On The Semisimplicity And The Submodule Characterizations Of G-set Modules

Mehmet Uc, Mustafa Alkan

Mehmet Akif Ersoy University, Department of Mathematics, Burdur, Turkey Akdeniz University, Department of Mathematics, Antalya, Turkey

June 2017

Throughout this talk, G is a finite group with identity element e, R is a commutative ring with unity 1, M is an R-module, RG is the group ring, $H \leq G$ denotes that H is a subgroup of G and S is a G-set with a group action of G on S. If N is an R-submodule of M, it is denoted by $N_R \leq M_R$.

• *MS* denote the set of all formal expression of the form $\sum_{s \in S} m_s s$ where

 $m_s \in M$ and $m_s = 0$ for almost every s.

• For elements $\mu = \sum_{s \in S} m_s s$, $\eta = \sum_{s \in S} n_s s \in MS$, by writing $\mu = \eta$ we mean $m_s = n_s$ for all $s \in S$.

• We define the sum in *MS* componentwise $\mu + \eta = \sum_{s \in S} (m_s + n_s)s$ and the scalar product of $\sum_{s \in S} m_s s$ by $r \in R$ that is $\sum_{s \in S} (rm_s)s$.

Clearly, MS is an R-module with the sum and the scalar product defined above.

G-set Modules

For
$$\rho = \sum_{g \in G} r_g g \in RG$$
, the product of $\sum_{s \in S} m_s s$ by ρ is
 $\rho \mu = \sum_{s \in S} r_g m_s(sg), sg = s' \in S,$
 $= \sum_{s' \in S} m_{s'} s' \in MS$

So, MS is a left module over RG, and also as an R-module, it is denoted by $(MS)_{RG}$ and $(MS)_R$, respectively.

Definition

The RG-module MS is called G-set module of S by M over RG.

If S is a G-set and H is a subgroup of G, then S is also an H-set and MS is an RH-module. If S is a G-set and a group, and M = R, then RS is a group algebra. If a

group acts on itself by multiplication then naturally we have $(MS)_{RG} = (MG)_{RG}$.

Example

- Let *M* be an *R*-module, $G = D_6 = \langle a, b : a^3 = b^2 = e, b^{-1}ab = a^{-1} \rangle$ and $r = \sum_{g \in D_6} r_g g = r_1 e + r_2 a + r_3 a^2 + r_4 b + r_5 ba + r_6 ba^2 \in RD_6.$
 - Let S = G and let the group act itself by multiplication. Then MS = MG is an RG-module.
 - Let $S = \{K_1 = \{e, b\}, K_2 = \{a, ba\}, K_3 = \{a^2, ba^2\}\}$ that is the set of right cosets of a fixed subgroup $H = C_2 = \langle b : b^2 = e \rangle \le D_6$ and let G act on S by g * (Hx) = H(gx) for $x, g \in G$. Then $MS = \{\sum_{s \in S} m_s s = m_{K_1}K_1 + m_{K_2}K_2 + m_{K_3}K_3 \mid m_s \in M\}$ and we have the following relations such that

.

Example Continues

Example

$$\begin{array}{lll} K_{1}1 = K_{1} & K_{2}1 = K_{2} & K_{3}1 = K_{3} \\ K_{1}a = K_{2} & K_{2}a = K_{1} & K_{3}a = K_{1} \\ K_{1}a^{2} = K_{3} & K_{2}a^{2} = K_{3} & K_{3}a^{2} = K_{2} \\ K_{1}b = K_{1} & K_{2}b = K_{3} & K_{3}b = K_{2} \\ K_{1}ba = K_{2} & K_{2}ba = K_{1} & K_{3}ba = K_{3} \\ K_{1}ba^{2} = K_{3} & K_{2}ba^{2} = K_{2} & K_{3}ba^{2} = K_{1} \end{array}$$

So, we get

$$r\mu = (r_1m_{K_1} + r_4m_{K_1} + r_3m_{K_2} + r_5m_{K_2} + r_2m_{K_3} + r_6m_{K_3})K_1 + (r_2m_{K_1} + r_5m_{K_1} + r_1m_{K_2} + r_6m_{K_2} + r_3m_{K_3} + r_4m_{K_3})K_2 + (r_3m_{K_1} + r_6m_{K_1} + r_2m_{K_2} + r_4m_{K_2} + r_1m_{K_3} + r_5m_{K_3})K_3.$$

Let M be an R-module, N an R-submodule of M, G a finite group, S a G-set. Then $\frac{MS}{NS} \simeq (\frac{M}{N})S$.

