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Zhou (2000) defined the concept of )—small submodule.

oK Is called o—small in M if K + L # M for any proper
submodule L of M with M /L singular.

oK <s Mifandonlyif M = X @Y for a projective
semisimple submodule Y with Y C K whenever

X+ K=M.

e A module M is called )—semiregular if for every m € M

there is a decomposition M = A& B such that Rm = A&

(Rm N B), Ais projective and Rm N B is é—small in B.
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e Nicholson and Yousif (2001) study /—semiregular and
I-semiperfect rings by taking an ideal 1.

—R is I-semiregular if for every x € R, there is an
idempotent e € R suchthat Rz = RecSand S C I.
¢ Nicholson and Zhou (2005) define a strongly lifting ideal.

— A left ideal I of aring R is called strongly lifting if
whenever a? — a € I, then there exists e? = e € Ra such
thate — a € I.

— For anideal I, R is I-semiregular if and only if R/I is
regular and I is strongly lifting.
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Zhou also consider the fully invariant submodule
0(M) =n{K < M : M/K is singular simple }.

If M is projective, then Soc(M) C 6(M).

e Ozcan and Alkan prove that for a projective module M.

— Rad(M/Soc(M)) = 6(M)/Soc(M)
—0(M) = M if and only if M is semisimple.

Now we extend the notion of )—small submodules and
o(M) to study a generalization of semiregular rings.
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Let NV be a submodule of an R—module M. We say that

Definitions

e NV decomposes M (briefly N is DM in M ) if whenever
N + X = M for a submodule X of M, there iIs a summand
Sof M suchthat S < Nand M =S + X.

e NisSDM in M if whenever N + X = M for a
submodule X of M, there is a summand S of M such that
S<Nand M =S & X.

A



\ 4

Examples

e Any summand of M is DM in M.




\ 4

Examples

e Any summand of M is DM in M.

e Any SDM submodule of a module M is DM.




\ 4

Examples

e Any summand of M is DM in M.
e Any SDM submodule of a module M is DM.

e Any o)—small submodule of M is SDM in M.

A



\ 4

Examples

e Any summand of M is DM in M.
e Any SDM submodule of a module M is DM.

e Any o)—small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but
not o—small.

A



\ 4

Examples

e Any summand of M is DM in M.
e Any SDM submodule of a module M is DM.

e Any o)—small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but
not o—small.

A



\ 4

Examples

e Any summand of M is DM in M.
e Any SDM submodule of a module M is DM.

e Any o)—small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but
not o—small.

e If I Is a strongly lifting ideal, then I is DM.

A



\ 4

Examples

e Any summand of M is DM in M.
e Any SDM submodule of a module M is DM.

e Any o)—small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but
not o—small.

e If I Is a strongly lifting ideal, then I is DM.

But the converse is not true in general.
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Definitions

Let 7 be an ideal of a ring k. We say that
e M is DM for I'if any submodule of IM is DM in M.

e RRIs aleft (right) DM ring for I if for any finitely
generated free left (right) R—module is DM for I.
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e Any semisimple module is DM for any ideal 1.

Examples

e Any module is DM for Soc(grR).

e Any finitely generated module is DM for a o—small ideal
I.
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Projective cover

e A module M is said to have a projective cover (6—cover,
Soc—cover resp.) if there exists an epimorphism

f: P — M such that P is projective and Kerf < P
(Kerf <5 P, Kerf C Soc(P), resp).

e A pair (P, f) is called a projective I—semicover of M if P
IS projective and f is an epimorphism from P to M such
that Kerf C IP.

e A pair (P, f) is called a projective I—cover of M if (P, f)
IS a projective /-semicover and Kerf is DM in P.
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Lemma

elLet {M;}"_, be a finite collection of modules such that
each M, has a projective /—cover. Then &I ,M; has a
projective /—cover.

elet N < M.If M =P suchthat P C N and
NN CIM,then M/N has a projective /—semicover.

e¢A module has a projective O—cover if and only if M is
projective.
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Proof:(«) This is obvious.
(=) f:P— M — 0suchthat Kerf C §(P), Kerfis DM in P.

We claim that Kerf <5 P.

Let P = Kerf + X.

Then P has a decomposition P = S ¢ S’ where S C Kerf and
S"Cc X. Thendo(P)=46(5)ddo(S")and S =4(9).
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This theorem shows that a projective /—cover is a
generalization of a projective cover, a projective
Soc—cover, and projective )—cover.

Also we extend some well-known theorems about
projective modules.
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Let M have a projective /-semicover and IM = M. Then

o if I IS d)—small in g R, then M is semisimple and
projective.

e if I Is small or singular in g R, then M = 0.
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projective /—semicover if and only Iif every proper
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every simple factor module of M has a projective
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Let M be a projective module and N < M. Consider the
following conditions:

i) M /N has a projective I—cover,

it) M =Y @ X for some submodules Y and X withY C N
and X "N C IM.

Then i) = i),
if M is DM for I, then i) = 1).
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Then (M)h + Kerf = Q.
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Then (M)h =A@ Swhere S = KN (M)h C Kerf.

There is a decomposition M/Kerh = B/Kerh ®Y/Kerh
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Then B=X® Kerhandso M =B+Y =X+Y. Then
we havethat M = X @Y since XNY C BNY = Kerh.

