The Gruenberg-Kegel graph of finite solvable cut groups

Ángel del Río

Universidad de Murcia

July 2021

Non-Commutative Rings and Applications VII

1Joint with A. Bächle, A. Kiefer and S. Maheshwary. Partially supported by the Spanish Government under Grant MTM2016-77445-P with ”Fondos FEDER” and, by Fundación Séneca of Murcia under Grant 19880/GERM/15.
R ring, G group,
$RG = \bigoplus_{g \in G} Rg$, Group ring of G with coefficients in R.

Convention: Unless otherwise stated, G is a finite group.

Object of study: Group of units of \mathbb{Z}^G.

Trivial units: $\pm G$.
R ring, G group,
$RG = \bigoplus_{g \in G} Rg$, Group ring of G with coefficients in R.

\[
\left(\sum_{g \in G} a_g g \right) + \left(\sum_{g \in G} b_g g \right) = \sum_{g \in G} (a_g + b_g) g.
\]
Group rings

R ring, G group,

$RG = \bigoplus_{g \in G} Rg$, Group ring of G with coefficients in R.

\[
\left(\sum_{g \in G} a_g g \right) + \left(\sum_{g \in G} b_g g \right) = \sum_{g \in G} (a_g + b_g)g.
\]

$(ag)(bh) = (ab)(gh)$ \quad (a, b \in R, g, h \in G)$.

Convention: Unless otherwise stated, G is a finite group.

Object of study: Group of units of \mathbb{Z}_G.

Trivial units: $\pm g$.

R ring, G group,
\[RG = \bigoplus_{g \in G} Rg, \] Group ring of G with coefficients in R.

\[\left(\sum_{g \in G} a_g g \right) + \left(\sum_{g \in G} b_g g \right) = \sum_{g \in G} (a_g + b_g)g. \]

\[(ag)(bh) = (ab)(gh) \quad (a, b \in R, g, h \in G). \]

Convention: Unless otherwise stated, G is a finite group.
Group rings

R ring, G group, $RG = \bigoplus_{g \in G} Rg$, Group ring of G with coefficients in R.

\[
\left(\sum_{g \in G} a_{g} g \right) + \left(\sum_{g \in G} b_{g} g \right) = \sum_{g \in G} (a_{g} + b_{g}) g.
\]

\[(ag)(bh) = (ab)(gh) \quad (a, b \in R, g, h \in G).\]

Convention: Unless otherwise stated, G is a **finite** group.

Object of study: Group of units of $\mathbb{Z}G$.

R ring, G group,
$RG = \bigoplus_{g \in G} Rg$, Group ring of G with coefficients in R.

$$
\left(\sum_{g \in G} a_g g \right) + \left(\sum_{g \in G} b_g g \right) = \sum_{g \in G} (a_g + b_g)g.
$$

$$(ag)(bh) = (ab)(gh) \quad (a, b \in R, g, h \in G).$$

Convention: Unless otherwise stated, G is a finite group.

Object of study: Group of units of $\mathbb{Z}G$.

Trivial units: $\pm G$.
Definition

G is cut if every central unit of $\mathbb{Z}G$ is trivial.

Theorem

The following conditions are equivalent:

1. G is cut.
2. If $g \in G$ then every generator of $\langle g \rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
3. The center of every simple epimorphic image of QG is contained in an imaginary quadratic field [Ferraz, 2004].
4. For every $\chi \in \text{Irr}(G)$, the field $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g) : g \in G)$ is contained in an imaginary quadratic field [Bächle-Caicedo-Jespers-Maheshwary, 2021].
5. For every $g \in G$, the field $\mathbb{Q}(\chi(g) : \chi \in \text{Irr}(G))$ is contained in an imaginary quadratic field.
Definition

G is **cut** if every central unit of $\mathbb{Z}G$ is trivial.

Theorem

The following conditions are equivalent:

1. G is cut.
2. If $g \in G$ then every generator of $\langle g \rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
3. The center of every simple epimorphic image of QG is contained in an imaginary quadratic field [Ferraz, 2004].
4. For every $\chi \in \text{Irr}(G)$, the field $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g) : g \in G)$ is contained in an imaginary quadratic field [Ritter-Sehgal, 2005].
5. For every $g \in G$, the field $\mathbb{Q}(\chi(g) : \chi \in \text{Irr}(G))$ is contained in an imaginary quadratic field [Bächle-Caicedo-Jespers-Maheshwary, 2021].
Definition

G is cut if every central unit of $\mathbb{Z}G$ is trivial.