Let M be an R-module, N an R-submodule of M, G a finite group, S a G-set. Then $\frac{MS}{NS} \simeq (\frac{M}{N})S$.

Proof.

We know that NS is an RG-submodule of MS. Define a map θ such that

$$heta: MS \longrightarrow (\frac{M}{N})S$$
, $\mu = \sum_{s \in S} m_s s \longmapsto \theta(\mu) = \sum_{s \in S} (m_s + N)s$

$$\begin{array}{lll} \theta(g\mu) &=& \theta(g\sum_{s\in S}m_ss) \\ &=& g\theta(\mu) \end{array}$$

So, θ is a *G*-set homomorphism. It is clear that θ is a *G*-set epimomorphism. θ is an *RG*-epimorphism and we get ker $\theta = NS$.

Let N be an R-submodule of an R-module M, S a G-set. Let I denote the index of disjoint orbits of S, J a subset of I and $S' = \bigcup_{j \in J} Gs_j$ and let Gs_i be an orbit Gs of $s_i \in S$ for $i \in I$. Then we have the following results:

Let N be an R-submodule of an R-module M, S a G-set. Let I denote the index of disjoint orbits of S, J a subset of I and $S' = \bigcup_{j \in J} Gs_j$ and let Gs_i be an orbit Gs of $s_i \in S$ for $i \in I$. Then we have the following results: **1** NGs_i is an RG-submodule of MS for $s_i \in S$. Moreover, NGs_i is a

minimal RG-submodule of MS containg N under the action induced from that on S.

Let N be an R-submodule of an R-module M, S a G-set. Let I denote the index of disjoint orbits of S, J a subset of I and $S' = \bigcup_{j \in J} Gs_j$ and let Gs_i be an orbit Gs of $s_i \in S$ for $i \in I$. Then we have the following results:

NGs_i is an RG-submodule of MS for s_i ∈ S. Moreover, NGs_i is a minimal RG-submodule of MS containg N under the action induced from that on S.

$$S' = N(\bigcup_{j \in J} Gs_j) = \bigcup_{j \in J} (NGs_j).$$

Let N be an R-submodule of an R-module M, S a G-set. Let I denote the index of disjoint orbits of S, J a subset of I and $S' = \bigcup_{j \in J} Gs_j$ and let Gs_i be an orbit Gs of $s_i \in S$ for $i \in I$. Then we have the following results:

NGs_i is an RG-submodule of MS for s_i ∈ S. Moreover, NGs_i is a minimal RG-submodule of MS containg N under the action induced from that on S.

• It is clear that $NGs_i \subseteq MS$. Let $\eta = \sum_{g \in G} n_g gs_i \in NGs_i$, $r \in R$, $h \in G$. Then we have $r\eta \in NGs_i$ and $h\eta = h(\sum_{g \in G} n_g gs_i) = \sum_{g \in G} n_g hgs_i = \sum_{hg = g' \in G} n_g g's_i \in NGs_i$. Hence, NGs_i is an RG-submodule of MS. Assume that there is an RG-submodule N_1 of MS such that $N_R \leq (N_1)_{RG} \leq (NGs_i)_{RG}$. Take an element $n \in N$, and so $nhs_i \in N_1$ for some $h \in G$ since $(N_1)_{RG} \leq (NGs_i)_{RG}$. Then $h^{-1}(nhs_i) = (nes_i) = ns_i \in N_1$ and $g(ns_i) = ngs_i \in N_1$ for all $g \in G$. This means that $N_1 = NGs_i$.

