Hopf braces, Hopf trusses and Hopf heaps

M. Hryniewicka

University of Białystok, Białystok, Poland

Abstract

Here C denotes a coalgebra with counit $(C,\Delta,\varepsilon).$ A left Hopf truss consists of

(*) a coalgebra C with two algebra structures such that one makes C into a Hopf algebra $(C, \cdot, 1, \Delta, \varepsilon, S)$ and the other into a nonunital bialgebra $(C, \circ, \Delta, \varepsilon)$,

(**) connected by a coalgebra endomorphism $\sigma: C \to C$ such that $x \circ (y \cdot z) = \sum (x_1 \circ y) \cdot S\sigma(x_2) \cdot (x_3 \circ z)$ holds for all $x, y, z \in C$.

An equivalent formulation of the statement $(^{**})$ is

(***) Define a ternary operation $[-, -, -]: C \otimes C^{\text{cop}} \otimes C \to C$ by $[x, y, z] = x \cdot S(y) \cdot z$ for all $x, y, z \in C$. Then $x \circ [y, z, t] = \sum [x_1 \circ y, x_2 \circ z, x_3 \circ t]$ holds for all $x, y, z, t \in C$.

A ternary operation defined in the statement (***) makes C into a Hopf heap $(C, \Delta, \varepsilon, [-, -, -])$. A Hopf heap consists of a coalgebra C with a coalgebra homomorphism $\chi: C \otimes C^{cop} \otimes C \to C$, $x \otimes y \otimes$ $z \mapsto [x, y, z]$ such that [[x, y, z], t, u] = [x, y, [z, t, u]] and $\sum [x_1, x_2, y] =$ $\sum [y, x_1, x_2] = \varepsilon(x)y$ hold for all $x, y, z, t, u \in C$.

This talk is intended as a discussion of Hopf trusses and Hopf heaps.

Keywords

Coalgebras, Hopf algebras, Braces, Trusses.

References

- [1] A. Agore: Constructing Hopf braces. Int. J. Math. 30, No. 02, 2019.
- [2] I. Angiono, C. Galindo and L. Vendramin: Hopf braces and Yang-Baxter operators. Proc. Amer. Math. Soc. 145, 1981–1995, 2017.
- [3] T. Brzeziński: Trusses: between braces and rings. Trans. Amer. Math. Soc. 372, 4149–4176, 2019.
- [4] T. Brzeziński and M. Hryniewicka: Translation Hopf algebras and Hopf heaps. Algebr. Represent. Theory 27, 1805–1819, 2024.
- Y. Li, Y. Sheng and R. Tang: Post-Hopf algebras, relative Rota-Baxter operators and solutions of the Yang-Baxter equation. J. Noncommut. Geom. 18, 605–630, 2023.

1