

A generalization of Projective Covers

Mustafa ALKAN

Akdeniz University

Antalya TURKEY

Join work with W.K.NICHOLSON and A.Ç.ÖZCAN

Recently some authors have worked with various extensions of semiregular or semiperfect rings.

• Zhou Y. 2000 Generalizations of perfect, semiperfect and semiregular rings, Algebra Coll. 7(3), 305-318.

- Zhou Y. 2000 Generalizations of perfect, semiperfect and semiregular rings, Algebra Coll. 7(3), 305-318.
- Nicholson W.K.; Yousif M.F. 2001 Weakly continuous and C2 conditions, Comm. Alg. 29(6), 2429-2446.

- Zhou Y. 2000 Generalizations of perfect, semiperfect and semiregular rings, Algebra Coll. 7(3), 305-318.
- Nicholson W.K.; Yousif M.F. 2001 Weakly continuous and C2 conditions, Comm. Alg. 29(6), 2429-2446.
- Özcan A.Ç.; Alkan M.; 2004 Semiregular modules with respect to a fully invariant submodule, Comm. Alg. 32 (11) 4285-4301.

- Zhou Y. 2000 Generalizations of perfect, semiperfect and semiregular rings, Algebra Coll. 7(3), 305-318.
- Nicholson W.K.; Yousif M.F. 2001 Weakly continuous and C2 conditions, Comm. Alg. 29(6), 2429-2446.
- Özcan A.Ç.; Alkan M.; 2004 Semiregular modules with respect to a fully invariant submodule, Comm. Alg. 32 (11) 4285-4301.
- Nicholson W.K.; Zhou, Y. 2005 Strong lifting, J. Algebra, 285, 795-818.

- Zhou Y. 2000 Generalizations of perfect, semiperfect and semiregular rings, Algebra Coll. 7(3), 305-318.
- Nicholson W.K.; Yousif M.F. 2001 Weakly continuous and C2 conditions, Comm. Alg. 29(6), 2429-2446.
- Özcan A.Ç.; Alkan M.; 2004 Semiregular modules with respect to a fully invariant submodule, Comm. Alg. 32 (11) 4285-4301.
- Nicholson W.K.; Zhou, Y. 2005 Strong lifting, J. Algebra, 285, 795-818.
- Özcan A.Ç.; Alkan M. 2006 Semiperfect modules with respect to a preradical, Comm. Alg., 34, 841–856.

Recently some authors have worked with various extensions of semiregular or semiperfect rings.

- Zhou Y. 2000 Generalizations of perfect, semiperfect and semiregular rings, Algebra Coll. 7(3), 305-318.
- Nicholson W.K.; Yousif M.F. 2001 Weakly continuous and C2 conditions, Comm. Alg. 29(6), 2429-2446.
- Ozcan A.Ç.; Alkan M.; 2004 Semiregular modules with respect to a fully invariant submodule, Comm. Alg. 32 (11) 4285-4301.
- Nicholson W.K.; Zhou, Y. 2005 Strong lifting, J. Algebra, 285, 795-818.
- Özcan A.Ç.; Alkan M. 2006 Semiperfect modules with respect to a preradical, Comm. Alg., 34, 841–856.
- Alkan M, W.K.Nicholson; A.Ç.Özcan 2008 A generalization of projective covers, J. Algebra 319, 4947-4960

Zhou (2000) defined the concept of δ -small submodule.

Zhou (2000) defined the concept of δ -small submodule.

 $\bullet K$ is called δ -small in M if

•K is called δ -small in M if $K+L \neq M$ for any proper submodule L of M with M/L singular.

Zhou (2000) defined the concept of δ -small submodule.

- •K is called δ -small in M if $K+L \neq M$ for any proper submodule L of M with M/L singular.
- $\bullet K \ll_{\delta} M$ if and only if

- •K is called δ -small in M if $K+L \neq M$ for any proper submodule L of M with M/L singular.
- $ullet K \ll_\delta M$ if and only if $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq K$ whenever X + K = M.