1 It is clear that $NGs_i \subseteq MS$. Let $\eta = \sum n_g gs_i \in NGs_i$, $r \in R$, $h \in G$. Then we have $r\eta \in NGs_i$ and $h\eta = h(\sum_{g \in G} n_g g s_i) = \sum_{g \in G} n_g hg s_i = \sum_{hg = g' \in G} n_g g' s_i \in NGs_i$. Hence, NG_{S_i} is an RG-submodule of MS. Assume that there is an RG-submodule N_1 of MS such that $N_R \leq (N_1)_{RG} \leq (NGs_i)_{RG}$. Take an element $n \in N$, and so $nhs_i \in N_1$ for some $h \in G$ since $(N_1)_{RG} < (NGs_i)_{RG}$. Then $h^{-1}(nhs_i) = (nes_i) = ns_i \in N_1$ and $g(ns_i) = ngs_i \in N_1$ for all $g \in G$. This means that $N_1 = NGs_i$. 2, 3 are clear by the definition of MS.

(L1) Let L be an RG-submodule of MS, a fixed $s \in S$. Then,

(L1) Let L be an RG-submodule of MS, a fixed $s \in S$. Then,

• $L_s = \{x \in M \mid \text{there is } y \in L \text{ such that } y = xs + k, k \in MS\}$ is an *R*-submodule of *M*.

(L1) Let L be an RG-submodule of MS, a fixed $s \in S$. Then,

- $L_s = \{x \in M \mid \text{there is } y \in L \text{ such that } y = xs + k, k \in MS\}$ is an *R*-submodule of *M*.
- S_L = {s ∈ S | there is x ∈ M, and also k ∈ L such that y = xs + k ∈ L } is a G-set in S under the action induced from that on S.

(L2) Let M be an R-module and S a G-set. Let I denote the index of disjoint orbits of S such that $S = \bigcup_{i \in I} Gs_i$ and let Gs_i be an orbit of $s_i \in S$ for $i \in I$. If NGs_i is a simple RG-submodule of MS, then N is a simple R-submodule of M and G is a finite group whose order is invertible in $End_R(M)$ ($|G|^{-1} \in End_R(M)$).

(L2) Let M be an R-module and S a G-set. Let I denote the index of disjoint orbits of S such that $S = \bigcup_{i \in I} Gs_i$ and let Gs_i be an orbit of $s_i \in S$ for $i \in I$. If NGs_i is a simple RG-submodule of MS, then N is a simple R-submodule of M and G is a finite group whose order is invertible in $End_R(M)$ ($|G|^{-1} \in End_R(M)$).

By these two Lemmas L1 and L2, we get the following theorem.

Theorem

Let L be a simple RG-submodule of MS. Then there is a unique simple R-submodule N of M and a unique orbit Gs such that L = NGs.

For some $s \in S$, by Lemma L1 L_s is a non-zero R-module. And so, $L_sGs \neq 0$ is an RG-submodule of L. Since L is simple RG-submodule, we have $L_sGs = L$. Then, by Lemma L2 L_s is a simple R-submodule of M. Take an element $s' \in S$ such that $L_{s'}$ is non-zero R-submodule of M. Hence, $L_{s'}Gs' = L = L_sGs$. Take an element $x \in L_{s'}Gs'$. And so, we write

$$x = \sum_{i=1}^{n} l_i g_i s' = \sum_{i=1}^{n} k_i g_i s$$

where $I_i \in L_{s'}$, $k_i \in L_s$, $g_i \in G$ and n = |G|. Then, there exists $g_j \in G$ such that $g_1s = g_js'$, and $s = g_1^{-1}g_js'$. So, we get Gs = Gs'. That is why we can write

$$Gs = S_L = \{s \in S \mid \text{there is } x \in M, \text{ and also } k \in L \text{ such that } y = xs + k \in S\}$$

Moreover, $N = L_s = L_{s'}$ is unique by the definition of MS.

