Commutativity in Leavitt Path Algebras

Kathi Crow (Joint Work with Gonzalo Aranda Pino)

American University in Cairo

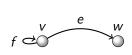
Noncommutative rings and their applications Lens, 30 June 2009

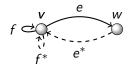
(4月) イヨト イヨト

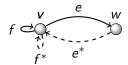
•
$$s(e)e = er(e) = e$$
 for all $e \in E^1$.

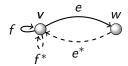
•
$$s(e)e = er(e) = e$$
 for all $e \in E^1$.

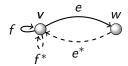
▶
$$r(e)e^* = e^*s(e) = e^*$$
 for all $e \in E^1$.

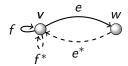








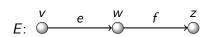




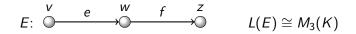
$L(E) \cong K[x, x^{-1}]$

Kathi Crow (Joint Work with Gonzalo Aranda Pino) Commutativity in Leavitt Path Algebras

<ロ> (四) (四) (三) (三) (三) (三)

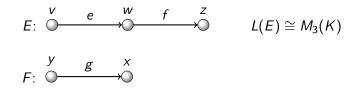


<ロ> (四) (四) (三) (三) (三) (三)



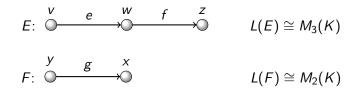
・ロン ・回 と ・ヨン ・ヨン

Э

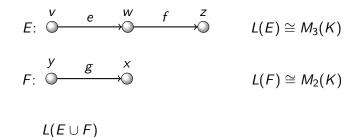


イロン イヨン イヨン イヨン

Э



・ロン ・回 と ・ 回 と ・ 回 と

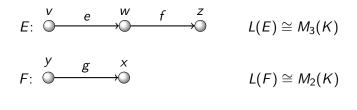


・ロン ・回 と ・ 回 と ・ 回 と



 $L(E \cup F) = L(E) \bigoplus L(F)$

イロン イヨン イヨン イヨン



 $L(E \cup F) = L(E) \bigoplus L(F) \cong M_3(K) \bigoplus M_2(K)$

ヘロン 人間 とくほど くほとう

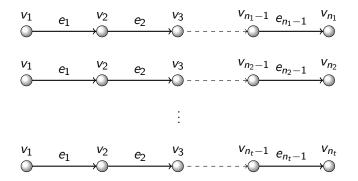
Theorem (Abrams, Aranda Pino, Siles Molina, 2006) L(E) is a finite-dimensional K-algebra if and only if E is a finite and acyclic graph.

高 とう モン・ く ヨ と

Theorem (Abrams, Aranda Pino, Siles Molina, 2006) L(E) is a finite-dimensional K-algebra if and only if E is a finite and acyclic graph.

The only finite-dimensional K-algebras which arise as L(E) for a graph E are isomorphic to algebras of the form

$$\bigoplus_{i=1}^t M_{n_i}(K).$$



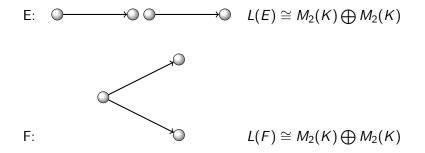
伺 と く き と く き と

э

Not unique:

→ ∃ >

Not unique:



∃ >

Question:

Given any $\bigoplus_{i=1}^{t} M_{n_i}(K)$ does there exist a *connected* graph *E* so that

$$L(E)\cong\bigoplus_{i=1}^t M_{n_i}(K)?$$

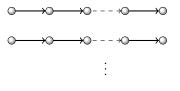
向下 イヨト イヨト ニヨ

Definition

If E_1, \ldots, E_n is a collection of oriented line graphs (as below), then the *comet-tail graph* $G = \bigvee_{i=1}^{t} E_i$ is the graph obtained by identifying the sources of the E_i .

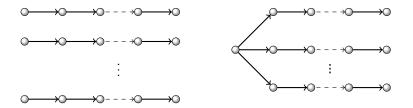
Definition

If E_1, \ldots, E_n is a collection of oriented line graphs (as below), then the *comet-tail graph* $G = \bigvee_{i=1}^{t} E_i$ is the graph obtained by identifying the sources of the E_i .



