)) = emsa(y) = ems(z) = z. Hence, N = y(M),
Y(v(z)) = 7(z) = z and 4% = ¥ which means that N is a direct
summand of M. Therefore, Mg is semisimple R—module. ]
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Proof Continuous

Proof.

Assume that |G| ™' ¢ Endr(M). Then there is a prime divisor p of |G|
such that p~! & Endgr(M). We prove that p: M — M is not
one-to-one. Indeed, if p: M — M is one-to-one, then pM # M because
p~t & Endgr(M). M = pM @ Z for some nonzero R—submodule Z of M
because Mg is semisimple. Since pM N Z = 0, we get pZ = 0. Thus,

p: M — M is not one-to-one. So, there exists a nonzero direct
summand N of Mg such that pN = 0 because Mg is semisimple. O
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Proof Continuous

Proof.

Now consider NG that is an RG—submodule of (MS)g¢ and
NG C Ag(NS) since |G| N = 0. We claim that Ag(NS) is an essential
RG-submodule of (NS)gg. Let Y. nss € NS\Ag(NS). Then,

seS

0# ¥ ns €N, and thus (¥ nss)G = (X ns)G is a nonzero element of
seS sesS seS

AG(NS). So Ag(NS) is an essential RG—submodule of (NS)gg. Since
MS is a semisimple module over RG by hypothesis and (NS)gg is
submodule of (MS)grg, (NS)gg is semisimple RG—module. Hence,

NS = Ag(NS), and so 0 = eps(AG(NS)) = ems(NS) = N. This is a
contradiction. So, |G|~ € Endg(MS). O

v
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