- •K is called δ -small in M if $K+L \neq M$ for any proper submodule L of M with M/L singular.
- $ullet K \ll_\delta M$ if and only if $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq K$ whenever X + K = M.
- ullet A module M is called δ -semiregular if

- •K is called δ -small in M if $K+L \neq M$ for any proper submodule L of M with M/L singular.
- $ullet K \ll_\delta M$ if and only if $M = X \oplus Y$ for a projective semisimple submodule Y with $Y \subseteq K$ whenever X + K = M.
- A module M is called δ -semiregular if for every $m \in M$ there is a decomposition $M = A \oplus B$ such that $Rm = A \oplus (Rm \cap B)$, A is projective and $Rm \cap B$ is δ -small in B.

Nicholson and Yousif (2001) study *I*—semiregular and
 I—semiperfect rings by taking an ideal *I*.

- Nicholson and Yousif (2001) study *I*—semiregular and
 I—semiperfect rings by taking an ideal *I*.
- —R is I—semiregular if for every $x \in R$, there is an idempotent $e \in R$ such that $Rx = Re \oplus S$ and $S \subset I$.

- Nicholson and Yousif (2001) study *I*—semiregular and
 I—semiperfect rings by taking an ideal *I*.
- —R is I—semiregular if for every $x \in R$, there is an idempotent $e \in R$ such that $Rx = Re \oplus S$ and $S \subset I$.
- Nicholson and Zhou (2005) define a strongly lifting ideal.

—R is I—semiregular if for every $x \in R$, there is an idempotent $e \in R$ such that $Rx = Re \oplus S$ and $S \subset I$.

- Nicholson and Zhou (2005) define a strongly lifting ideal.
- A left ideal I of a ring R is called strongly lifting if whenever $a^2-a\in I$, then

- —R is I—semiregular if for every $x \in R$, there is an idempotent $e \in R$ such that $Rx = Re \oplus S$ and $S \subset I$.
- Nicholson and Zhou (2005) define a strongly lifting ideal.
- A left ideal I of a ring R is called strongly lifting if whenever $a^2-a\in I$, then there exists $e^2=e\in Ra$ such that $e-a\in I$.

- —R is I—semiregular if for every $x \in R$, there is an idempotent $e \in R$ such that $Rx = Re \oplus S$ and $S \subset I$.
- Nicholson and Zhou (2005) define a strongly lifting ideal.
- A left ideal I of a ring R is called strongly lifting if whenever $a^2-a\in I$, then there exists $e^2=e\in Ra$ such that $e-a\in I$.
- For an ideal I, R is I–semiregular if and only if R/I is regular and I is strongly lifting.

$$\delta(M) \ = \cap \{K \leq M : M/K \text{ is singular simple } \}.$$

 $\delta(M) = \bigcap \{K \leq M : M/K \text{ is singular simple } \}.$

If M is projective, then $Soc(M) \subseteq \delta(M)$.

$$\delta(M) = \bigcap \{K \leq M : M/K \text{ is singular simple } \}.$$

If M is projective, then $Soc(M) \subseteq \delta(M)$.

ullet Ozcan and Alkan prove that for a projective module M.

$$\delta(M) = \bigcap \{K \leq M : M/K \text{ is singular simple } \}.$$

If M is projective, then $Soc(M) \subseteq \delta(M)$.

ullet Ozcan and Alkan prove that for a projective module M.

$$-Rad(M/Soc(M)) = \delta(M)/Soc(M)$$

$$\delta(M) = \bigcap \{K \leq M : M/K \text{ is singular simple } \}.$$

If M is projective, then $Soc(M) \subseteq \delta(M)$.

- ullet Ozcan and Alkan prove that for a projective module M.
- $-- Rad(M/Soc(M)) = \delta(M)/Soc(M)$
- $-\delta(M)=M$ if and only if M is semisimple.

$$\delta(M) = \bigcap \{K \leq M : M/K \text{ is singular simple } \}.$$

If M is projective, then $Soc(M) \subseteq \delta(M)$.

- Ozcan and Alkan prove that for a projective module M.
- $-Rad(M/Soc(M)) = \delta(M)/Soc(M)$
- $-\delta(M)=M$ if and only if M is semisimple.

Now we extend the notion of δ -small submodules and $\delta(M)$ to study a generalization of semiregular rings.

