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Introduction

Throughout this talk, G is a �nite group with identity element e, R is a
commutative ring with unity 1, M is an R{module, RG is the group ring,
H � G denotes that H is a subgroup of G and S is a G{set with a group
action of G on S . If N is an R{submodule of M, it is denoted by
NR � MR .
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G-set Modules

MS denote the set of all formal expression of the form ∑
s2S

mss where

ms 2 M and ms = 0 for almost every s.

For elements µ = ∑
s2S

mss, η = ∑
s2S

nss 2 MS , by writing µ = η we

mean ms = ns for all s 2 S .
We de�ne the sum in MS componentwise µ+ η = ∑

s2S
(ms + ns)s

and the scalar product of ∑
s2S

mss by r 2 R that is ∑
s2S
(rms)s.

Clearly, MS is an R{module with the sum and the scalar product de�ned
above.
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G-set Modules

For ρ = ∑
g2G

rgg 2 RG , the product of ∑
s2S

mss by ρ is

ρµ = ∑
s2S

rgms(sg), sg = s
0 2 S ,

= ∑
s 02S

ms 0s
0 2 MS

So, MS is a left module over RG , and also as an R{module, it is denoted
by (MS)RG and (MS)R , respectively.

De�nition

The RG{module MS is called G{set module of S by M over RG .

If S is a G{set and H is a subgroup of G , then S is also an H{set and MS
is an RH{module.
If S is a G{set and a group, and M = R, then RS is a group algebra. If a
group acts on itself by multiplication then naturally we have
(MS)RG = (MG )RG .
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Examples for G-set Modules

Example

Let M be an R{module, G = D6 =


a, b : a3 = b2 = e, b�1ab = a�1

�
and r = ∑

g2D6
rgg = r1e + r2a+ r3a2 + r4b+ r5ba+ r6ba2 2 RD6.

1 Let S = G and let the group act itself by multiplication. Then
MS = MG is an RG{module.

2 Let S =
�
K1 = fe, bg ,K2 = fa, bag ,K3 =

�
a2, ba2

		
that is the

set of right cosets of a �xed subgroup H = C2 =


b : b2 = e

�
� D6

and let G act on S by g � (Hx) = H(gx) for x , g 2 G . Then
MS = f∑

s2S
mss = mK1K1 +mK2K2 +mK3K3 j ms 2 Mg and we

have the following relations such that
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Example Continues

Example

K11 = K1 K21 = K2 K31 = K3
K1a = K2 K2a = K1 K3a = K1
K1a

2 = K3 K2a
2 = K3 K3a

2 = K2
K1b = K1 K2b = K3 K3b = K2
K1ba = K2 K2ba = K1 K3ba = K3
K1ba

2 = K3 K2ba
2 = K2 K3ba

2 = K1.

So, we get

rµ = (r1mK1 + r4mK1 + r3mK2 + r5mK2 + r2mK3 + r6mK3)K1

+ (r2mK1 + r5mK1 + r1mK2 + r6mK2 + r3mK3 + r4mK3)K2

+ (r3mK1 + r6mK1 + r2mK2 + r4mK2 + r1mK3 + r5mK3)K3.
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Some relations on G{set modules

Lemma

Let M be an R{module, N an R{submodule of M, G a �nite group, S a
G{set. Then MS

NS ' (
M
N )S.

Proof.

We know that NS is an RG{submodule of MS . De�ne a map θ such that

θ : MS �! (MN )S ,
µ = ∑

s2S
mss 7�! θ(µ) = ∑

s2S
(ms +N)s

θ(gµ) = θ(g ∑
s2S

mss)

= gθ(µ)

So, θ is a G{set homomorphism. It is clear that θ is a G{set
epimomorphism. θ is an RG{epimorphism and we get ker θ = NS .
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Some relations on G{set modules

Lemma

Let N be an R{submodule of an R{module M, S a G{set. Let I denote
the index of disjoint orbits of S, J a subset of I and S 0 =

S
j2J
Gsj and let

Gsi be an orbit Gs of si 2 S for i 2 I . Then we have the following results:

1 NGsi is an RG{submodule of MS for si 2 S. Moreover, NGsi is a
minimal RG{submodule of MS containg N under the action induced
from that on S.

2 NS 0 = N(
S
j2J
Gsj ) =

S
j2J
(NGsj ).