Theorem

The following conditions are equivalent:

1. G is cut.
2. If $g \in G$ then every generator of $\langle g \rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
3. The center of every simple epimorphic image of $\mathbb{Q}G$ is contained in an imaginary quadratic field [Ferraz, 2004].
Definition

G is cut if every central unit of $\mathbb{Z}G$ is trivial.

Theorem

The following conditions are equivalent:

1. G is cut.
2. If $g \in G$ then every generator of $\langle g \rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
3. The center of every simple epimorphic image of $\mathbb{Q}G$ is contained in an imaginary quadratic field [Ferraz, 2004].
4. For every $\chi \in \text{Irr}(G)$, the field $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g) : g \in G)$ is contained in an imaginary quadratic field [Ferraz].
Definition

G is cut if every central unit of $\mathbb{Z}G$ is trivial.

Theorem

The following conditions are equivalent:

1. G is cut.
2. If $g \in G$ then every generator of $\langle g \rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
3. The center of every simple epimorphic image of $\mathbb{Q}G$ is contained in an imaginary quadratic field [Ferraz, 2004].
4. For every $\chi \in \text{Irr}(G)$, the field $\mathbb{Q}(\chi) = \mathbb{Q}(\chi(g) : g \in G)$ is contained in an imaginary quadratic field [Ferraz].
5. For every $g \in G$, the field $\mathbb{Q}(\chi(g) : \chi \in \text{Irr}(G))$ is contained in an imaginary quadratic field.
 [Bächle-Caicedo-Jespers-Maheshwary, 2021].
Definition

\(G \) is \textit{rational} if the entries of the character table of \(G \) are rational.

Every symmetric group is rational.

While only \(0.57\% \) of all groups up to order 512 are rational, \(86.62\% \) are cut.
Definition

G is **rational** if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g \rangle$ is conjugate to g.

- Every rational group is cut.
- Every symmetric group is rational.
- While only 0.57% of all groups up to order 512 are rational, 86.62% are cut.
Definition

G is **rational** if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g \rangle$ is conjugate to g.
- Every rational group is cut.
Definition

G is **rational** if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g \rangle$ is conjugate to g.
- Every rational group is cut.
- Every symmetric group is rational.
Definition

A group G is **rational** if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g \rangle$ is conjugate to g.
- Every rational group is cut.
- Every symmetric group is rational.
- While only 0.57% of all groups up to order 512 are rational, 86.62% are cut.
The Gruenberg-Kegel graph

Gruenberg-Kegel graph = GK-graph = Prime graph:
G non-necessarily finite group.

$\Gamma_{GK}(G) : \begin{cases}
\text{Vertices: } \pi(G) = \{|g| : g \in G, |g| \text{ prime}\}; \\
\text{Edges: } p - q \text{ with } p \neq q, pq = |g| \text{ for some } g \in G.
\end{cases}$
Gruenberg-Kegel graph = GK-graph = Prime graph: G non-necessarily finite group.

\[\Gamma_{GK}(G) : \begin{cases}
\text{Vertices: } \pi(G) = \{ |g| : g \in G, |g| \text{ prime} \}; \\
\text{Edges: } p - q \text{ with } p \neq q, pq = |g| \text{ for some } g \in G.
\end{cases} \]

1. Every graph is the GK-graph of some group.
The Gruenberg-Kegel graph

Gruenberg-Kegel graph = GK-graph = Prime graph:
G non-necessarily finite group.

\[\Gamma_{GK}(G) : \begin{cases}
\text{Vertices: } \pi(G) = \{|g| : g \in G, |g| \text{ prime}\}; \\
\text{Edges: } p - q \text{ with } p \neq q, pq = |g| \text{ for some } g \in G.
\end{cases} \]

1. Every graph is the GK-graph of some group.
2. If \(G \) is a finite group then \(\Gamma_{GK}(G) \) has at most 6 connected components [Williams 81, Kondrat’ev 90].
The Gruenberg-Kegel graph

Gruenberg-Kegel graph = GK-graph = Prime graph:
G non-necessarily finite group.