Let N be a submodule of an R-module M. We say that

ullet N decomposes M (briefly N is DM in M) if

Let N be a submodule of an R-module M. We say that

ullet N decomposes M (briefly N is DM in M) if whenever N+X=M for a submodule X of M,

Let N be a submodule of an R-module M. We say that

ullet N decomposes M (briefly N is DM in M) if whenever N+X=M for a submodule X of M, there is a summand S of M such that $S\leq N$ and M=S+X.

- N decomposes M (briefly N is DM in M) if whenever N+X=M for a submodule X of M, there is a summand S of M such that $S\leq N$ and M=S+X.
- \bullet N is SDM in M if

- N decomposes M (briefly N is DM in M) if whenever N+X=M for a submodule X of M, there is a summand S of M such that $S\leq N$ and M=S+X.
- N is SDM in M if whenever N+X=M for a submodule X of M,

- N decomposes M (briefly N is DM in M) if whenever N+X=M for a submodule X of M, there is a summand S of M such that $S\leq N$ and M=S+X.
- ullet N is SDM in M if whenever N+X=M for a submodule X of M, there is a summand S of M such that S < N and $M = S \oplus X$.

ullet Any summand of M is DM in M.

- ullet Any summand of M is DM in M.
- ullet Any SDM submodule of a module M is DM.

- ullet Any summand of M is DM in M.
- ullet Any SDM submodule of a module M is DM.
- ullet Any δ -small submodule of M is SDM in M.

- ullet Any summand of M is DM in M.
- ullet Any SDM submodule of a module M is DM.
- ullet Any δ -small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but not δ -small.

- ullet Any summand of M is DM in M.
- ullet Any SDM submodule of a module M is DM.
- ullet Any δ -small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but not δ -small.

Examples

- ullet Any summand of M is DM in M.
- ullet Any SDM submodule of a module M is DM.
- ullet Any δ -small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but not δ -small.

• If I is a strongly lifting ideal, then I is DM.

Examples

- ullet Any summand of M is DM in M.
- ullet Any SDM submodule of a module M is DM.
- ullet Any δ -small submodule of M is SDM in M.

There exists a module M such that Soc(M) is SDM but not δ -small.

• If I is a strongly lifting ideal, then I is DM.

But the converse is not true in general.

ullet M is DM for I if

Definitions

Let I be an ideal of a ring R. We say that

• M is DM for I if any submodule of IM is DM in M.

- M is DM for I if any submodule of IM is DM in M.
- ullet R is a left (right) DM ring for I if

- M is DM for I if any submodule of IM is DM in M.
- R is a left (right) DM ring for I if for any finitely generated free left (right) R-module is DM for I.

Examples

ullet Any module is DM for $Soc({}_RR)$.

- Any module is DM for $Soc(_RR)$.
- ullet Any semisimple module is DM for any ideal I.

- Any module is DM for $Soc(_RR)$.
- ullet Any semisimple module is DM for any ideal I.
- ullet Any finitely generated module is DM for a $\delta-$ small ideal I.

Lemma

ullet Let N be a summand of a module M and A be a submodule of N. Then

ullet Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.

- ullet Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- If M is DM for an ideal I of R,

- Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- ullet If M is DM for an ideal I of R, then any summand of M is DM for I.

- Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- ullet If M is DM for an ideal I of R, then any summand of M is DM for I.
- ullet R is a left DM ring for an ideal I

- Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- If M is DM for an ideal I of R, then any summand of M is DM for I.
- R is a left DM ring for an ideal I if and only if any finitely generated projective left R-module is DM for I.

- Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- ullet If M is DM for an ideal I of R, then any summand of M is DM for I.
- R is a left DM ring for an ideal I if and only if any finitely generated projective left R-module is DM for I.
- Let $M = \bigoplus_{i \in \Lambda} M_i$ where Λ is any index set. If N_i is DM in M_i for all i in a finite subset \mathcal{F} of Λ , then

Lemma

- Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- ullet If M is DM for an ideal I of R, then any summand of M is DM for I.
- R is a left DM ring for an ideal I if and only if any finitely generated projective left R-module is DM for I.
- Let $M=\oplus_{i\in\Lambda}M_i$ where Λ is any index set. If N_i is DM in M_i for all i in a finite subset $\mathcal F$ of Λ , then $\oplus_{i\in\mathcal F}N_i$ is DM in M.