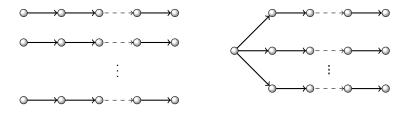
Definition

If E_1, \ldots, E_n is a collection of oriented line graphs (as below), then the *comet-tail graph* $G = \bigvee_{i=1}^{t} E_i$ is the graph obtained by identifying the sources of the E_i .



Definition

If E_1, \ldots, E_n is a collection of oriented line graphs (as below), then the *comet-tail graph* $G = \bigvee_{i=1}^{t} E_i$ is the graph obtained by identifying the sources of the E_i .



$$\bigoplus_{i=1}^{t} L(E_i) \cong L\left(\bigvee_{i=1}^{t} E_i\right)$$

Kathi Crow (Joint Work with Gonzalo Aranda Pino)

Commutativity in Leavitt Path Algebras

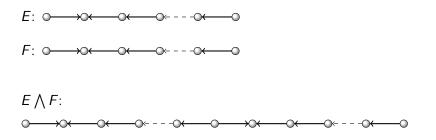
If *E* and *F* are line graphs then, by identifying the root source of *E* with the top source of *F*, we produce a new graph, which we denote by $E \wedge F$.

伺 ト イミト イミト

If *E* and *F* are line graphs then, by identifying the root source of *E* with the top source of *F*, we produce a new graph, which we denote by $E \wedge F$.

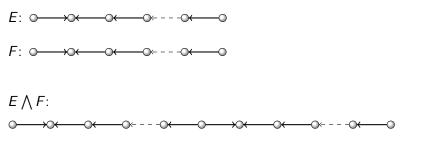
伺 ト イヨ ト イヨト

If *E* and *F* are line graphs then, by identifying the root source of *E* with the top source of *F*, we produce a new graph, which we denote by $E \wedge F$.



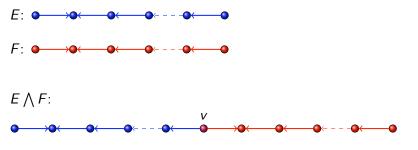
伺 ト イヨ ト イヨト

If *E* and *F* are line graphs then, by identifying the root source of *E* with the top source of *F*, we produce a new graph, which we denote by $E \wedge F$.



For basic line graphs $L(E \land F) \cong L(E) \oplus L(F) \cong M_n(K) \oplus M_m(K)$.

If *E* and *F* are line graphs then, by identifying the root source of *E* with the top source of *F*, we produce a new graph, which we denote by $E \wedge F$.



For basic line graphs $L(E \land F) \cong L(E) \oplus L(F) \cong M_n(K) \oplus M_m(K)$.

Let *E* be a graph. Given a collection $\{E_i\}_{i \in I}$ of subgraphs of *E*, we say that *E* is an *almost disjoint union* of $\{E_i\}_{i \in I}$ if the following conditions are satisfied:

(i)
$$E^0 = \bigcup_{i \in I} E_i^0$$
.

伺 と く き と く き と

Let *E* be a graph. Given a collection $\{E_i\}_{i \in I}$ of subgraphs of *E*, we say that *E* is an *almost disjoint union* of $\{E_i\}_{i \in I}$ if the following conditions are satisfied:

(i)
$$E^0 = \bigcup_{i \in I} E_i^0$$
.

(ii) Any vertex that lies in more than one E_i is not the range of any edge.

高 とう モン・ く ヨ と

Let *E* be a graph. Given a collection $\{E_i\}_{i \in I}$ of subgraphs of *E*, we say that *E* is an *almost disjoint union* of $\{E_i\}_{i \in I}$ if the following conditions are satisfied:

(i)
$$E^0 = \bigcup_{i \in I} E_i^0$$
.

- (ii) Any vertex that lies in more than one E_i is not the range of any edge.
- (iii) Any vertex that lies in more than one E_i must be the source for an edge in each subgraph it lies in.

