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•K is called δ–small in M if K + L 6= M for any proper
submodule L of M with M/L singular.

•K ≪δ M if and only if M = X ⊕ Y for a projective
semisimple submodule Y with Y ⊆ K whenever
X + K = M .

• A module M is called δ–semiregular if for every m ∈ M

there is a decomposition M = A ⊕ B such that Rm = A ⊕

(Rm ∩ B), A is projective and Rm ∩ B is δ–small in B.
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• Nicholson and Yousif (2001) study I–semiregular and
I–semiperfect rings by taking an ideal I.

—R is I–semiregular if for every x ∈ R, there is an
idempotent e ∈ R such that Rx = Re ⊕ S and S ⊂ I.
• Nicholson and Zhou (2005) define a strongly lifting ideal.

– A left ideal I of a ring R is called strongly lifting if
whenever a2 − a ∈ I, then there exists e2 = e ∈ Ra such
that e − a ∈ I.

– For an ideal I, R is I–semiregular if and only if R/I is
regular and I is strongly lifting.
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Zhou also consider the fully invariant submodule

δ(M) = ∩{K ≤ M : M/K is singular simple }.

If M is projective, then Soc(M) ⊆ δ(M).
• Ozcan and Alkan prove that for a projective module M .

— Rad(M/Soc(M)) = δ(M)/Soc(M)

—δ(M) = M if and only if M is semisimple.

Now we extend the notion of δ–small submodules and
δ(M) to study a generalization of semiregular rings.
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N + X = M for a submodule X of M , there is a summand
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Examples

• Any summand of M is DM in M .

• Any SDM submodule of a module M is DM .

• Any δ–small submodule of M is SDM in M .

There exists a module M such that Soc(M) is SDM but
not δ–small.

• If I is a strongly lifting ideal, then I is DM .

But the converse is not true in general.
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Definitions

Let I be an ideal of a ring R. We say that

• M is DM for I if any submodule of IM is DM in M .

• R is a left (right) DM ring for I if for any finitely
generated free left (right) R–module is DM for I.
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Examples

• Any module is DM for Soc(RR).

• Any semisimple module is DM for any ideal I.

• Any finitely generated module is DM for a δ–small ideal
I.
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Soc–cover resp.) if there exists an epimorphism
f : P → M such that P is projective and Kerf ≪ P

(Kerf ≪δ P , Kerf ⊆ Soc(P ), resp).

• A pair (P, f) is called a projective I–semicover of M if P

is projective and f is an epimorphism from P to M such
that Kerf ⊆ IP .
• A pair (P, f) is called a projective I–cover of M if (P, f)

is a projective I-semicover and Kerf is DM in P .
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Lemma

•Let {Mi}
n
i=1

be a finite collection of modules such that
each Mi has a projective I–cover. Then ⊕n

i=1
Mi has a

projective I–cover.

•Let N ≤ M . If M = P ⊕ Q such that P ⊆ N and
N ∩ Q ⊆ IM , then M/N has a projective I–semicover.

•A module has a projective 0–cover if and only if M is
projective.
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Proof:(⇐) This is obvious.

(⇒) f : P → M → 0 such that Kerf ⊆ δ(P ), Kerf is DM in P .

We claim that Kerf ≪δ P .

Let P = Kerf + X.
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This theorem shows that a projective I–cover is a
generalization of a projective cover, a projective
Soc–cover, and projective δ–cover.

Also we extend some well–known theorems about
projective modules.
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• If every proper submodule of a module M is contained in
a maximal submodule and every simple factor module of M

has a projective I–semicover, then M/IM is semisimple.

• If I ⊆ δ(RR), then every factor module of M has a
projective I–semicover if and only if every proper
submodule of M is contained in a maximal submodule and
every simple factor module of M has a projective
I–semicover.
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ii) M = Y ⊕ X for some submodules Y and X with Y ⊆ N
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Then i) ⇒ ii),
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Lemma

Let M be a projective module and N ≤ M . Consider the
following conditions:

i) M/N has a projective I–cover,

ii) M = Y ⊕ X for some submodules Y and X with Y ⊆ N

and X ∩ N ⊆ IM .

Then i) ⇒ ii),
if M is DM for I, then ii) ⇒ i).
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Then B = X ⊕Kerh and so M = B + Y = X + Y . Then
we have that M = X ⊕ Y since X ∩ Y ⊆ B ∩ Y = Kerh.

By using the commutative diagram and the projectivity of
X, it can be proved that Y ⊆ N and N ∩ X ⊆ IM .

(ii) ⇒ (i) Let M = Y ⊕ X for some Y and X with Y ⊆ N

and X ∩ N ⊆ IM .
By hypothesis, we get that X ∩ N is DM in X and so
M/N has a projective I–cover.
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i) every finitely presented left R–module has a projective
I–cover.
ii) for every finitely generated left ideal K of R, R/K has a
projective I–cover.
iii) every cyclically presented left R–module has a
projective I–cover.
iv) R is I–semiregular.

Then i) ⇒ ii) ⇒ iii) ⇒ iv)

if R is a left DM ring for I, then iv) ⇒ i).
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Let M be a finitely generated projective R–module.

If every simple factor module of M has a projective I–cover
and IM is SDM in M , then for every submodule N of M ,
there is a decomposition M = A ⊕ B such that
N = A ⊕ (N ∩ B), A is projective and N ∩ B ⊆ IM
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