Lemma

- Let N be a summand of a module M and A be a submodule of N. Then A is DM in N if and only if A is DM in M.
- ullet If M is DM for an ideal I of R, then any summand of M is DM for I.
- R is a left DM ring for an ideal I if and only if any finitely generated projective left R-module is DM for I.
- Let $M=\oplus_{i\in\Lambda}M_i$ where Λ is any index set. If N_i is DM in M_i for all i in a finite subset $\mathcal F$ of Λ , then $\oplus_{i\in\mathcal F}N_i$ is DM in M.

 \bullet A module M is said to have a projective cover ($\delta-$ cover, Soc-cover resp.) if

Projective cover

• A module M is said to have a projective cover (δ -cover, Soc-cover resp.) if there exists an epimorphism $f: P \to M$ such that P is projective and $Kerf \ll P$ ($Kerf \ll_{\delta} P, Kerf \subseteq Soc(P)$, resp).

- A module M is said to have a projective cover (δ -cover, Soc-cover resp.) if there exists an epimorphism $f: P \to M$ such that P is projective and $Kerf \ll P$ ($Kerf \ll_{\delta} P, Kerf \subseteq Soc(P)$, resp).
- A pair (P, f) is called a projective I-semicover of M if

- A module M is said to have a projective cover (δ -cover, Soc-cover resp.) if there exists an epimorphism $f: P \to M$ such that P is projective and $Kerf \ll P$ ($Kerf \ll_{\delta} P, Kerf \subseteq Soc(P)$, resp).
- A pair (P, f) is called a projective I-semicover of M if P is projective and f is an epimorphism from P to M such that $Kerf \subseteq IP$.

- A module M is said to have a projective cover (δ -cover, Soc-cover resp.) if there exists an epimorphism $f: P \to M$ such that P is projective and $Kerf \ll P$ ($Kerf \ll_{\delta} P, Kerf \subseteq Soc(P)$, resp).
- A pair (P, f) is called a projective I—semicover of M if P is projective and f is an epimorphism from P to M such that $Kerf \subseteq IP$.
- ullet A pair (P,f) is called a projective I-cover of M if

- A module M is said to have a projective cover (δ -cover, Soc-cover resp.) if there exists an epimorphism $f: P \to M$ such that P is projective and $Kerf \ll P$ ($Kerf \ll_{\delta} P, Kerf \subseteq Soc(P)$, resp).
- A pair (P, f) is called a projective I—semicover of M if P is projective and f is an epimorphism from P to M such that $Kerf \subseteq IP$.
- A pair (P, f) is called a projective I-cover of M if (P, f) is a projective I-semicover and Kerf is DM in P.

•Let $\{M_i\}_{i=1}^n$ be a finite collection of modules such that each M_i has a projective I-cover. Then

•Let $\{M_i\}_{i=1}^n$ be a finite collection of modules such that each M_i has a projective I-cover. Then $\bigoplus_{i=1}^n M_i$ has a projective I-cover.

- •Let $\{M_i\}_{i=1}^n$ be a finite collection of modules such that each M_i has a projective I-cover. Then $\bigoplus_{i=1}^n M_i$ has a projective I-cover.
- •Let $N \leq M$. If $M = P \oplus Q$ such that $P \subseteq N$ and $N \cap Q \subseteq IM$, then

- •Let $\{M_i\}_{i=1}^n$ be a finite collection of modules such that each M_i has a projective I-cover. Then $\bigoplus_{i=1}^n M_i$ has a projective I-cover.
- •Let $N \leq M$. If $M = P \oplus Q$ such that $P \subseteq N$ and $N \cap Q \subseteq IM$, then M/N has a projective I-semicover.