高 とう モン・ く ヨ と

Let *E* be a graph. Given a collection $\{E_i\}_{i \in I}$ of subgraphs of *E*, we say that *E* is an *almost disjoint union* of $\{E_i\}_{i \in I}$ if the following conditions are satisfied:

(i)
$$E^0 = \bigcup_{i \in I} E_i^0$$
.

- (ii) Any vertex that lies in more than one E_i is not the range of any edge.
- (iii) Any vertex that lies in more than one E_i must be the source for an edge in each subgraph it lies in.

高 とう モン・ く ヨ と

(iv) $\{E_i^1\}_{i \in I}$ is a partition of E^1 .

Let *E* be a graph. Given a collection $\{E_i\}_{i \in I}$ of subgraphs of *E*, we say that *E* is an *almost disjoint union* of $\{E_i\}_{i \in I}$ if the following conditions are satisfied:

(i)
$$E^0 = \bigcup_{i \in I} E_i^0$$
.

(ii) Any vertex that lies in more than one E_i is not the range of any edge.

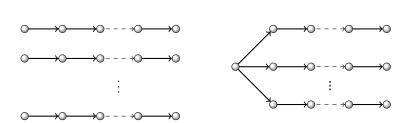
(iii) Any vertex that lies in more than one E_i must be the source for an edge in each subgraph it lies in.

向下 イヨト イヨト

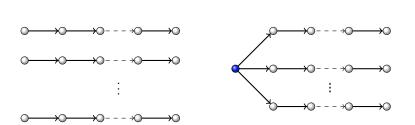
(iv) $\{E_i^1\}_{i \in I}$ is a partition of E^1 .

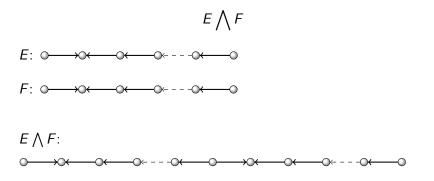
In this situation we will write $E = \prod_{i \in I} E_i$.

 $\bigvee_{i=1}^{t} E_i$

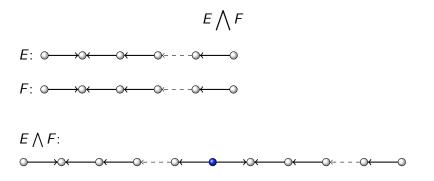


 $\bigvee_{i=1}^{t} E_i$





・ 同 ト ・ ヨ ト ・ ヨ ト



・ 同 ト ・ ヨ ト ・ ヨ ト

Suppose that the graph E can be written as the almost disjoint union of the subgraphs E_i . Then

$$L(E)\cong \bigoplus_{i\in I} L(E_i).$$

高 とう ヨン ういてい

Theorem (Abrams, Aranda Pino, Perera, Siles Molina, 2009) If E is a finite graph (i.e. L(E) is unital) then L(E) is one-sided artinian if and only if L(E) is finite dimensional. Theorem (Abrams, Aranda Pino, Perera, Siles Molina, 2009) If E is a finite graph (i.e. L(E) is unital) then L(E) is one-sided artinian if and only if L(E) is finite dimensional.

Theorem (Abrams, Aranda Pino, Siles Molina, 2006) L(E) is a finite-dimensional K-algebra if and only if E is a finite and acyclic graph.

The only finite-dimensional K-algebras which arise as L(E) for a graph E are of the form

$$\bigoplus_{i=1}^t M_{n_i}(K).$$

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem (Abrams, Aranda Pino, Perera, Siles Molina, 2009) Given a row-finite graph E, we have that L(E) is locally one-sided artinian if and only if

$$L(E)\cong \bigoplus_{i\in I}M_{n_i}(K),$$

where I is countable and $n_i \in \mathbb{N} \cup \{\infty\}$.

Theorem (Abrams, Aranda Pino, Perera, Siles Molina, 2009) Given a graph E, we have that L(E) is locally one-sided noetherian if and only if

$$L(E) \cong \bigoplus_{i \in I_1} M_{n_i}(K) \oplus \bigoplus_{j \in I_2} M_{m_j}(K[x, x^{-1}]),$$

where I_1 and I_2 are countable and $n_i, m_j \in \mathbb{N} \cup \{\infty\}$.