3 NS 0 is an RG{submodule of MS.
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Some relations on G{set modules

Proof.
1 It is clear that NGsi � MS . Let η = ∑

g2G
nggsi 2 NGsi , r 2 R,

h 2 G . Then we have rη 2 NGsi and
hη = h( ∑

g2G
nggsi ) = ∑

g2G
nghgsi = ∑

hg=g 02G
ngg

0si 2 NGsi . Hence,

NGsi is an RG{submodule of MS . Assume that there is an
RG{submodule N1 of MS such that NR � (N1)RG � (NGsi )RG .
Take an element n 2 N, and so nhsi 2 N1 for some h 2 G since
(N1)RG � (NGsi )RG . Then h�1(nhsi ) = (nesi ) = nsi 2 N1 and
g(nsi ) = ngsi 2 N1 for all g 2 G . This means that N1 = NGsi .

2 2, 3 are clear by the de�nition of MS .
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Some relations on G{set modules

Lemma

(L1) Let L be an RG{submodule of MS, a �xed s 2 S. Then,

1 Ls = fx 2 M j there is y 2 L such that y = xs + k, k 2 MSg is an
R{submodule of M.

2 SL = fs 2 S jthere is x 2 M, and also k 2 L such that
y = xs + k 2 L g is a G{set in S under the action induced from that
on S.
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Some relations on G{set modules

Lemma

(L2) Let M be an R{module and S a G{set. Let I denote the index of
disjoint orbits of S such that S =

S
i2I
Gsi and let Gsi be an orbit of si 2 S

for i 2 I . If NGsi is a simple RG{submodule of MS, then N is a simple
R{submodule of M and G is a �nite group whose order is invertible in
EndR(M) (jG j�1 2 EndR(M)).

By these two Lemmas L1 and L2, we get the following theorem.

Theorem

Let L be a simple RG{submodule of MS. Then there is a unique simple
R{submodule N of M and a unique orbit Gs such that L = NGs.
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Some relations on G{set modules

Proof.

For some s 2 S , by Lemma L1 Ls is a non-zero R{module. And so,
LsGs 6= 0 is an RG{submodule of L. Since L is simple RG{submodule, we
have LsGs = L. Then, by Lemma L2 Ls is a simple R{submodule of M.
Take an element s 0 2 S such that Ls 0 is non-zero R{submodule of M.
Hence, Ls 0Gs

0 = L = LsGs. Take an element x 2 Ls 0Gs 0. And so, we write

x =
n

∑
i=1

ligi s
0 =

n

∑
i=1

kigi s

where li 2 Ls 0 , ki 2 Ls , gi 2 G and n = jG j. Then, there exists gj 2 G
such that g1s = gjs 0, and s = g

�1
1 gjs

0. So, we get Gs = Gs 0. That is why
we can write

Gs = SL = fs 2 S j there is x 2 M, and also k 2 L such that y = xs+ k 2 Lg.

Moreover, N = Ls = Ls 0 is unique by the de�nition of MS .
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Some relations on G{set modules

On the other hand, the following example shows that the converse of the
theorem above does not hold.

Example

Let R = Z3, M = Z3, G = C2 =


a : a2 = e

�
and RG = Z3C2. If

S = G and G acts on itself by group multiplication then MS = Z3C2
where Z3C2 is semisimple RG{module since jG j � ∞ and characteristic of
R does not divide jG j by Maschke's Theorem. Since Z3C2 is semisimple
there is a unique decomposition of Z3C2 by Artin-Weddernburn Theorem.
Then, Z3C2 ' Z3�Z3 as R{module since jC2j = 2. Here, Z3 is a simple
R{submodule of Z3C2. We have Z3C2 ' Z3C2(

1+a
2 )�Z3C2(

1�a
2 ) as

RG{module where Z3C2(
1+a
2 ) and Z3C2(

1�a
2 ) are simple

RG{submodules of Z3C2. Let N = Z3 that is a simple R{submodule of
M. Hovewer, NGs = Z3C2 is not simple RG{module.
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Decomposition of G-set modules

Let eH =
Ĥ
jH j , where jH j is the order of H and Ĥ = ∑

h2H
h. EndRGMS

denotes all the RG{endomorphisms of MS .

Lemma

(L3) Let M be an R-module and H a normal subgroup of �nite group G.

If jH j, the order of H, is invertible in R then eeH = Ĥ
jH j is an idempotent in

EndRG (MS). Moreover, eeH is central in EndRG (MS).
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Decomposition of G-set modules

Let H be a normal subgroup of G . It is well known that on G/H we have
the group action g(tH) = gtH for g , t 2 G . Consider
g( ∑
s2S

ms(sH)) = ( ∑
s2S

ms(gsH)) for ms 2 M.