- •Let $\{M_i\}_{i=1}^n$ be a finite collection of modules such that each M_i has a projective I-cover. Then $\bigoplus_{i=1}^n M_i$ has a projective I-cover.
- •Let $N \leq M$. If $M = P \oplus Q$ such that $P \subseteq N$ and $N \cap Q \subseteq IM$, then M/N has a projective I-semicover.
- •A module has a projective 0-cover

- •Let $\{M_i\}_{i=1}^n$ be a finite collection of modules such that each M_i has a projective I-cover. Then $\bigoplus_{i=1}^n M_i$ has a projective I-cover.
- •Let $N \leq M$. If $M = P \oplus Q$ such that $P \subseteq N$ and $N \cap Q \subseteq IM$, then M/N has a projective I-semicover.
- ullet A module has a projective 0—cover if and only if M is projective.

A module M has a projective $\delta({}_RR)$ —cover (projective J(R) —cover, resp.)

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(\Leftarrow) This is obvious. (\Rightarrow)

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

We claim that $Kerf \ll_{\delta} P$.

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

We claim that $Kerf \ll_{\delta} P$.

Let P = Kerf + X.

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

We claim that $Kerf \ll_{\delta} P$.

Let P = Kerf + X.

Then P has a decomposition $P=S\oplus S'$ where $S\subseteq Kerf$ and $S'\subset X$.

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

We claim that $Kerf \ll_{\delta} P$.

Let P = Kerf + X.

Then P has a decomposition $P = S \oplus S'$ where $S \subseteq Kerf$ and $S' \subset X$. Then $\delta(P) = \delta(S) \oplus \delta(S')$ and $S = \delta(S)$.

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

We claim that $Kerf \ll_{\delta} P$.

Let P = Kerf + X.

Then P has a decomposition $P=S\oplus S'$ where $S\subseteq Kerf$ and $S'\subset X$. Then $\delta(P)=\delta(S)\oplus\delta(S')$ and $S=\delta(S)$.

Hence S is semisimple

A module M has a projective $\delta(R)$ —cover (projective J(R)—cover, resp.) if and only if M has a projective δ —cover (projective cover, resp.).

Proof:(⇐) This is obvious.

 (\Rightarrow) $f: P \to M \to 0$ such that $Kerf \subseteq \delta(P)$, Kerf is DM in P.

We claim that $Kerf \ll_{\delta} P$.

Let P = Kerf + X.

Then P has a decomposition $P=S\oplus S'$ where $S\subseteq Kerf$ and $S'\subset X$. Then $\delta(P)=\delta(S)\oplus\delta(S')$ and $S=\delta(S)$.

Hence S is semisimple and so $Kerf \ll_{\delta} P$.

This theorem shows that a projective I—cover is a generalization of a projective cover,

This theorem shows that a projective I—cover is a generalization of a projective cover, a projective Soc—cover,

This theorem shows that a projective I—cover is a generalization of a projective cover, a projective Soc—cover, and projective δ —cover.

This theorem shows that a projective I—cover is a generalization of a projective cover, a projective Soc—cover, and projective δ —cover.

Also we extend some well–known theorems about projective modules.

Let M have a projective I-semicover and IM=M. Then

Let M have a projective I-semicover and IM = M. Then

ullet if I is δ -small in ${}_RR$, then

Let M have a projective I-semicover and IM = M. Then

ullet if I is δ —small in ${}_RR$, then M is semisimple and projective.

Let M have a projective I-semicover and IM = M. Then

ullet if I is δ —small in ${}_RR$, then M is semisimple and projective.

ullet if I is small or singular in $_RR$, then

Let M have a projective I-semicover and IM = M. Then

ullet if I is δ —small in ${}_RR$, then M is semisimple and projective.

• if I is small or singular in $_RR$, then M=0.

Let I be an ideal of a ring R.

Let I be an ideal of a ring R.

ullet If every proper submodule of a module M is contained in a maximal submodule and every simple factor module of M has a projective I—semicover, then

Let I be an ideal of a ring R.

• If every proper submodule of a module M is contained in a maximal submodule and every simple factor module of M has a projective I—semicover, then M/IM is semisimple.

Let I be an ideal of a ring R.

• If every proper submodule of a module M is contained in a maximal submodule and every simple factor module of M has a projective I—semicover, then M/IM is semisimple.

• If $I \subseteq \delta({}_RR)$, then

Let I be an ideal of a ring R.

- If every proper submodule of a module M is contained in a maximal submodule and every simple factor module of M has a projective I—semicover, then M/IM is semisimple.
- ullet If $I\subseteq \delta({}_RR)$, then every factor module of M has a projective I—semicover if and only if

Let I be an ideal of a ring R.