\[\Gamma_{GK}(G) : \begin{cases}
\text{Vertices: } \pi(G) = \{|g| : g \in G, |g| \text{ prime}\}; \\
\text{Edges: } p - q \text{ with } p \neq q, pq = |g| \text{ for some } g \in G.
\end{cases} \]

1. Every graph is the GK-graph of some group.
2. If \(G \) is a finite group then \(\Gamma_{GK}(G) \) has at most 6 connected components [Williams 81, Kondrat’ev 90].
The Prime Graph Question

\[V(\mathbb{Z}G) = \{ \text{Units of } \mathbb{Z}G \text{ with augmentation 1} \}. \]
The Prime Graph Question

\[V(\mathbb{Z}G) = \{ \text{Units of } \mathbb{Z}G \text{ with augmentation 1} \}. \]

The Prime Graph Question (PQ) (Kimmerle)

\[\Gamma_{\text{GK}}(G) = \Gamma_{\text{GK}}(V(\mathcal{U}G))? \]

Theorem (Kimmerle, 2006) (PQ) holds for solvable groups.

Theorem (Kimmerle-Konovalov, 2015) (PQ) holds for \(G \) if and only if it holds for every almost simple epimorphic image of \(G \).

(PQ) has been proved for many almost simple groups including symmetric and alternating groups and several sporadic simple groups [Bächle, Margolis, Konovalov, Bovdi, ...].
$V(\mathbb{Z}G) = \{\text{Units of } \mathbb{Z}G \text{ with augmentation 1}\}$.

The Prime Graph Question (PQ) (Kimmerle)

$$\Gamma_{GK}(G) = \Gamma_{GK}(V(\mathcal{U}G))?$$

Theorem (Kimmerle, 2006)

(PQ) holds for solvable groups.
The Prime Graph Question

\[V(\mathbb{Z}G) = \{ \text{Units of } \mathbb{Z}G \text{ with augmentation 1} \} \].

The Prime Graph Question (PQ) (Kimmerle)

\[\Gamma_{GK}(G) = \Gamma_{GK}(V(\mathcal{U}G)) \]?

Theorem (Kimmerle, 2006)

(PQ) holds for solvable groups.

Theorem (Kimmerle-Konovalov, 2015)

(PQ) holds for \(G \) if and only if it holds for every almost simple epimorphic image of \(G \).
The Prime Graph Question

\[V(\mathbb{Z}G) = \{ \text{Units of } \mathbb{Z}G \text{ with augmentation 1} \}. \]

The Prime Graph Question (PQ) (Kimmerle)

\[\Gamma_{\mathbb{Z}G}(G) = \Gamma_{\mathbb{Z}G}(V(\mathcal{U}G))? \]

Theorem (Kimmerle, 2006)

(PQ) holds for solvable groups.

Theorem (Kimmerle-Konovalov, 2015)

(PQ) holds for \(G \) if and only if it holds for every almost simple epimorphic image of \(G \).

(PQ) has been proved for many almost simple groups including symmetric and alternating groups and several sporadic simple groups [Bächle, Margolis, Konovalov, Bovdi, ...].
Aims

Problems

- Classify the GK-graph of solvable cut groups and solvable rational groups.
- Study (PQ) for cut groups and rational groups.
Aims

Problems
- Classify the GK-graph of solvable cut groups and solvable rational groups.
- Study (PQ) for cut groups and rational groups.

Known facts
- If G is a rational and solvable then $\pi(G) \subseteq \{2, 3, 5\}$ [Gow, 1976].
Aims

Problems

- Classify the GK-graph of solvable cut groups and solvable rational groups.
- Study (PQ) for cut groups and rational groups.

Known facts

- If G is a rational and solvable then $\pi(G) \subseteq \{2, 3, 5\}$ [Gow, 1976].
- If G is a cut and solvable then $\pi(G) \subseteq \{2, 3, 5, 7\}$ [Bachle, 2018].
GK-graphs of finite solvable cut groups: At most 3 vertices

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

GK-graphs of non-trivial solvable cut groups with at most 3 vertices:

