Noncommutative rings and their applications Lens, France. 29th. June – 2nd. July 2009

Actions of Lie superalgebras on semiprime algebras with central invariants

Małgorzata Hryniewicka University of Białystok, Poland Throughout we let \mathbb{K} be a field of characteristic 0. All vector spaces are assumed to be over \mathbb{K} .

A vector space $L = L_0 \oplus L_1$ graded by \mathbb{Z}_2 together with a bilinear map $[\cdot, \cdot] \colon L \times L \to L$ is called a <u>Lie</u> superalgebra if:

1. $[L_i, L_j] \subseteq L_{i+j}$ 2. $[x, y] = -(-1)^{ij}[y, x]$ 3. $(-1)^{ik}[x, [y, z]] + (-1)^{ji}[y, [z, x]] + (-1)^{kj}[z, [x, y]] = 0$ for all $i, j, k \in \mathbb{Z}_2, x \in L_i, y \in L_j$ and $z \in L_k$.

Example.

Let $R = R_0 \oplus R_1$ be an associative algebra graded by \mathbb{Z}_2 . Putting

$$[x, y] = \begin{cases} xy + yx, & \text{if } x, y \in R_1 \\ xy - yx, & \text{otherwise} \end{cases}$$

we obtain a Lie superalgebra.

Let σ be an automorphism of order 2 of an algebra R and let

$$\mathfrak{D}_0 = \{ \delta \in \operatorname{End}_{\mathbb{K}}(R) \mid \delta(xy) = \delta(x)y + x\delta(y) \\ \delta\sigma(x) = \sigma\delta(x) \text{ for all } x, y \in R \}$$

$$\mathfrak{D}_1 = \{ \delta \in \operatorname{End}_{\mathbb{K}}(R) \mid \delta(xy) = \delta(x)y + \sigma(x)\delta(y) \\ \delta\sigma(x) = -\sigma\delta(x) \text{ for all } x, y \in R \}$$

Then
$$\mathfrak{Der}_{\sigma}(R) = \mathfrak{D}_0 \oplus \mathfrak{D}_1$$
 is a Lie superalgebra via
$$[\delta, \partial] = \begin{cases} \delta \partial + \partial \delta, & \text{if } \delta, \partial \in \mathfrak{D}_1 \\ \delta \partial - \partial \delta, & \text{otherwise} \end{cases}$$

The elements of \mathfrak{D}_0 and \mathfrak{D}_1 are called <u>derivations</u> and superderivations respectively.

For any elements $a, b \in R$, by ad_a and ∂_b we denote the <u>inner derivation</u> adjoint to a and the <u>inner super-</u> <u>derivation</u> adjoint to b respectively, i.e.

$$\operatorname{ad}_a(x) = ax - xa \text{ and } \partial_b(x) = bx - \sigma(x)b.$$

The automorphism σ induces a grading $R = R_0 \oplus R_1$ by \mathbb{Z}_2 , where

$$R_0 = \{ x \in R \mid \sigma(x) = x \}$$
$$R_1 = \{ x \in R \mid \sigma(x) = -x \}.$$

Observe that

$$\operatorname{ad}_a \sigma = \sigma \operatorname{ad}_a \Leftrightarrow a \in R_0$$
$$\partial_b \sigma = -\sigma \partial_b \Leftrightarrow b \in R_1.$$

Let

 $\mathfrak{I}_0 = \{ \operatorname{ad}_a \mid a \in R_0 \} \text{ and } \mathfrak{I}_0 = \{ \partial_b \mid b \in R_1 \}.$ Then $\mathfrak{Inn}_{\sigma}(R) = \mathfrak{I}_0 \oplus \mathfrak{I}_1$ is a Lie subsuperalgebra of $\mathfrak{Der}_{\sigma}(R)$. We say that a Lie superalgebra $L = L_0 \oplus L_1$ acts on the algebra R if there is a homomorphism of Lie superalgebras $\psi \colon L \to \mathfrak{Der}_{\sigma}(R)$ satisfying $\psi(L_i) \subseteq \mathfrak{D}_i$, for all $i \in \mathbb{Z}_2$.

To simplify notation, we assume that $L \subseteq \mathfrak{Der}_{\sigma}(R)$ identifying the elements of L with their images under ψ .

