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1. Introduction, Definitions and Notations

It is known that if R is a PID or, more generally, a Dedekind domain then for
each nonzero ideal A, R/A is self-injective, that is, R/A is injective as R/A-module,
equivalently, R/A is quasi-injective as R-module. The question of classifying com-
mutative noetherian rings R such that each proper homomorphic image is self-
injective was initiated by Levy [81], and later continued by Klatt-Levy [74] with-
out assuming the noetherian condition. Later on several authors including Ahsan,
Boyle, Byrd, Courter, Cozzens, Damiano, Faith, Goel, Goodearl, Hajarnavis, Hill,
Huynh, Ivanov, Jain, Koehler, Mohamed, Osofsky, Singh, Skornyakov, Smith, Sri-
vastava, and Symonds described classes of noncommutative rings whose all cyclic
modules, a proper subclass of cyclic modules, injective hulls of cyclic modules,
right ideals, or a proper subclass of right ideals have properties, such as, injectiv-
ity, quasi-injectivity, continuity, quasi-continuity (= π-injectivity), complements
are summands, weak-injectivity, projectivity, quasi-projectivity, noetherian, or ar-
tinian.
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In this paper we shall provide a survey of results on rings R over which a
family of cyclic right R-modules or injective hulls of a family of cyclic modules
have a certain property, or each cyclic module has a decomposition into modules
with some such properties. To reiterate, these properties include injectivity, quasi-
injectivity, continuity, quasi-continuity (or π-injectivity), CS (= complements are
summands), weak-injectivity, projectivity, and quasi-projectivity. We will also con-
sider rings whose proper homomorphic images are artinian or von neumann regu-
lar. The rings determined by the properties of their right ideals will be discussed
in the forthcoming sequel to this survey article.

All our rings are associative rings with identity and modules are right unital
unless stated otherwise. A right R-module E ⊇MR is called an essential extension
of M if every nonzero submodule of E intersects M nontrivially. E is said to be
a maximal essential extension of M if no module properly containing E can be
an essential extension of M . If E ⊇ M is an essential extension, we say that
M is an essential submodule of E, and write M ⊆e E. A submodule L of M is
called an essential closure of a submodule N of M if it is a maximal essential
extension of N in M . A submodule K of M is called a complement if there exists
a submodule U of M such that K is maximal with respect to the property that
K ∩ U = 0. A right R-module M is called N -injective, if every R-homomorphism
from a submodule L of N to M can be lifted to an R-homomorphism from N to
M . A right R-module M is called an injective module if M is N -injective for every
right R-module N . By Baer’s criterion, a right R-module M is injective if and only
if M is RR -injective. For every right R-module M , there exists a minimal injective
module containing M , which is unique upto isomorphism, called the injective hull
(or injective envelope) of M . The injective hull of M is denoted by E(M). E(M)
is indeed a maximal essential extension of M . A ring R is called right self-injective
if R is injective as a right R-module. A right R-module M is called quasi-injective
if HomR(−, M) is right exact on all short exact sequences of the form 0 −→ K →
M −→ L −→ 0. Johnson and Wong [72] characterized quasi-injective modules
as those that are fully invariant under endomorphism of their injective hulls. In
other words, a module M is quasi-injective if it is M -injective. More generally, as
proved by Azumaya, M is N -injective if HomR(E(N), E(M))N ⊂ M . Consider
the following properties;

(π): For each pair of submodules M1 and M2 of N with M1∩ M2 = 0,
canonical projection πi : Mi →M1⊕M2, i = 1, 2 can be lifted to an endomorphism
of M .

(C1): Every complement submodule of M is a direct summand of M .
(C2): If N1 and N2 are direct summands of M with N1∩N2 = 0 then N1⊕N2

is also a direct summand of M .
(C3): Every submodule of M isomorphic to a direct summand of M is itself

a direct summand of M .
Modules satisfying the property (π) are called π-injective modules and those

satisfying (C1) and (C3) are called quasi-continuous modules. It is known that a
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module is π-injective if and only if it is quasi-continuous (see [34] and [105]). Fol-
lowing the definition of continuous rings due to von Neumann, modules satisfying
(C1) and (C2) are called continuous modules. Modules satisfying (C1) are called
CS-modules [18]. CS modules are also known as extending modules (see [28]). In
general, we have the following implications.