- If every proper submodule of a module M is contained in a maximal submodule and every simple factor module of M has a projective I—semicover, then M/IM is semisimple.
- If $I \subseteq \delta({}_RR)$, then every factor module of M has a projective I—semicover if and only if every proper submodule of M is contained in a maximal submodule and every simple factor module of M has a projective I—semicover.

Let M be a projective module and $N \leq M$. Consider the following conditions:

Let M be a projective module and $N \leq M$. Consider the following conditions:

 $i) \ M/N$ has a projective I-cover,

Let M be a projective module and $N \leq M$. Consider the following conditions:

 $i) \ M/N$ has a projective I-cover,

 $ii) \ M = Y \oplus X$ for some submodules Y and X with $Y \subseteq N$ and $X \cap N \subseteq IM$.

Then $i) \Rightarrow ii)$,

Let M be a projective module and $N \leq M$. Consider the following conditions:

i) M/N has a projective I-cover,

 $ii) \ M = Y \oplus X$ for some submodules Y and X with $Y \subseteq N$ and $X \cap N \subseteq IM$.

Then $i) \Rightarrow ii$, if M is DM for I, then $ii) \Rightarrow i$).

$$(i) \Rightarrow (ii)$$

$$(i) \Rightarrow (ii)$$

M/N

$$(i) \Rightarrow (ii)$$

$$f:Q \longrightarrow M/N \longrightarrow 0$$
 such that $Ker\ f \subseteq IQ$ and $Kerf$ is DM in Q .

$$(i) \Rightarrow (ii)$$

M

$$\downarrow p$$

$$f:Q$$
 -

M/N

$$\longrightarrow$$
 (

such that $Ker f \subseteq IQ$ and Kerf is DM in Q.

$$(i) \Rightarrow (ii)$$
 M

$$h \swarrow \qquad \downarrow p$$

 $f:Q \longrightarrow M/N \longrightarrow 0$ such that $Ker\ f \subseteq IQ$ and Kerf is DM in Q.

$$\begin{array}{c} (i)\Rightarrow (ii) & M \\ & h\swarrow \downarrow p \\ & f:Q & \longrightarrow M/N & \longrightarrow 0 \\ \text{such that } Ker\ f\subseteq IQ \ \text{and} \ Kerf \ \text{is} \ DM \ \text{in} \ Q. \end{array}$$

Then
$$(M)h + Kerf = Q$$
.

$$(i)\Rightarrow (ii) \qquad M$$

$$h\swarrow \downarrow p$$

$$f:Q \longrightarrow M/N \longrightarrow 0$$
 such that $Ker\ f\subseteq IQ$ and $Kerf$ is DM in Q .

Then (M)h + Kerf = Q.

We get that $Q = A \oplus K$ where $A \leq (M)h$ and $K \leq Kerf$.

Proof

$$(i)\Rightarrow (ii) \qquad M$$

$$h\swarrow \downarrow p$$

$$f:Q \longrightarrow M/N \longrightarrow 0$$
 such that $Ker\ f\subseteq IQ$ and $Kerf$ is DM in Q .

Then
$$(M)h + Kerf = Q$$
.

We get that $Q = A \oplus K$ where $A \leq (M)h$ and $K \leq Kerf$.

Then $(M)h = A \oplus S$ where $S = K \cap (M)h \subseteq Kerf$.

Proof

$$(i)\Rightarrow (ii) \qquad M$$

$$h\swarrow\downarrow p$$

$$f:Q \longrightarrow M/N \longrightarrow 0$$
 such that $Ker\ f\subseteq IQ$ and $Kerf$ is DM in Q .

Then (M)h + Kerf = Q.

We get that $Q = A \oplus K$ where $A \leq (M)h$ and $K \leq Kerf$.

Then $(M)h = A \oplus S$ where $S = K \cap (M)h \subseteq Kerf$.

There is a decomposition $M/Kerh = B/Kerh \oplus Y/Kerh$ such that $B/Kerh \cong A$ and $Y/Kerh \cong S$.