On the other hand, the following example shows that the converse of the theorem above does not hold.

Example

Let $R = \mathbb{Z}_3$, $M = \mathbb{Z}_3$, $G = C_2 = \langle a : a^2 = e \rangle$ and $RG = \mathbb{Z}_3C_2$. If S = G and G acts on itself by group multiplication then $MS = \mathbb{Z}_3 C_2$ where $\mathbb{Z}_3 C_2$ is semisimple RG-module since $|G| \leq \infty$ and characteristic of R does not divide |G| by Maschke's Theorem. Since \mathbb{Z}_3C_2 is semisimple there is a unique decomposition of $\mathbb{Z}_3 C_2$ by Artin-Weddernburn Theorem. Then, $\mathbb{Z}_3 C_2 \simeq \mathbb{Z}_3 \oplus \mathbb{Z}_3$ as *R*-module since $|C_2| = 2$. Here, \mathbb{Z}_3 is a simple *R*-submodule of $\mathbb{Z}_3 C_2$. We have $\mathbb{Z}_3 C_2 \simeq \mathbb{Z}_3 C_2(\frac{1+a}{2}) \oplus \mathbb{Z}_3 C_2(\frac{1-a}{2})$ as *RG*-module where $\mathbb{Z}_3 C_2(\frac{1+a}{2})$ and $\mathbb{Z}_3 C_2(\frac{1-a}{2})$ are simple RG-submodules of $\mathbb{Z}_3 C_2$. Let $N = \mathbb{Z}_3$ that is a simple R-submodule of *M*. Hovewer, $NGs = \mathbb{Z}_3C_2$ is not simple *RG*-module.

- 4 同 6 4 日 6 4 日 6

Let $e_H = \frac{\hat{H}}{|H|}$, where |H| is the order of H and $\hat{H} = \sum_{h \in H} h$. $End_{RG}MS$ denotes all the RG-endomorphisms of MS.

Lemma

(L3) Let M be an R-module and H a normal subgroup of finite group G. If |H|, the order of H, is invertible in R then $\tilde{e}_{H} = \frac{\hat{H}}{|H|}$ is an idempotent in $End_{RG}(MS)$. Moreover, \tilde{e}_{H} is central in $End_{RG}(MS)$.

Decomposition of G-set modules

Let *H* be a normal subgroup of *G*. It is well known that on *G*/*H* we have the group action g(tH) = gtH for $g, t \in G$. Consider $g(\sum_{s \in S} m_s(sH)) = (\sum_{s \in S} m_s(gsH))$ for $m_s \in M$. Let $S' \subset S$ be a *G*/*H*-set. Then $S' = \bigcup_{j \in J} G/Hs'_j$ where *J* denotes the index of disjoint orbits of *S'* and $MS' = M(\bigcup_{j \in J} G/Hs'_j)$. Then for $\eta = \sum_{s' \in S'} m_{s'}s' \in MS$, we can write $\eta = \sum_{j \in J} \sum_{s' \in G/Hs'_j} m_{s'}s'$. Hence,

Decomposition of G-set modules

Let *H* be a normal subgroup of *G*. It is well known that on *G*/*H* we have the group action g(tH) = gtH for $g, t \in G$. Consider $g(\sum_{s \in S} m_s(sH)) = (\sum_{s \in S} m_s(gsH))$ for $m_s \in M$. Let $S' \subset S$ be a *G*/*H*-set. Then $S' = \bigcup_{j \in J} G/Hs'_j$ where *J* denotes the index of disjoint orbits of *S'* and $MS' = M(\bigcup_{j \in J} G/Hs'_j)$. Then for $\eta = \sum_{s' \in S'} m_{s'}s' \in MS$, we can write $\eta = \sum_{j \in J} \sum_{s' \in G/Hs'_j} m_{s'}s'$. Hence,