The subalgebra of invariants R^L is defined as

 $\{x \in R \mid \delta(x) = 0 \text{ for all } \delta \in L\}.$

Theorem (J. Bergen, P. Grzeszczuk, 1996).

Let R be a semiprime algebra over a field \mathbb{K} of characteristic 0 and let L be a finite dimensional nilpotent Lie algebra which acts on R as algebraic derivations. If $R^L \subseteq \mathcal{Z}(R)$ then R is commutative and the action of L on R is trivial.

Example (J. Bergen, P. Grzeszczuk, 1996).

Let $R = M_2(\mathbb{K})$ be the algebra of 2×2 matrices over \mathbb{K} . Let σ be the inner automorphism of order 2 of R induced by the diagonal matrix a = diag(1, -1)and let ∂_{b_1} and ∂_{b_2} be the inner superderivations of Rinduced by

 $b_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in R_1 \text{ and } b_2 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \in R_1,$ respectively. The superderivations ∂_{b_1} and ∂_{b_2} span an abelian Lie superalgebra $L = L_0 \oplus L_1$ where $L_0 = 0$ and $L_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{b_1}, \partial_{b_2}\}.$ The subalgebra of invariants $R^L = \mathbb{K}.$ Question.

If R is a semiprime algebra over a field \mathbb{K} of characteristic 0 acted on by a finite dimensional nilpotent Lie superalgebra $L = L_0 \oplus L_1$ of algebraic derivations and algebraic superderivations, and $R^L \subseteq \mathcal{Z}(R)$, must the Lie algebra L_0 act trivially on R?

Example (P. Grzeszczuk, M.H., 2009).

Under the notations of the Bergen-Grzeszczuk Example, let $\widetilde{R} = M_2(R)$ be the algebra of 2×2 matrices over R. Let $\widetilde{\sigma}$ be the inner automorphism of order 2 of \widetilde{R} induced by the diagonal matrix $\widetilde{a} = \operatorname{diag}(a, a)$ and let $\partial_{\widetilde{b_1}}, \ldots, \partial_{\widetilde{b_4}}$ be the inner superderivations of \widetilde{R} induced by

$$\begin{split} \widetilde{b_1} &= \begin{pmatrix} b_1 & 0 \\ 0 & b_1 \end{pmatrix} \in \widetilde{R}_1, \quad \widetilde{b_2} = \begin{pmatrix} b_2 & 0 \\ 0 & -b_2 \end{pmatrix} \in \widetilde{R}_1, \\ \widetilde{b_3} &= \begin{pmatrix} 0 & b_2 \\ -b_2 & 0 \end{pmatrix} \in \widetilde{R}_1, \quad \widetilde{b_4} = \begin{pmatrix} 0 & b_2 \\ b_2 & 0 \end{pmatrix} \in \widetilde{R}_1, \\ \text{respectively. The superderivations } \partial_{\widetilde{b_1}}, \dots, \partial_{\widetilde{b_4}} \text{ span} \\ \text{an abelian Lie superalgebra } \widetilde{L} &= \widetilde{L}_0 \oplus \widetilde{L}_1 \text{ where} \\ \widetilde{L}_0 &= 0 \text{ and } \widetilde{L}_1 = \text{span}_{\mathbb{K}} \{ \partial_{\widetilde{b_1}}, \dots, \partial_{\widetilde{b_4}} \}. \text{ The sub-} \\ \text{algebra of invariants } \widetilde{R}^{\widetilde{L}} = \mathbb{K}. \end{split}$$

Finally, let $\mathbf{R} = M_2(\widetilde{R})$ be the algebra of 2×2 matrices over \widetilde{R} and let $\boldsymbol{\sigma}$ be the inner automorphism of order 2 of \mathbf{R} induced by the diagonal matrix $\operatorname{diag}(\widetilde{a}, \widetilde{a})$. Put

$$A_{1} = \begin{pmatrix} 0 & \widetilde{a_{1}} \\ -\widetilde{a_{1}} & 0 \end{pmatrix} \in \mathbf{R}_{0} \text{ and } C_{1} = \begin{pmatrix} 0 & \widetilde{a_{1}} \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_{0},$$
where $\widetilde{a_{1}} = \begin{pmatrix} 1 & 1 \\ -1 & -1 \end{pmatrix} \in \widetilde{R}_{0},$