Proof

$$(i)\Rightarrow (ii) \qquad M$$

$$h\swarrow\downarrow p$$

$$f:Q \longrightarrow M/N \longrightarrow 0$$
 such that $Ker\ f\subseteq IQ$ and $Kerf$ is DM in Q .

Then (M)h + Kerf = Q.

We get that $Q = A \oplus K$ where $A \leq (M)h$ and $K \leq Kerf$.

Then $(M)h = A \oplus S$ where $S = K \cap (M)h \subseteq Kerf$.

There is a decomposition $M/Kerh = B/Kerh \oplus Y/Kerh$ such that $B/Kerh \cong A$ and $Y/Kerh \cong S$.

Then $B=X\oplus Kerh$ and so M=B+Y=X+Y.

Then $B=X\oplus Kerh$ and so M=B+Y=X+Y. Then we have that $M=X\oplus Y$

By using the commutative diagram and the projectivity of X,

By using the commutative diagram and the projectivity of X, it can be proved that $Y \subseteq N$ and

By using the commutative diagram and the projectivity of X, it can be proved that $Y \subseteq N$ and $N \cap X \subseteq IM$.

By using the commutative diagram and the projectivity of X, it can be proved that $Y \subseteq N$ and $N \cap X \subseteq IM$.

$$(ii) \Rightarrow (i)$$

By using the commutative diagram and the projectivity of X, it can be proved that $Y \subseteq N$ and $N \cap X \subseteq IM$.

 $(ii)\Rightarrow (i)$ Let $M=Y\oplus X$ for some Y and X with $Y\subseteq N$ and $X\cap N\subseteq IM$.

By using the commutative diagram and the projectivity of X, it can be proved that $Y \subseteq N$ and $N \cap X \subseteq IM$.

 $(ii)\Rightarrow (i)$ Let $M=Y\oplus X$ for some Y and X with $Y\subseteq N$ and $X\cap N\subseteq IM$.

By hypothesis, we get that $X \cap N$ is DM in X and so

By using the commutative diagram and the projectivity of X, it can be proved that $Y \subseteq N$ and $N \cap X \subseteq IM$.

 $(ii)\Rightarrow (i)$ Let $M=Y\oplus X$ for some Y and X with $Y\subseteq N$ and $X\cap N\subseteq IM$.

By hypothesis, we get that $X \cap N$ is DM in X and so M/N has a projective I–cover.

Consider the following conditions;

i) every finitely presented left R-module has a projective I-cover.

- i) every finitely presented left R-module has a projective I-cover.
- ii) for every finitely generated left ideal K of R, R/K has a projective I-cover.

Then
$$i) \Rightarrow ii$$

- i) every finitely presented left R-module has a projective I-cover.
- ii) for every finitely generated left ideal K of R, R/K has a projective I—cover.
- iii) every cyclically presented left R-module has a projective I-cover.

Then
$$i) \Rightarrow ii) \Rightarrow iii)$$

- i) every finitely presented left R-module has a projective I-cover.
- ii) for every finitely generated left ideal K of R, R/K has a projective I—cover.
- iii) every cyclically presented left R-module has a projective I-cover.
- iv) R is I-semiregular.

Then
$$i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv$$

- i) every finitely presented left R-module has a projective I-cover.
- ii) for every finitely generated left ideal K of R, R/K has a projective I—cover.
- iii) every cyclically presented left R-module has a projective I-cover.
- iv) R is I-semiregular.

Then
$$i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv$$

if R is a left DM ring for I , then $iv) \Rightarrow i$).

The following are equivalent for a ring R.

i) R is $Z(_RR)$ —semiregular.

- i) R is $Z(_RR)$ —semiregular.
- ii) Every cyclically presented left R-module has a projective $Z(_RR)$ -cover.

Corollary

- i) R is $Z(_RR)$ —semiregular.
- ii) Every cyclically presented left R-module has a projective $Z(_RR)$ -cover.
- iii) For every finitely generated left ideal K of R, R/K has a projective $Z(_RR)$ —cover.

Corollary

- i) R is $Z(_RR)$ —semiregular.
- ii) Every cyclically presented left R-module has a projective $Z(_RR)$ -cover.
- iii) For every finitely generated left ideal K of R, R/K has a projective $Z(_RR)$ —cover.
- iv) Every finitely presented left R-module has a projective $Z({}_RR)$ -cover.