Lemma

Let M be an R-module, G a finite group, H a normal subgroup of G, S a G-set and $S' \subset S$ a G/H-set. Then MS' is an RG-module with action defined as

$$g\eta = g(\sum_{j \in J} \sum_{s' \in G/Hs'_j} m_{s'}s') = \sum_{j \in J} \sum_{s' \in G/Hs'_j} m_{s'}(gtHs'_j)$$

Theorem

Let H be a normal subgroup of G, |H| invertible in R and \tilde{e}_{H} , defined above, then we have $MS = \tilde{e}_{H}.MS \oplus (1 - \tilde{e}_{H}).MS$ and there exists a G/H-set S' \subset S such that $\tilde{e}_{H}.MS \simeq MS'$. More precisely,

$$\widetilde{e}_H.MS = \widetilde{e}_H\left(M(\bigcup_{i\in I}Gs_i)\right) \simeq M(\bigcup_{i\in I}\widetilde{e}_HGs_i)$$

Firstly, we know that $MG = \tilde{e}_H.MG \oplus (1 - \tilde{e}_H).MG$ and $\tilde{e}_H.MG \simeq M(G/H)$ by the theorem in [Uc, Alkan, 2017]. Since \tilde{e}_H is a central idempotent by Lemma L3, we get $MS = \tilde{e}_H.MS \oplus (1 - \tilde{e}_H).MS$. Now, consider $\theta : G \longrightarrow G.\tilde{e}_H$ where $g \mapsto g\tilde{e}_H$. This is a group homomorphism since $\theta(gh) = gh\tilde{e}_H = gh\tilde{e}_H^2 = g\tilde{e}_Hh\tilde{e}_H = \theta(g)\theta(h)$. It is clear that θ is a group epimorphism. We have $ker\theta = \{g \in G \mid g\tilde{e}_H = \tilde{e}_H\} = \{g \in G \mid (g - 1)\tilde{e}_H = 0\} = H$ since $(g - 1)\frac{\dot{H}}{|H|} = 0$ and $g\hat{H} = \hat{H}$ for $g \in H$. Moreover, we get $\frac{G}{er\theta} = \frac{G}{H} \simeq \mathrm{Im}\theta$ $= G\tilde{e}_H$. So,

$$\widetilde{e}_{H}.MS = \widetilde{e}_{H}\left(M(\bigcup_{i\in I}Gs_{i})\right) = M(\bigcup_{i\in I}G\widetilde{e}_{H}s_{i}) \simeq M(\bigcup_{i\in I}(G/H)s_{i})$$

Uc, Alkan (Mehmet Akif Ersoy University, DeOn The Semisimplicity And The Submodule (

< 🗇 🕨 < 🖃 🕨

Since $gHs_i = gHs_i$ for $s_i, s_i \in S$, $i, l \in I$, we get a G/H-set $S' \subset S$ where $\bigcup_{j \in J} (G/H)s_j = S' \subseteq S.$ Hence $\widetilde{e}_H.MS \simeq M(\bigcup_{i \in I} (G/H)s_i) = M(\bigcup_{j \in J} (G/H)s_j) = MS'$ So, $\widetilde{e}_H.MS \simeq MS'.$ In the theory of the group ring, the augmentation ideal denoted by $\triangle(RG)$ is the kernel of the usual augmentation map ε_R such that

$$arepsilon_R: RG \longrightarrow R$$
 , $\sum\limits_{g\in G} r_g g \longmapsto \sum\limits_{g\in G} r_g$

The augmentation ideal is always the nontrivial two-sided ideal of the group ring and we have $\triangle(RG) = \left\{ \sum_{g \in G} r_g(g-1) : r_g \in R, g \in G \right\}$. The augmentation ideal $\triangle(RG)$ is of use for studying not only the relationship between the subgroups of G and the ideals of RG but also the decomposition of RG as direct sum of subrings.

Augmentation Map on MS

Definition

The map

$$arepsilon_{MS}: MS \longrightarrow M$$
 , $\sum_{s\in S} m_s s \longmapsto \sum_{s\in S} m_s$

is called **augmentation map on** *MS*. The kernel of ε_{MS} is denoted by $\triangle_G(MS)$.