$$A_{2} = \begin{pmatrix} 0 & \widetilde{a_{2}} + 1 \\ -\widetilde{a_{2}} + 1 & 0 \end{pmatrix} \in \mathbf{R}_{0} \text{ and } C_{2} = \begin{pmatrix} 0 & \widetilde{a_{2}} + 1 \\ 0 & 0 \end{pmatrix} \in \mathbf{R}_{0},$$
where $\widetilde{a_{2}} = \begin{pmatrix} 0 & b_{1}b_{2} \\ b_{1}b_{2} & 0 \end{pmatrix} \in \widetilde{R}_{0},$

$$A_{3} = \begin{pmatrix} \widetilde{a_{3}} - \widetilde{a_{1}} & 0 \\ 0 & \widetilde{a_{3}} + \widetilde{a_{1}} \end{pmatrix} \in \mathbf{R}_{0},$$
where $\widetilde{a_{3}} = \begin{pmatrix} b_{1}b_{2} & b_{1}b_{2} \\ -b_{1}b_{2} & -b_{1}b_{2} \end{pmatrix} \in \widetilde{R}_{0},$

$$B_{i} = \begin{pmatrix} \widetilde{b_{i}} & 0\\ 0 & \widetilde{b_{i}} \end{pmatrix} \in \boldsymbol{R}_{1} \text{ and } B_{4} = \begin{pmatrix} \widetilde{b_{4}} & 0\\ 0 & -\widetilde{b_{4}} \end{pmatrix} \in \boldsymbol{R}_{1}$$

for $i = 1, 2, 3$,
$$B_{5} = \begin{pmatrix} 0 & \widetilde{d_{5}}\\ \widetilde{b_{5}} & 0 \end{pmatrix} \in \boldsymbol{R}_{1}, B_{6} = \begin{pmatrix} 0 & \widetilde{b_{4}}\\ -\widetilde{b_{4}} & 0 \end{pmatrix} \in \boldsymbol{R}_{1} \text{ and } B_{7} = \begin{pmatrix} 0 & \widetilde{b_{4}}\\ \widetilde{b_{4}} & 0 \end{pmatrix} \in \boldsymbol{R}_{1},$$

where $\widetilde{d_{5}} = \begin{pmatrix} b_{1} + b_{2} & b_{1} + b_{2}\\ -b_{1} - b_{2} & -b_{1} - b_{2} \end{pmatrix}$, $\widetilde{b_{5}} = \begin{pmatrix} -b_{1} + b_{2} & -b_{1} + b_{2}\\ b_{1} - b_{2} & b_{1} - b_{2} \end{pmatrix} \in \widetilde{R}_{1},$
$$D_{5} = \begin{pmatrix} 0 & \widetilde{d_{5}}\\ 0 & 0 \end{pmatrix} + B_{7} \in \boldsymbol{R}_{1} \text{ and } D_{6} = \begin{pmatrix} 0 & \widetilde{b_{4}}\\ 0 & 0 \end{pmatrix} \in \boldsymbol{R}_{1}.$$

The inner derivations $\operatorname{ad}_{C_{1}}$, $\operatorname{ad}_{C_{2}}$, $\operatorname{ad}_{A_{3}}$ and the inner

superderivations $\partial_{B_1}, \ldots, \partial_{B_4}, \partial_{D_5}, \partial_{D_6}$ span the Lie superalgebra $N = N_0 \oplus N_1$ of nilpotency class 4, where

$$\boldsymbol{N}_0 = [\boldsymbol{N}_1, \boldsymbol{N}_1] = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{C_1}, \operatorname{ad}_{C_2}, \operatorname{ad}_{A_3} \}$$

 and

$$m{N}_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{B_1}, \dots, \partial_{B_4}, \partial_{D_5}, \partial_{D_6}\}$$

(see Table 1). The subalgebra of invariants $m{R}^{m{N}} = \mathbb{K}$.