Property of $L(E)$	Isomorphism Class	Z(L(E))
one-sided artinian finite-dimensional	$\bigoplus_{i=1}^{n} M_{m_i}(K)$	$\bigoplus_{i=1}^{n} K$
finite-dimensional		
locally one-sided artinian semisimple	$\bigoplus_{i\in I} M_{n_i}(K)$	$\bigoplus_{i\in I'\subseteq I} K$
·		
one-sided noetherian	$ \bigoplus_{i=1}^{l} M_{m_i}(\mathcal{K}[x, x^{-1}]) \\ \oplus \left(\bigoplus_{i=l+1}^{l+l'} M_{m_i}(\mathcal{K}) \right) $	$\bigoplus_{i=1}^{l} K[x, x^{-1}]$
	$\oplus \left(\bigoplus_{i=l+1}^{I} M_{m_i}(K) \right)$	$\oplus \left(\bigoplus_{j=1}^{K} \right)$

Simplicity

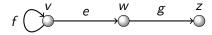
(ロ) (四) (E) (E) (E)

- Given $w, v \in E^0$, we say $v \le w$ if v = w or there is a path μ with $s(\mu) = v$ and $r(\mu) = w$.
- A subset H of E^0 is **hereditary** if $v \le w$ and $v \in H$ imply $w \in H$.

▲□→ ▲ 国→ ▲ 国→

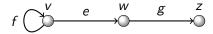
- Given $w, v \in E^0$, we say $v \le w$ if v = w or there is a path μ with $s(\mu) = v$ and $r(\mu) = w$.
- A subset H of E⁰ is hereditary if v ≤ w and v ∈ H imply w ∈ H.
- ▶ A hereditary set is **saturated** if whenever $s^{-1}(v) \neq \emptyset$ and $r(s^{-1}(v)) \subseteq H$ we have that $v \in H$.

・ 同 ト ・ ヨ ト ・ ヨ ト …



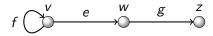
ヘロン 人間 とくほど くほとう

æ



 $S = \{w, z\}$ is hereditary and saturated.

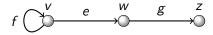
・回 ・ ・ ヨ ・ ・ ヨ ・ …



$$S = \{w, z\}$$
 is hereditary and saturated.

 $T = \{v, w\}$ is saturated but not hereditary.

回 と く ヨ と く ヨ と …

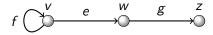


$$S = \{w, z\}$$
 is hereditary and saturated.

 $T = \{v, w\}$ is saturated but not hereditary.

 $U = \{z\}$ is hereditary but not saturated.

向下 イヨト イヨト



$$S = \{w, z\}$$
 is hereditary and saturated.

 $T = \{v, w\}$ is saturated but not hereditary.

 $U = \{z\}$ is hereditary but not saturated.

 $V = \{v, z\}$ is neither hereditary nor saturated.

伺 と く き と く き と

Theorem (Abrams, Aranda Pino, (2005) 2008)

Let E be a (row-finite) graph. Then L(E) is simple if and only if E satisfies the following conditions:

- ► The only hereditary and saturated subsets of E⁰ are Ø and E⁰, and
- every cycle in E has an exit.

Theorem (Abrams, Aranda Pino, (2005) 2008)

Let E be a (row-finite) graph. Then L(E) is simple if and only if E satisfies the following conditions:

- ► The only hereditary and saturated subsets of E⁰ are Ø and E⁰, and
- every cycle in E has an exit.

Example

伺 ト イヨ ト イヨト

Theorem If E is a connected graph and L(E) is a simple algebra then $Z = Z(L(E)) \cong K$ if L(E) is unital and 0 otherwise.

高 とう モン・ く ヨ と

A graph *E* satisfies *Condition* (*K*) if for each vertex v on a closed simple path there exists at least two distinct closed simple paths based at v.

Theorem (Aranda Pino, Pardo, Siles Molina, 2006) A graph E satisfies Condition (K) if and only if L(E) is an exchange ring.

高 とう モン・ く ヨ と

If L(E) is a unital exchange Leavitt path algebra, then there exists a K-algebra isomorphism $Z(L(E)) \cong \bigoplus_{i=1}^{m} K$ for some $m \ge 1$.