Augmentation Map on MS

Definition

The map

$$arepsilon_{MS}: MS \longrightarrow M$$
 , $\sum_{s\in S} m_s s \longmapsto \sum_{s\in S} m_s$

is called **augmentation map on** *MS*. The kernel of ε_{MS} is denoted by $\triangle_G(MS)$.

Lemma

Let *M* be an *R*-module, *G* a group and *S* a *G*-set. Then $\varepsilon_{MS}(r\mu) = \varepsilon(r)$ $\varepsilon_{MS}(\mu)$ for $\mu = \sum_{s \in S} m_s s \in MS$, $r = \sum_{g \in G} r_g g \in RG$. In particular, ε_{MS} is an *R*-homomorphism.

Definition

-

・ロト ・回ト ・ヨト ・

Definition

Theorem

Let M be an R-module, H a subgroup of G, |H| invertible in R, S a G-set and \tilde{e}_H , defined above. Then, $\triangle_{G,H}(MS)$ is an RG-module and $\triangle_{G,H}(MS) = (1 - \tilde{e}_H).MS$.

Definition

Theorem

Let M be an R-module, H a subgroup of G, |H| invertible in R, S a G-set and \tilde{e}_H , defined above. Then, $\triangle_{G,H}(MS)$ is an RG-module and $\triangle_{G,H}(MS) = (1 - \tilde{e}_H).MS$.

Furthermore, we write $\triangle_{G,G}(MS) = \triangle_G(MS)$. $ker(\varepsilon_{MS}) = \triangle_G(MS)$ and we have $ker(\varepsilon_{MS}) = \triangle_G(MS) = (1 - \widetilde{e}_G).MS$. We know that $\triangle_R(G)$ is the augmetation ideal of RG and for a normal subgroup N of G, $\triangle_R(G, N)$ denote the kernel of the natural epimorphism $RG \longrightarrow R(G/N)$ induced by $G \longrightarrow G/N$. Moreover, $\triangle_R(G, N)$ is a two-sided ideal of RG generated by $\triangle_R(N)$. Theorem

If N is a normal subgroup of G, then $\triangle_{G,N}(MS) = \triangle_R(N).MS$.

Theorem

If N is a normal subgroup of G, then $\triangle_{G,N}(MS) = \triangle_R(N).MS$.

Proof.

We know that
$$\triangle_R(N) = \{\sum_{n \in N} r_n(n-1) \mid r_n \in R\}$$
 and
 $\triangle_{G,H}(MS) = \{\sum_{h \in H} (h-1)\mu_h \mid \mu_h \in MS\}.$ For
 $\alpha = \sum_{n \in N} r_n(n-1) \in \triangle_R(N), \ \mu = \sum_{s \in S} m_s s \in MS,$
 $\alpha \mu = \left(\sum_{n \in N} r_n(n-1)\right) \left(\sum_{s \in S} m_s s\right) = \sum_{n \in N} (n-1) \left(\sum_{s \in S} (r_n m_s) s\right)$
 $= \sum_{n \in N} (n-1)\mu_n$

where
$$\mu_n = \sum_{s \in S} (r_n m_s) s \in MS$$
.

→ Ξ →

(L4) Let M be a nonzero R-module, G a group, S a G-set. If $X \cap \triangle_G(MS) = 0$ for some nonzero RG-submodule X of $(MS)_{RG}$, then G is a finite group.

(L4) Let M be a nonzero R-module, G a group, S a G-set. If $X \cap \triangle_G(MS) = 0$ for some nonzero RG-submodule X of $(MS)_{RG}$, then G is a finite group.

Proof.