Injective =⇒ Quasi-injective =⇒ Continuous =⇒ Quasi-continuous =⇒ CS
A rightR-moduleM is called weaklyN -injective if for each rightR-homomorphism
φ : N → E(M), φ(N) ⊂ X ∼= M for some submodule X of E(M). A right R-
module M is called weakly injective if M is weakly N -injective for each finitely
generated module N . Dual to injective modules, a right R-module P is called a pro-
jective module if for any short exact sequence 0→ A→ B → C → 0, the induced
sequence of abelian groups 0 → Hom(P,A) → Hom(P,B) → Hom(P,C) → 0 is
also short exact. Equivalently, P is a direct summand of a free module. A right
R-module M is called quasi-projective if for every submodule K of M the induced
sequence Hom(M,M)→ Hom(M,M/K)→ 0 is exact. For any term not defined
here, the reader may refer to [78], [79], [105], [28] and [19].

2. Rings Whose Cyclics or Proper Cyclics are Injective

The study of noncommutative rings characterized by the properties of its cyclic
modules has a long history. The first important contribution in this direction is due
to Osofsky [89] who considered rings over which all cyclic modules are injective. It
is clear that if each R-module is injective, then R is semisimple artinian. Osofsky
showed that R is semisimple artinian by simply assuming that cyclic R-modules
are injective.

We begin with the theorem of Osofsky.

Theorem 2.1. (Osofsky, [89]). If each cyclic R-module is injective then R must be
semisimple artinian.

Proof. By the hypothesis each principal right ideal of R is injective and hence
a direct summand of R. Therefore R is a von Neumann regular ring. Using set-
theoretic arguments, Osofsky proved that R has finite uniform dimension, and
hence R is semisimple artinian. Instead of giving the details of this part here, we
will later give proof of a more general result due to Dung-Huynh-Wisbauer (The-
orem 2.8) which would imply that under the given hypothesis, each homomorphic
image of R has finite uniform dimension. �

The initial proof of Osofsky in her dissertation was quite elaborate. Later
Osofsky gave a shorter proof of this theorem [90]. Indeed, Skornyakov [101] had
also attempted to give a proof of this theorem but unfortunately his proof had an
error (see [91]).

For commutative rings the classification of commutative noetherian rings
whose proper homomorphic images are self-injective was obtained by Levy.
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Theorem 2.2. (Levy, [81]). Let R be a commutative noetherian ring. Then every
proper homomorphic image of R is a self-injective ring if and only if

(1) R is a Dedekind domain, or
(2) R is an artinian principal ideal ring, or
(3) R is a local ring whose maximal ideal M has composition length 2 and

satisfies M2 = 0.

Proof. Suppose that every proper homomorphic image of R is self-injective. As-
sume first that R is a domain. If M is a maximal ideal of R, the ring R/M2 must
be self-injective and the image M̄ of M in R/M2 satisfies M̄2 = 0. It may be
deduced that R cannot have any ideals between M and M2 (see Lemma, [81]).
Now, we invoke a result of Cohen [20] which states that if a noetherian domain R
has the property that for every maximal ideal M , there are no ideals between M
and M2 then R must be a Dedekind domain.

