L2 PC

Math 3, TD 2

Exercice 1

Soit $f: \mathbb{R}^3 \to \mathbb{R}^2$ l'application définie par f(x, y, z) = (x - y + z, 2y - 3z). Montrer que f est linéaire.

Déterminer la matrice de f dans les bases canonique de \mathbb{R}^3 et de \mathbb{R}^2 .

Déterminer une base de Ker(f).

Déterminer un sous espace vectoriel V tel que $Ker(f) \oplus V = \mathbb{R}^3$

Exercice 2

Soit e_1, e_2, e_3 une base de \mathbb{R}^3 $f: \mathbb{R}^3 \to \mathbb{R}^3$ une application linéaire donnée par $f(e_i) = f(e_{i+1})$ si i = 1, 2 et $f(e_3) = e_1 + e_2 + e_3$. Montrer que f est bijective.

Calculer la matrice dans la base $\{e_1, e_2, e_3\}$ de f^2 et de f^3 .

Exercice 3

Soit $f: \mathbb{R}^3 \longrightarrow \mathbb{R}^2$ définie pour tout vecteur $u = (u_1, u_2, u_3) \in \mathbb{R}^3$ par : $f(u) = (-2u_1 + u_2 + u_3)$ $u_3, u_1 - 2u_2 + u_3$).

- 1. Montrer que f est une application linéaire.
- 2. Donner une base de ker(f), en déduire dim(Im(f))
- 3. Donner une base de Im(f)

Exercice 4

Trouver A une matrice 2×2 telle que

- a) $A^2 = A$
- b) $A^3 = 0$
- c) Montrer que pour tout $A \in M_{2\times 2}(\mathbb{R})$ existe $\alpha, \beta, \gamma \in Mathbb{R}$, non tous nuls, telles que $\alpha A + \beta A + \gamma A = 0$

Exercice 5

On considère l'espace vectoriel $V = \mathbb{R}[x]_3$. Soit D la dérivation par rapport à X restreinte à V. Montrer que D est linéaire.

Calculer Ker(D) et Im(D).

Trouver la matrice de $M_{\mathcal{B}}^{\mathcal{B}}(D)$ dans la base $\mathcal{B} = (\infty, \mathcal{X}, \mathcal{X}^{\in}, \mathcal{X}^{\ni})$ Montrer que $\mathcal{C} = \{1, 1 + X, 1 + X + X^2, 1 + X + X^2 + X^3\}$. Calculer la matrice de $M_{CalC}^{\mathcal{C}}(D)$.

Exercice 6

Peut-on compléter les sous-ensembles suivants en une base de \mathbb{R}^4

- a) $S_1 = \{(1,0,2,0), (3,0,1,1), (1,-1,2,0)\}.$
- b) $S_2 = \{(1, 1, 0, 2), (-1, 3, 1, 0), (1, 5, 1, 2)\}$

Si oui, le faire!

Exercice 6

Sot $A \in M_3\mathbb{R}$) donnée par

$$A = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \end{pmatrix}$$

Calculer A^n pour tout $n \in \mathbb{N}$.