By using the commutative diagram and the projectivity of
X, Itcanbe provedthatY C Nand NNX C IM.
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Then B=X® Kerhandso M =B+Y =X+Y. Then
we havethat M = X @Y since XNY C BNY = Kerh.

By using the commutative diagram and the projectivity of
X, Itcanbe provedthatY C Nand NNX C IM.

(i1) = (7)

A
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Then B=X® Kerhandso M =B+Y =X+Y. Then
we havethat M = X @Y since XNY C BNY = Kerh.

By using the commutative diagram and the projectivity of
X, Itcanbe provedthatY C Nand NNX C IM.

(22) = (z) LetM =Y & X forsome Y and X withY C N
and X "N C M.

A



\ 4

Then B=X® Kerhandso M =B+Y =X+Y. Then
we havethat M = X @Y since XNY C BNY = Kerh.

By using the commutative diagram and the projectivity of
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Then B=X® Kerhandso M =B+Y =X+Y. Then
we havethat M = X @Y since XNY C BNY = Kerh.

By using the commutative diagram and the projectivity of
X, Itcanbe provedthatY C Nand NNX C IM.

(22) = (z) LetM =Y & X forsome Y and X withY C N
and X "N C IM.

By hypothesis, we getthat X " N is DM in X and so

M /N has a projective [—cover.
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Consider the following conditions;

i) every finitely presented left R—module has a projective
I—cover.

i1) for every finitely generated left ideal K of R, R/K has a
projective /—cover.

iiz7) every cyclically presented left R—module has a
projective I—cover.

iv) R is I-semiregular.

Then i) = i) = 1) = v)
if Ris aleft DM ring for I, then iv) = 1).
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i12) For every finitely generated left ideal K of R, R/K has
a projective Z(rR)—cover.

A



\ 4

Corollary

The following are equivalent for a ring R.

i) Ris Z(rR)-semiregular.

i1) Every cyclically presented left R—module has a
projective Z (g R)—cover.

i12) For every finitely generated left ideal K of R, R/K has
a projective Z(rR)—cover.

iv) Every finitely presented left R—module has a projective
7 (grR)—cover.

A



\ 4

Let I be an ideal of a ring R such that I C §(grR).

Corollary




\ 4

Corollary

Let / be anideal of a ring R such that I C §(gR). Then
The following are equivalent for a ring R.




\ 4

Corollary

Let / be anideal of a ring R such that I C §(gR). Then
The following are equivalent for a ring R.
i) R is I-semiregular.




\ 4

Corollary

Let / be anideal of a ring R such that I C §(gR). Then
The following are equivalent for a ring R.

i) R is I-semiregular.

i1) Every cyclically presented left R—module has a
projective I—cover.

A



\ 4

Corollary

Let / be anideal of a ring R such that I C §(gR). Then
The following are equivalent for a ring R.

i) R is I-semiregular.

i1) Every cyclically presented left R—module has a
projective I—cover.
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Corollary

Let / be anideal of a ring R such that I C §(gR). Then
The following are equivalent for a ring R.

i) R is I-semiregular.

i1) Every cyclically presented left R—module has a
projective I—cover.

i11) For every finitely generated left ideal K of R, R/K has
a projective I—cover.

iv) Every finitely presented left R—module has a projective
I—cover.
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Theorem
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Let M be a finitely generated projective R—module.

Theorem

If every simple factor module of M has a projective /—cover
and IM is SDM in M, then
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Theorem

Let M be a finitely generated projective R—module.

If every simple factor module of M has a projective /—cover
and IM is SDM in M, then for every submodule N of M,
there is a decomposition M = A ¢ B such that

N=A® (NNB), Ais projectiveand NN B CIM
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i) every factor module of a finitely generated projective left
R—module has a projective I—cover

i1) every factor module of xR has a projective [—cover,

i12) for every countably generated left ideal L of R, R/L
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iv) R is I-semiperfect,
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i) every factor module of a finitely generated projective left
R—module has a projective I—cover

i1) every factor module of xR has a projective [—cover,

i12) for every countably generated left ideal L of R, R/L
has a projective I—cover,

iv) R is I-semiperfect,

v) every simple factor module of z R has a projective
I—cover.

Then i) = ii) = i) = i) and i) = v) ;
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Consider the following conditions:

i) every factor module of a finitely generated projective left
R—module has a projective I—cover

i1) every factor module of xR has a projective [—cover,
i12) for every countably generated left ideal L of R, R/L
has a projective I—cover,

iv) R is I-semiperfect,

v) every simple factor module of z R has a projective
I—cover.

Then i) = ii) = i) = i) and i) = v) ;

if Ris aleft DM ring for I then iv) = 1) ;

if 1is S“RR then v) = iv)
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following are equivalent;
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i1) R/ is semisimple.

ii1) Every finitely generated left module has a projective
I-semicover.
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Let 7 be a strongly lifting ideal of a ring R. Then the
following are equivalent;

i) R is I-semiperfect.

i1) R/ is semisimple.

ii1) Every finitely generated left module has a projective
I-semicover.

iv) Every factor module of z R has a projective
I—-semicover.
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Theorem

Let 7 be a strongly lifting ideal of a ring R. Then the
following are equivalent;

i) R is I-semiperfect.

i1) R/ is semisimple.

ii1) Every finitely generated left module has a projective
I-semicover.

iv) Every factor module of z R has a projective
I—-semicover.

v) Every simple factor module of xR has a projective
I—-semicover.
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