Next, we consider the case when R is not a domain. Then 0 is not a prime
ideal. For each prime ideal P , by hypothesis, R/P is an injective and hence a
divisible R/P -module. Thus, R/P is a field and so P is a maximal ideal. But a
commutative noetherian ring in which every prime ideal is maximal must be an
artinian ring (see Theorem 1, [20]). Therefore, R = R1 ⊕ ... ⊕ Rn where each Ri
is a local artinian ring. Let Mi be the maximal ideal of R. Again we consider two
cases. Suppose first that either n > 1, or n = 1 but M2

1 6= 0. Then for each i,
R/(M2

i + Σj 6=iRj) ∼= Ri/M
2
i is a self-injective ring. Now R/M2

i is a commutative
self-injective ring with a maximal ideal N = Mi/M

2
i such that N2 = 0. Thus,

by (Lemma, [81]), 0 ⊆ N ⊆ R/M2
i are all of the ideals of R/M2

i . Therefore, for
any mi ∈ Mi with mi 6∈ M2

i , we have Mi = Rimi + M2
i = Rimi + (J(Ri))Mi;

and Nakayama’s lemma then shows that Mi = Rimi. Thus Ri is a commutative
noetherian ring in which every maximal ideal is principal, therefore by Kaplansky
[73], Ri must be a principal ideal ring. Hence R is an artinian principal ideal ring.
Finally, suppose that R is a local artinian ring whose maximal ideal M satisfies
M2 = 0. We may assume that M has composition length at least 2, since otherwise
R would be a principal ideal ring. Since R is artinian, M contains a minimal ideal
N of R. Now, R/N is a commutative self-injective ring with a maximal ideal M/N
such that (M/N)2 = 0, therefore by (Lemma, [81]), 0 ⊆ M/N ⊆ R/N are all the
ideals of R/N . Hence M has composition length 2.

Conversely, suppose that R is of type (1), (2), or (3). Observe that the proper
homomorphic images of all three types of rings are all artinian principal ideal rings
and an artinian principal ideal ring is a direct sum of rings S which have exactly
one composition series S ⊃ Sm ⊃ Sm2 ⊃ ... ⊃ Smt = 0 (see [73]). Therefore, it
suffices to show that this ring S is self-injective. Let f be a homomorphism of Smi

into S. Then the composition length of f(Smi) cannot exceed that of Smi. Since
the above composition series contains all the ideals of S, we have f(Smi) ⊆ Smi.
Consequently, f(mi) = mix for some x ∈ S. The map r → rx (r ∈ S) is then the
extension of f to an endomorphism of S, showing that S is self-injective. �
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Levy gave example of a non-noetherian domain whose proper homomorphic
images are self-injective.

Example. (Levy, [81]). Let F be a field and x an indeterminate; and let W be the
family of all well-ordered sets {i} of nonnegative real numbers, the order relation
being the natural order of the real numbers. Let R = {Σj∈{i}ajxj : aj ∈ F, {i} ∈
W}. Note that every element of R whose constant term is nonzero is invertible in
R. It follows that every nonzero element of R has the form xbu where u is invertible
in R. This implies that R has only two types of nonzero ideals: The principal ideals
(xb), and those of the form (x>b) = {xcu : c > b and u is invertible or zero}. Let
S = R/I where I 6= 0. Then S can be considered as the collection of formal power
series Σj∈{i}ajxj with aj ∈ F, {i} ∈W and

(I) yb = 0 if I = (xb), or
(II) yc = 0 for c > b if I = (x>b). Observe that for c ≤ b, we have

(A1): If I = (xb), then ann(yc) = (yb−c) and ann(y>c) = (yb−c).
(A1): If I = (x>b), then ann(yc) = (y>(b−c)) and ann(y>c) = (yb−c).
From (A1) and (A2) it follows that whether S is of type (I) or (II), the principal
ideals of S satisfy ann(ann(yc)) = (yc).

To see that S is self-injective, let f be an S-homomorphism from an ideal K of
S to S. If K = (yc) then ann(K)f(K) = f(0) = 0 so that f(K) ⊆ ann(ann(K)) =
K. Hence f(yc) = ycp for some p ∈ S. Thus f can be extended to the endomor-
phism s→ sp of S.