Let S 0 � S be a G/H{set. Then S 0 =
S
j2J
G/Hs 0j where J denotes the

index of disjoint orbits of S 0 and MS 0 = M(
S
j2J
G/Hs 0j ). Then for

η = ∑
s 02S 0

ms 0s
0 2 MS , we can write η = ∑

j2J
∑

s 02G/Hs 0j

ms 0s
0. Hence,

Lemma

Let M be an R{module, G a �nite group, H a normal subgroup of G, S a
G{set and S 0 � S a G/H{set. Then MS 0 is an RG{module with action
de�ned as

gη = g(∑
j2J

∑
s 02G/Hs 0j

ms 0s
0) = ∑

j2J
∑

s 02G/Hs 0j

ms 0(gtHs
0
j )

where η = ∑
j2J

∑
s 02G/Hs 0j

ms 0s
0 2 MS 0 and s 0 = tHs 0j for t 2 G.
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Decomposition of G-set modules

Theorem

Let H be a normal subgroup of G, jH j invertible in R and eeH , de�ned
above, then we have MS = eeH .MS � (1� eeH).MS and there exists a
G/H{set S 0 � S such that eeH .MS ' MS 0. More precisely,

eeH .MS = eeH
 
M(

[
i2I
Gsi )

!
' M(

[
i2I
eeHGsi )
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Decomposition of G-set modules

Proof.

Firstly, we know that MG = eeH .MG � (1� eeH).MG andeeH .MG ' M(G/H) by the theorem in [Uc,Alkan, 2017]. Since eeH is a
central idempotent by Lemma L3, we get MS = eeH .MS � (1� eeH).MS .
Now, consider θ : G �! G .eeH where g 7! geeH . This is a group
homomorphism since θ(gh) = gheeH = ghee2H = geeHheeH = θ(g)θ(h). It is
clear that θ is a group epimorphism. We have
kerθ = fg 2 G j geeH = eeHg = fg 2 G j (g � 1)eeH = 0g = H since
(g � 1) ĤjH j = 0 and gĤ = Ĥ for g 2 H. Moreover, we get

G
erθ =

G
H ' Imθ

= GeeH . So,
eeH .MS = eeH

 
M(

[
i2I
Gsi )

!
= M(

[
i2I
GeeHsi ) ' M([

i2I
(G/H)si )
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Proof Continues

Proof.

Since gHsi = gHsl for si , sl 2 S , i , l 2 I , we get a G/H{set S 0 � S whereS
j2J
(G/H)sj = S 0 � S . Hence

eeH .MS ' M([
i2I
(G/H)si ) = M(

[
j2J
(G/H)sj ) = MS 0

So, eeH .MS ' MS 0.
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Semisimple G{set Modules

In the theory of the group ring, the augmentation ideal denoted by
4(RG ) is the kernel of the usual augmentation map εR such that

εR : RG �! R , ∑
g2G

rgg 7�! ∑
g2G

rg .

The augmentation ideal is always the nontrivial two-sided ideal of the

group ring and we have 4(RG ) =
(

∑
g2G

rg (g � 1) : rg 2 R, g 2 G
)
.

The augmentation ideal 4(RG ) is of use for studying not only the
relationship between the subgroups of G and the ideals of RG but also the
decomposition of RG as direct sum of subrings.
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Augmentation Map on MS

De�nition

The map

εMS : MS �! M , ∑
s2S

mss 7�! ∑
s2S

ms

is called augmentation map on MS. The kernel of εMS is denoted by
4G (MS).

Lemma

Let M be an R{module, G a group and S a G{set. Then εMS (rµ) = ε(r)
εMS (µ) for µ = ∑

s2S
mss 2 MS, r = ∑

g2G
rgg 2 RG. In particular, εMS is

an R{homomorphism.
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De�nition

4G ,H(MS) = f ∑
h2H
(h� 1)µh j µh 2 MSg where H is a subgroup of �nite

group G .

Theorem

Let M be an R{module, H a subgroup of G, jH j invertible in R, S a
G{set and eeH , de�ned above. Then, 4G ,H(MS) is an RG{module and
4G ,H(MS) = (1� eeH).MS.
Furthermore, we write 4G ,G (MS) = 4G (MS). ker(εMS ) = 4G (MS)
and we have ker(εMS ) = 4G (MS) = (1� eeG ).MS .
We know that 4R(G ) is the augmetation ideal of RG and for a normal
subgroup N of G , 4R(G ,N) denote the kernel of the natural epimorphism
RG �! R(G/N) induced by G �! G/N. Moreover, 4R(G ,N) is a
two-sided ideal of RG generated by 4R(N).
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Theorem

If N is a normal subgroup of G, then 4G ,N(MS) = 4R(N).MS.

Proof.

We know that 4R(N) = f ∑
n2N

rn(n� 1) j rn 2 Rg and

4G ,H(MS) = f ∑
h2H
(h� 1)µh j µh 2 MSg. For

α = ∑
n2N

rn(n� 1) 2 4R(N), µ = ∑
s2S

mss 2 MS ,

αµ =

 
∑
n2N

rn(n� 1)
! 