Let I be an ideal of a ring R such that $I \subseteq \delta(RR)$.

Let I be an ideal of a ring R such that $I \subseteq \delta(RR)$. Then The following are equivalent for a ring R.

i) R is I—semiregular.

- i) R is I—semiregular.
- ii) Every cyclically presented left R-module has a projective I-cover.

Corollary

- i) R is I—semiregular.
- ii) Every cyclically presented left R-module has a projective I-cover.
- iii) For every finitely generated left ideal K of R, R/K has a projective I—cover.

Corollary

- i) R is I—semiregular.
- ii) Every cyclically presented left R-module has a projective I-cover.
- iii) For every finitely generated left ideal K of R, R/K has a projective I—cover.
- iv) Every finitely presented left R-module has a projective I-cover.

Let M be a finitely generated projective R-module.

Let M be a finitely generated projective R-module.

If every simple factor module of M has a projective I-cover and IM is SDM in M, then

Let M be a finitely generated projective R-module.

If every simple factor module of M has a projective I-cover and IM is SDM in M, then for every submodule N of M, there is a decomposition $M=A\oplus B$ such that $N=A\oplus (N\cap B), A$ is projective and $N\cap B\subseteq IM$

Consider the following conditions:

i) every factor module of a finitely generated projective left R-module has a projective I-cover

- i) every factor module of a finitely generated projective left R-module has a projective I-cover
- ii) every factor module of $_RR$ has a projective I-cover,

Then
$$i) \Rightarrow ii$$

- i) every factor module of a finitely generated projective left R-module has a projective I-cover ii) every factor module of $_RR$ has a projective I-cover,
- iii) for every countably generated left ideal L of R, R/L has a projective I—cover,

Then
$$i) \Rightarrow ii) \Rightarrow iii)$$

- i) every factor module of a finitely generated projective left $R{\operatorname{\mathsf{--module}}}$ has a projective $I{\operatorname{\mathsf{--cover}}}$
- ii) every factor module of $_RR$ has a projective I-cover,
- iii) for every countably generated left ideal L of R, R/L
- has a projective *I*-cover,
- iv) R is I—semiperfect,

Then
$$i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv$$

- i) every factor module of a finitely generated projective left R-module has a projective I-cover
- ii) every factor module of $_RR$ has a projective I-cover,
- iii) for every countably generated left ideal L of R, R/L has a projective I-cover,
- iv) R is I—semiperfect,
- v) every simple factor module of $_RR$ has a projective $I{\operatorname{-cover}}.$

Then
$$i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv)$$
 and $ii) \Rightarrow v)$;

- i) every factor module of a finitely generated projective left R-module has a projective I-cover
- ii) every factor module of $_RR$ has a projective I-cover,
- iii) for every countably generated left ideal L of R, R/L has a projective I—cover,
- iv) R is I—semiperfect,
- v) every simple factor module of $_RR$ has a projective I-cover.

Then
$$i) \Rightarrow ii) \Rightarrow iii) \Rightarrow iv)$$
 and $ii) \Rightarrow v)$; if R is a left DM ring for I then $iv) \Rightarrow i)$; if I is SDM in R then $v) \Rightarrow iv$

Let I be a strongly lifting ideal of a ring R. Then the following are equivalent;

i) R is I—semiperfect.

- i) R is I—semiperfect.
- ii) R/I is semisimple.

- i) R is I—semiperfect.
- ii) R/I is semisimple.
- iii) Every finitely generated left module has a projective I-semicover.

- i) R is I—semiperfect.
- ii) R/I is semisimple.
- iii) Every finitely generated left module has a projective I-semicover.
- iv) Every factor module of $_RR$ has a projective I-semicover.

- i) R is I—semiperfect.
- ii) R/I is semisimple.
- iii) Every finitely generated left module has a projective I-semicover.
- iv) Every factor module of $_RR$ has a projective $I{\operatorname{\!--semicover}}.$
- v) Every simple factor module of $_RR$ has a projective I-semicover.

THANK YOU FOR YOUR ATTENTION