向下 イヨト イヨト

Let E be a graph. The following conditions are equivalent.

- (i) L(E) is commutative.
- (ii) $L(E) \cong \bigoplus_{i \in I_1} K \oplus \bigoplus_{i \in I_2} K[x, x^{-1}]$, where $|I_1|, |I_2| \leq \aleph_0$.

通 と く ヨ と く ヨ と

Let E be a graph. The following conditions are equivalent.

- (i) L(E) is commutative.
- (ii) $L(E) \cong \bigoplus_{i \in I_1} K \oplus \bigoplus_{i \in I_2} K[x, x^{-1}]$, where $|I_1|, |I_2| \leq \aleph_0$.
- (iii) $E = \coprod_{i \in I} E_i$, where $|I| \le \aleph_0$ and each subgraph E_i is either an isolated vertex or an isolated loop.

伺 と く き と く き とう

Theorem (Aranda Pino, Martín Barquero, Martín González, Siles Molina, 2008)

For every nonzero element $x \in L(E)$ there exist μ_1, \ldots, μ_r , $\nu_1 \ldots, \nu_s \in E^0 \cup E^1 \cup (E^1)^*$ so that one of the following hold.

- $\mu_1 \dots \mu_r x \nu_1 \dots \nu_s$ is a nonzero element of Kv, for some $v \in E^0$
- ► there exist a vertex w and a cycle without exits c based at w such that $\mu_1 \dots \mu_r \times \nu_1 \dots \nu_s$ is a nonzero element in $wL(E)w = \{\sum_{i=-m}^n k_i c^i \text{ for } m, n \in \mathbb{N} \text{ and } k_i \in K\}.$

向下 イヨト イヨト

Theorem (Aranda Pino, Martín Barquero, Martín González, Siles Molina, 2008)

For every nonzero element $x \in L(E)$ there exist μ_1, \ldots, μ_r , $\nu_1 \ldots, \nu_s \in E^0 \cup E^1 \cup (E^1)^*$ so that one of the following hold.

• $\mu_1 \dots \mu_r x \nu_1 \dots \nu_s$ is a nonzero element of Kv, for some $v \in E^0$

Theorem (Aranda Pino, Martín Barquero, Martín González, Siles Molina, 2008)

For every nonzero element $x \in L(E)$ there exist μ_1, \ldots, μ_r , $\nu_1 \ldots, \nu_s \in E^0 \cup E^1 \cup (E^1)^*$ so that one of the following hold.

• $\mu_1 \dots \mu_r x \nu_1 \dots \nu_s$ is a nonzero element of Kv, for some $v \in E^0$

Corollary

If L(E) is simple and $x \in Z(L(E))$ then there exist (real) paths p and q, a vertex v, and a nonzero element $k \in K$ so that

$$pq^*x = kv.$$

伺 ト イヨ ト イヨト

If E is a connected graph and L(E) is a simple algebra then $Z = Z(L(E)) \cong K$ if L(E) is unital and 0 otherwise.

向下 イヨト イヨト

If E is a connected graph and L(E) is a simple algebra then $Z = Z(L(E)) \cong K$ if L(E) is unital and 0 otherwise.

Lemma

If $\sum k_v v \in Z$ for $k_v \in K$ and $v \in E^0$ then $k_v = k_w$ for each v and w.

高 とう モン・ く ヨ と

Proof Outline

Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.

伺い イヨト イヨト

- Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.
- r(p)x is kr(p) or k times a real closed path or k times a ghost closed path.

伺 と く き と く き と

- Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.
- r(p)x is kr(p) or k times a real closed path or k times a ghost closed path.
- Show wx = kw for all $w \in \Theta_0 = \{w \in E^0 | r(p) \ge w\}$.

伺 と く き と く き と

- Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.
- r(p)x is kr(p) or k times a real closed path or k times a ghost closed path.
- Show wx = kw for all $w \in \Theta_0 = \{w \in E^0 | r(p) \ge w\}.$
 - $\{w \in \Theta_0 | wx = 0\}$ is a hereditary saturated set (and thus empty).