∑
s2S

mss

!
= ∑

n2N
(n� 1)

 
∑
s2S
(rnms)s

!
= ∑

n2N
(n� 1)µn

where µn = ∑
s2S
(rnms)s 2 MS .
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Semisimple G{set Modules

Lemma

(L4) Let M be a nonzero R{module, G a group, S a G{set. If
X \4G (MS) = 0 for some nonzero RG{submodule X of (MS)RG , then
G is a �nite group.

Proof.

Firstly, we know that 4G (MS) is an RG{submodule of (MS)RG . Assume
that G is an in�nite group. Then for any 0 6= x = m1s1 + ...+mksk 2 X
where s1, ..., sk 2 S are distinct and mi si 6= 0, there is an element g of G
such that sig 6= sj for 1 � i � k. Hence,
(1� g)x = ∑

si2S
mi si � ∑

si2S
migsi 6= 0, and also (1� g)x 2 Y . On the

other hand,
0 6= (1� g)x = ∑

si2S
mi (si � 1)� ∑

si2S
mi (gsi � 1) 2 4G (MS). Then,

X \4G (MS) 6= 0 and this is a contradiction.

Lemma

(Lam, 2001) (L5) Let X � Y be right RG{modules and G be a �nite
group whose order is invertible in EndR(V ). If X is a direct summand of
Y as R{modules, then X is a direct summand of Y as RG{modules.
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Semisimple G{set Modules

Theorem

Let M be a nonzero R{module, G a group, S a G{set. Then, MS is a
semisimple module over RG if and only if M is a semisimple R{module, G
is a �nite group whose order is invertible in EndR(M) (jG j�1 2 EndR(M)).

Proof.

Assume that M is a semisimple R{module, G is a �nite group whose order
is invertible in EndR(M). Let Y be an RG{submodule of MS . Firstly,
(MS)R is semisimple since MR is semisimple. Hence, YR is a direct
summand of (MS)R . Moreover, jG j�1 2 EndR(MS) since G is �nite and
jG j�1 2 EndR(M). So, YRG is a direct summand of (MS)RG by Lemma
L5 (Lam, 2001) that means (MS)RG is semisimple.
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Proof Continuous

Proof.

Assume that MS is a semisimple module over RG . 4G (MS) is an
RG{submodule of MS and we know that 4G (MS) 6= MS . So, 4G (MS)
is a proper direct summand of (MS)RG . Hence, G is a �nite group by
Lemma L4.
Let N be an R{submodule of M. Then, (NS)RG is an RG{submodule of
(MS)RG . (NS)RG is a direct summand of (MS)RG because (MS)RG is
semisimple, so there is α2 = α 2 EndRG (MS) such that NS = α(MS).
Let α jM be the restriction of α. Consider the composition such that

γ : M
αjM�! MS

εMS�! M, and so γ 2 EndR(M). It is clear that γ(M) � N.
For any z 2 N, write z = α(y) where y 2 MG . Then
γ(z) = εMSα(α(y)) = εMSα(y) = εMS (z) = z . Hence, N = γ(M),
γ(γ(z)) = γ(z) = z and γ2 = γ which means that N is a direct
summand of M. Therefore, MR is semisimple R{module.
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Proof Continuous

Proof.

Assume that jG j�1 /2 EndR(M). Then there is a prime divisor p of jG j
such that p�1 /2 EndR(M). We prove that p : M �! M is not
one-to-one. Indeed, if p : M �! M is one-to-one, then pM 6= M because
p�1 /2 EndR(M). M = pM � Z for some nonzero R{submodule Z of M
because MR is semisimple. Since pM \ Z = 0, we get pZ = 0. Thus,
p : M �! M is not one-to-one. So, there exists a nonzero direct
summand N of MR such that pN = 0 because MR is semisimple.
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Proof Continuous

Proof.

Now consider NĜ that is an RG{submodule of (MS)RG and
NĜ � 4G (NS) since jG jN = 0. We claim that 4G (NS) is an essential
RG{submodule of (NS)RG . Let ∑

s2S
nss 2 NSn4G (NS). Then,

0 6= ∑
s2S

ns 2 N, and thus ( ∑
s2S

nss)Ĝ = ( ∑
s2S

ns)Ĝ is a nonzero element of

4G (NS). So 4G (NS) is an essential RG{submodule of (NS)RG . Since
MS is a semisimple module over RG by hypothesis and (NS)RG is
submodule of (MS)RG , (NS)RG is semisimple RG{module. Hence,
NS = 4G (NS), and so 0 = εMS (4G (NS)) = εMS (NS) = N. This is a
contradiction. So, jG j�1 2 EndR(MS).
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