$[\cdot, \cdot]$	C_1	C_2	A_3	B_1	B_2	B_3	B_4	D_5	D_6
C_1	0	0	0	0	$-2D_{6}$	$2D_6$	0	$B_2 + B_3$	0
C_2	0	0	0	$2D_6$	0	0	$2D_6$	$-(B_1 - B_4)$	0
A_3	0	0	0	$-2(B_2+B_3)$	$-2(B_1 - B_4)$	$2(B_1 - B_4)$	$-2(B_2+B_3)$	0	0
B_1	0	$-2D_{6}$	$2(B_2+B_3)$	2I	0	0	0	$2C_1$	0
B_2	$2D_6$	0	$2(B_1 - B_4)$	0	-2I	0	0	$-2C_{2}$	0
B_3	$-2D_{6}$	0	$-2(B_1 - B_4)$	0	0	2I	0	$2C_2$	0
B_4	0	$-2D_{6}$	$2(B_2+B_3)$	0	0	0	-2I	$2C_1$	0
D_5	$-(B_2+B_3)$	$B_1 - B_4$	0	$2C_1$	$-2C_{2}$	$2C_2$	$2C_1$	$2(A_3 - I)$	-I
D_6	0	0	0	0	0	0	0	-I	0

TABLE 1. operation table of N

The inner derivations ad_{A_1} , ad_{A_2} , ad_{A_3} and the inner superderivations $\partial_{B_1}, \ldots, \partial_{B_4}, \partial_{B_5+B_7}, \partial_{B_6}$ span the Lie superalgebra $\boldsymbol{M} = \boldsymbol{M}_0 \oplus \boldsymbol{M}_1$ of nilpotency class 6, where

 $\boldsymbol{M}_0 = [\boldsymbol{M}_1, \boldsymbol{M}_1] = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{A_1}, \operatorname{ad}_{A_2}, \operatorname{ad}_{A_3} \}$ and

 $M_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{B_1}, \dots, \partial_{B_4}, \partial_{B_5+B_7}, \partial_{B_6}\}$ (see Table 2). The subalgebra of invariants $R^M = \mathbb{K}$. Finally, observe also that M is a subalgebra of a nilpotent Lie superalgebra $L = L_0 \oplus L_1$ of nilpotency class 6, where

$$\boldsymbol{L}_0 = [\boldsymbol{L}_1, \boldsymbol{L}_1] = \operatorname{span}_{\mathbb{K}} \{ \operatorname{ad}_{A_1}, \operatorname{ad}_{A_2}, \operatorname{ad}_{A_3} \}$$

and

 $L_1 = \operatorname{span}_{\mathbb{K}} \{\partial_{B_1}, \dots, \partial_{B_4}, \partial_{B_5}, \partial_{B_6}, \partial_{B_7}\}$ (see Table 2). Obviously, $R^L = \mathbb{K}$.

Starting with the algebra R and the Lie superalgebra L, and again applying the above procedure, we can produce successive examples.

$[\cdot, \cdot]$	A_1	A_2	A_3	B_1	B_2	B_3	B_4	B_5	B_6	B_7
$ A_1 $	0	$-2A_{3}$	0	0	$-2B_{6}$	$2B_6$	0	0	$-2(B_2+B_3)$	0
A_2	$2A_3$	0	0	$2B_6$	0	0	$2B_6$	0	$2(B_1 - B_4)$	0
A_3	0	0	0	$-2(B_2+B_3)$	$-2(B_1 - B_4)$	$2(B_1 - B_4)$	$-2(B_2+B_3)$	0	0	0
B_1	0	$-2B_{6}$	$2(B_2+B_3)$	2I	0	0	0	$2A_1$	0	0
B_2	$2B_6$	0	$2(B_1 - B_4)$	0	-2I	0	0	$-2A_{2}$	0	0
B_3	$-2B_{6}$	0	$-2(B_1 - B_4)$	0	0	2I	0	$2A_2$	0	0
B_4	0	$-2B_{6}$	$2(B_2+B_3)$	0	0	0	-2I	$2A_1$	0	0
B_5	0	0	0	$2A_1$	$-2A_{2}$	$2A_2$	$2A_1$	0	$-2A_{3}$	0
B_6	$2(B_2 + B_3)$	$-2(B_1 - B_4)$	0	0	0	0	0	$-2A_{3}$	2I	0
B_7	0	0	0	0	0	0	0	0	0	-2I

TABLE 2. operation table of L

Theorem (P. Grzeszczuk, M.H., 2009).

Let R be a finite dimensional algebra over a field \mathbb{K} of characteristic 0 and let σ be an automorphism of order 2 of R. Suppose R is σ -simple. Let $L = L_0 \oplus L_1$ be a nilpotent Lie superalgebra such that $[L_0, L_1] = 0$. If L acts on R with $R^L \subseteq \mathcal{Z}(R)$ then $L_0 = 0$.