・ 同 ト ・ ヨ ト ・ ヨ ト

- Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.
- r(p)x is kr(p) or k times a real closed path or k times a ghost closed path.
- Show wx = kw for all $w \in \Theta_0 = \{w \in E^0 | r(p) \ge w\}.$
 - {w ∈ Θ₀|wx = 0} is a hereditary saturated set (and thus empty).
 - ► { $w \in \Theta_0 | wx$ is k times a real closed path} and { $w \in \Theta_0 | wx$ is k times a ghost closed path} are empty.

く 同 と く き と く き と

- Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.
- r(p)x is kr(p) or k times a real closed path or k times a ghost closed path.
- Show wx = kw for all $w \in \Theta_0 = \{w \in E^0 | r(p) \ge w\}.$
 - {w ∈ Θ₀|wx = 0} is a hereditary saturated set (and thus empty).
 - ► { $w \in \Theta_0 | wx$ is k times a real closed path} and { $w \in \Theta_0 | wx$ is k times a ghost closed path} are empty.

Show wx = kw for all $w \in \Theta_n = \{z \in E^0 | r(s^{-1}(z)) \subseteq \Theta_{n-1}\}.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- Suppose x is a nonzero element of Z. Then we have pq*x = kv, so p*pxq*q = kp*vq and thus r(p)x = kp*q.
- r(p)x is kr(p) or k times a real closed path or k times a ghost closed path.
- ► Show wx = kw for all $w \in \Theta_0 = \{w \in E^0 | r(p) \ge w\}$.
 - {w ∈ Θ₀|wx = 0} is a hereditary saturated set (and thus empty).
 - ► { $w \in \Theta_0 | wx$ is k times a real closed path} and { $w \in \Theta_0 | wx$ is k times a ghost closed path} are empty.
- Show wx = kw for all w ∈ Θ_n = {z ∈ E⁰ | r(s⁻¹(z)) ⊆ Θ_{n-1}}.
 ∪Θ_n = HSC(r(p)) = E⁰.

・ 同 ト ・ ヨ ト ・ ヨ ト

For every $w \in E^0$, we have wx = kw.

・ 同 ト ・ ヨ ト ・ ヨ ト

э

- For every $w \in E^0$, we have wx = kw.
- If E^0 is finite then $x = (\sum v)x = \sum kv = k$ and $K \subseteq Z \Rightarrow Z = K$.

・ 同 ト ・ ヨ ト ・ ヨ ト

- For every $w \in E^0$, we have wx = kw.
- If E^0 is finite then $x = (\sum v)x = \sum kv = k$ and $K \subseteq Z \Rightarrow Z = K$.
- ► If E^0 is infinite then we have $x = (\sum_{v \in V} v)x = \sum_{v \in V} kv =$

く 同 と く き と く き と

- For every $w \in E^0$, we have wx = kw.
- If E^0 is finite then $x = (\sum v)x = \sum kv = k$ and $K \subseteq Z \Rightarrow Z = K$.

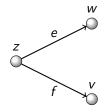
► If E^0 is infinite then we have $x = (\sum_{v \in V} v)x = \sum_{v \in V} kv = \sum_{v \in V} kv + 0v'.$

・ 同 ト ・ ヨ ト ・ ヨ ト …

- For every $w \in E^0$, we have wx = kw.
- If E^0 is finite then $x = (\sum v)x = \sum kv = k$ and $K \subseteq Z \Rightarrow Z = K$.
- ► If E^0 is infinite then we have $x = (\sum_{v \in V} v)x = \sum_{v \in V} kv = \sum_{v \in V} kv + 0v'.$ Lemma $\Rightarrow k = 0$ and thus Z = 0.

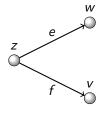
伺 と く き と く き と

Example



◆□ → ◆□ → ◆ □ → ◆ □ → ●

æ



Center: $\{a(ee^* + w) + b(ff^* + v) : a, b \in K\}$

・回 ・ ・ ヨ ・ ・ ヨ ・

3

Example

$$\hat{z} = ee^* e W$$

$$z' = ff^* \qquad v$$

Center: $\{a(ee^* + w) + b(ff^* + v) : a, b \in K\} \cong K \oplus K$

- - イロ・ - モ・ - モ