<table>
<thead>
<tr>
<th></th>
<th>(A)</th>
<th>2 ●</th>
<th>(B)</th>
<th>● 3</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C)</td>
<td>2 ● ● ● 3</td>
<td>(D)</td>
<td>2 ● ●● 3</td>
<td></td>
</tr>
<tr>
<td>(E)</td>
<td>2 ● 5</td>
<td>(F)</td>
<td>2 ● 5</td>
<td></td>
</tr>
<tr>
<td>(G)</td>
<td>2 ● 7</td>
<td>(H)</td>
<td>2 ● 3</td>
<td></td>
</tr>
<tr>
<td>(I)</td>
<td>2 ● 5</td>
<td>(J)</td>
<td>2 ● 3</td>
<td></td>
</tr>
<tr>
<td>(K)</td>
<td>2 ● 3</td>
<td>(L)</td>
<td>2 ● 7</td>
<td></td>
</tr>
<tr>
<td>(M)</td>
<td>2 ● 7</td>
<td>(N)</td>
<td>2 ● 7</td>
<td></td>
</tr>
<tr>
<td>(O)</td>
<td>2 ● 7</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

Possible GK-graphs of finite solvable cut groups with more than 3 vertices.

<table>
<thead>
<tr>
<th>Verified</th>
<th>(P)</th>
<th>2 - - 3</th>
<th>(Q)</th>
<th>2 - - 3</th>
<th>(R)</th>
<th>2 - - 3</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 - - 7</td>
<td></td>
<td>5 - - 7</td>
<td></td>
<td>5 - - 7</td>
<td></td>
</tr>
<tr>
<td>Possible</td>
<td>(S)</td>
<td>2 - - 3</td>
<td>(T)</td>
<td>2 - - 3</td>
<td>(V)</td>
<td>2 - - 3</td>
</tr>
<tr>
<td></td>
<td>5 - - 7</td>
<td></td>
<td>5 - - 7</td>
<td></td>
<td>5 - - 7</td>
<td></td>
</tr>
</tbody>
</table>
Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

Possible GK-graphs of non-trivial solvable rational groups:

<table>
<thead>
<tr>
<th>Verified</th>
<th>Possible</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A) \mathbb{Z}_2</td>
<td>(A) \mathbb{Z}_2</td>
</tr>
<tr>
<td>(C) $\mathbb{Z}_2 \times \mathbb{Z}_3$</td>
<td>(C) $\mathbb{Z}_2 \times \mathbb{Z}_3$</td>
</tr>
<tr>
<td>(D) $\mathbb{Z}_2 \times \mathbb{Z}_3$</td>
<td>(D) $\mathbb{Z}_2 \times \mathbb{Z}_3$</td>
</tr>
<tr>
<td>(E) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
<td>(E) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
</tr>
<tr>
<td>(F) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
<td>(F) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
</tr>
<tr>
<td>(K) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
<td>(K) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
</tr>
<tr>
<td>(I) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
<td>(I) $\mathbb{Z}_2 \times \mathbb{Z}_5$</td>
</tr>
</tbody>
</table>
Application 1: GK-graphs of supersolvable rational groups

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

The following are equivalent for a graph Γ.

1. $\Gamma = \Gamma_{GK}(G)$ for some non-trivial metacyclic rational group G.
2. $\Gamma = \Gamma_{GK}(G)$ for some non-trivial metabelian rational group G.
3. $\Gamma = \Gamma_{GK}(G)$ for some non-trivial supersolvable rational group G.
4. $\Gamma = \Gamma_{GK}(G)$ for some non-trivial nilpotent-by-abelian rational group G.
5. Γ is one of the graphs (A), (C) or (D).
Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

The following are equivalent for a graph Γ.

1. $\Gamma = \Gamma_{\text{GK}}(G)$ for some non-trivial metacyclic cut group G.
2. $\Gamma = \Gamma_{\text{GK}}(G)$ for some non-trivial metabelian cut group G.
3. $\Gamma = \Gamma_{\text{GK}}(G)$ for some non-trivial supersolvable cut group G.
4. $\Gamma = \Gamma_{\text{GK}}(G)$ for some non-trivial nilpotent-by-abelian cut group G.
5. Γ is one of the graphs (A) – (G) or (J) – (O).
Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

(PQ) holds for cut groups without an epimorphism image isomorphic to the monster group.
Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

(PQ) holds for cut groups without an epimorphism image isomorphic to the monster group.

Corollary

(PQ) holds for rational groups.
Thanks for your attention!
Merci pour votre attention!
Ilginiz için teşekkürler
¡Gracias por su atención!