Firstly, we know that $\triangle_G(MS)$ is an RG-submodule of $(MS)_{RG}$. Assume that G is an infinite group. Then for any $0 \neq x = m_1 s_1 + ... + m_k s_k \in X$ where $s_1, ..., s_k \in S$ are distinct and $m_i s_i \neq 0$, there is an element g of G such that $s_i g \neq s_j$ for $1 \leq i \leq k$. Hence, $(1-g)x = \sum_{s_i \in S} m_i s_i - \sum_{s_i \in S} m_i g s_i \neq 0$, and also $(1-g)x \in Y$. On the other hand, $0 \neq (1-g)x = \sum_{s_i \in S} m_i (s_i - 1) - \sum_{s_i \in S} m_i (g s_i - 1) \in \triangle_G(MS)$. Then, $X \cap \triangle_G(MS) \neq 0$ and this is a contradiction.

(L4) Let M be a nonzero R-module, G a group, S a G-set. If $X \cap \triangle_G(MS) = 0$ for some nonzero RG-submodule X of $(MS)_{RG}$, then G is a finite group.

Proof.

Firstly, we know that $\triangle_G(MS)$ is an RG-submodule of $(MS)_{RG}$. Assume that G is an infinite group. Then for any $0 \neq x = m_1 s_1 + ... + m_k s_k \in X$ where $s_1, ..., s_k \in S$ are distinct and $m_i s_i \neq 0$, there is an element g of G such that $s_i g \neq s_j$ for $1 \leq i \leq k$. Hence, $(1-g)x = \sum_{s_i \in S} m_i s_i - \sum_{s_i \in S} m_i g s_i \neq 0$, and also $(1-g)x \in Y$. On the other hand, $0 \neq (1-g)x = \sum_{s_i \in S} m_i (s_i - 1) - \sum_{s_i \in S} m_i (g s_i - 1) \in \triangle_G(MS)$. Then, $X \cap \triangle_G(MS) \neq 0$ and this is a contradiction.

Theorem

Let M be a nonzero R-module, G a group, S a G-set. Then, MS is a semisimple module over RG if and only if M is a semisimple R-module, G is a finite group whose order is invertible in $End_R(M)$ ($|G|^{-1} \in End_R(M)$).

Theorem

Let M be a nonzero R-module, G a group, S a G-set. Then, MS is a semisimple module over RG if and only if M is a semisimple R-module, G is a finite group whose order is invertible in $End_R(M)$ ($|G|^{-1} \in End_R(M)$).

Proof.

Assume that M is a semisimple R-module, G is a finite group whose order is invertible in $End_R(M)$. Let Y be an RG-submodule of MS. Firstly, $(MS)_R$ is semisimple since M_R is semisimple. Hence, Y_R is a direct summand of $(MS)_R$. Moreover, $|G|^{-1} \in End_R(MS)$ since G is finite and $|G|^{-1} \in End_R(M)$. So, Y_{RG} is a direct summand of $(MS)_{RG}$ by Lemma L5 (Lam, 2001) that means $(MS)_{RG}$ is semisimple.

Assume that MS is a semisimple module over RG. $\triangle_G(MS)$ is an RG-submodule of MS and we know that $\triangle_G(MS) \neq MS$. So, $\triangle_G(MS)$ is a proper direct summand of $(MS)_{RG}$. Hence, G is a finite group by Lemma L4.

Let N be an R-submodule of M. Then, $(NS)_{RG}$ is an RG-submodule of $(MS)_{RG}$. $(NS)_{RG}$ is a direct summand of $(MS)_{RG}$ because $(MS)_{RG}$ is semisimple, so there is $\alpha^2 = \alpha \in End_{RG}(MS)$ such that $NS = \alpha(MS)$. Let $\alpha \mid_M$ be the restriction of α . Consider the composition such that $\gamma : M \xrightarrow{\alpha \mid_M} MS \xrightarrow{\epsilon_{MS}} M$, and so $\gamma \in End_R(M)$. It is clear that $\gamma(M) \subseteq N$. For any $z \in N$, write $z = \alpha(y)$ where $y \in MG$. Then $\gamma(z) = \epsilon_{MS}\alpha(\alpha(y)) = \epsilon_{MS}\alpha(y) = \epsilon_{MS}(z) = z$. Hence, $N = \gamma(M)$, $\gamma(\gamma(z)) = \gamma(z) = z$ and $\gamma^2 = \gamma$ which means that N is a direct summand of M. Therefore, M_R is semisimple R-module.

ヘロト 人間ト 人間ト 人用ト

Assume that $|G|^{-1} \notin End_R(M)$. Then there is a prime divisor p of |G|such that $p^{-1} \notin End_R(M)$. We prove that $p: M \longrightarrow M$ is not one-to-one. Indeed, if $p: M \longrightarrow M$ is one-to-one, then $pM \neq M$ because $p^{-1} \notin End_R(M)$. $M = pM \oplus Z$ for some nonzero R-submodule Z of Mbecause M_R is semisimple. Since $pM \cap Z = 0$, we get pZ = 0. Thus, $p: M \longrightarrow M$ is not one-to-one. So, there exists a nonzero direct summand N of M_R such that pN = 0 because M_R is semisimple.

Now consider $N\hat{G}$ that is an RG-submodule of $(MS)_{RG}$ and $N\hat{G} \subset \triangle_G(NS)$ since |G|N = 0. We claim that $\triangle_G(NS)$ is an essential *RG*-submodule of $(NS)_{RG}$. Let $\sum n_s s \in NS \setminus \triangle_G(NS)$. Then, $0 \neq \sum_{s \in S} n_s \in N$, and thus $(\sum_{s \in S} n_s s)\hat{G} = (\sum_{s \in S} n_s)\hat{G}$ is a nonzero element of $\triangle_G(NS)$. So $\triangle_G(NS)$ is an essential RG-submodule of $(NS)_{RG}$. Since MS is a semisimple module over RG by hypothesis and $(NS)_{RG}$ is submodule of $(MS)_{RG}$, $(NS)_{RG}$ is semisimple RG-module. Hence, $NS = \triangle_G(NS)$, and so $0 = \varepsilon_{MS}(\triangle_G(NS)) = \varepsilon_{MS}(NS) = N$. This is a contradiction. So, $|G|^{-1} \in End_R(MS)$.

- Anderson, F.W., Fuller, K.R.: Rings and Categories of Modules. Springer-Verlag, New York (1992).
- Alperin, J.L., Rowen, B.B.: Groups and Representation. Springer-Verlag, New York (1995).
- Auslander, M.: On regular group rings. Proc. Am. Math. Soc. 8, 658–664 (1957).
- Connell, I.G.: On the group ring. Canadian J. Math. 15, 650–685 (1963).
- Curtis, C.W., Reiner I.: Methods of Representation Theory Vol. 2. Wiley-Interscience, New York (1987).

- Curtis, C.W., Reiner I.: Methods of Representation Theory: With Applications to Finite Groups and Orders Vol. 1. Wiley-Interscience, New York (1990).
- Karpilovsky G.: Commutative Group Algebras. Marcel Decker, New York (1983).
- Karpilovsky G.: Group and Semigroup Rings. North-Holland, Amsterdam (1986).
- - Kosan, M. T., Lee T., Zhou Y.: On modules over group rings. Algebras and Representation Theory 17 (1), 87-102 (2014).
- Lam, T.Y.: A First Course in Noncommutative Rings, 2nd edn. Grad. Texts Math. 131. Springer, New York (2001)

- Milies C. P., Sehgal, S. K.: An Introduction to Group Rings. Kluwer Academic Publishers, Dordrecht, The Nedherlands (2002).
- Passmann, D.S.: The Algebraic Structure of Group Rings. Dover Publications, Inc., New York (2011).
- Passi, I.B.S.: Group Rings and Their Augmentation Ideals. Springer-Verlag, Berlin, Heidelberg (1979).
- Uc, M., Ones, O., Alkan, M.: On modules over groups. *Filomat* 30:4, 1021–1027 (2016).
- Uc, M., Alkan, M.: On submodule characterization and decomposition of modules over group rings, AIP, (2016) (in press).

THANK YOU.