Next, let K = (y>c), and choose an infinite sequence c(1) > c(2) > ... such
that limi→∞ c(i) = c. Then K = ∪∞i=1(yc(i)). For each i the previous paragraph
shows that we can choose a “power series” pi such that f(yc(i)) = yc(i)pi. If j > i
so that yc(i) = yc(i)−c(j)yc(j) the fact that f is an S-homomorphism shows that
f(yc(i)) = yc(i)pj so that we have pj − pi ∈ ann(yc(i)). If (A1) holds, this means
that all the terms of pi of degree < bÑc(i) are equal to the terms of the same
degree of pj while the terms of higher degree do not affect the products yc(i)pi
and yc(i)pj . A similar statement is true if (A2) holds. Thus we can assemble a
single “power series” p such that (p− pi)yc(i) = 0 for all i (It may be verified that
the collection of exponents appearing in p is well-ordered so that p is in S). Then
the map s → sp extends f to an endomorphism of S. This shows that S is self-
injective. Thus R is a non-noetherian domain whose every proper homomorphic
image of R is self-injective.

The result of Levy was extended to noncommutative rings by Hajarnavis.
Recall that a ring is called right bounded if every essential right ideal of R contains
an ideal which is essential as a right ideal. A ring R is called a Dedekind prime
ring if it is hereditary noetherian Asano order. Hajarnavis considered noetherian
bounded prime ring such that every proper homomorphic image is a self-injective
ring and proved the following.
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Theorem 2.3. (Hajarnavis, [40]). Let R be a noetherian, bounded, prime ring such
that every proper homomorphic image of R is a self-injective ring. Then R is a
Dedekind prime ring.

Klatt and Levy later described all commutative rings, not necessarily noe-
therian, all of whose proper homomorphic images are self-injective. Such rings
include Prufer domains.

Theorem 2.4. (Klatt and Levy, [74]). A commutative ring R is pre-self-injective,
that is for each non-zero ideal A, R/A is self-injective if and only if R is one of
the following:

(1) A Prufer domain such that the localization RM for each maximal ideal M
is an almost maximal rank 1 valuation domain; and every proper ideal is contained
in only finitely many maximal ideals, or

(2) The finite direct sum of self-injective maximal valuation rings of rank 0,
or

(3)An almost maximal rank 0 valuation ring, or
(4)A local ring whose maximal ideal M has composition length 2 and satisfies

M2 = 0.

Furthermore, finitely generated modules over pre-self-injective domains are
direct sum of cyclic modules and ideals. In this connection we state results of
Koethe, Cohen-Kaplansky, and Nakayama.

Theorem 2.5. (Koethe, [77]). Over an artinian principal ideal ring, each module
is a direct sum of cyclic modules. Furthermore, if a commutative artinian ring
has the property that all its modules are direct sums of cyclic modules, then it is
necessarily a principal ideal ring.

Theorem 2.6. (Cohen and Kaplansky, [22]). If R is a commutative ring such that
each R-module is a direct sum of cyclic modules then R must be an artinian prin-
cipal ideal ring.

Nakayama [87] gave example of a noncommutative right artinian ring R whose
each right module is a direct sum of cyclic modules but R is not a principal right
ideal ring.

By Osofsky’s theorem, if each cyclic R-module is injective, then each R-
module has finite uniform dimension. This was extended by Osofsky-Smith [97] in
the following theorem.

Theorem 2.7. (Osofsky and Smith, [97]). Let R be a ring such that every cyclic
right R-module is CS. Then every cyclic right R-module is a finite direct sum of
uniform modules.

We give below a proof of a more general result due to Huynh-Dung-Wisbauer.
Its proof follows the same techniques as that of Osofsky-Smith [97]. We shall prove
Huynh-Dung-Wisbauer’s theorem in the case when M is a cyclic module with the
property that each factor module is a direct sum of a CS module and a module
with finite uniform dimension.
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Theorem 2.8. (Huynh, Dung and Wisbauer, [48]). Let M be a cyclic module such
that each factor module of M is a direct sum of a CS module and a module with
finite uniform dimension. Then M must have finite uniform dimension.

Before we prove the above theorem we will prove a basic lemma which plays
a key role not only in the proof of the above theorem but at several places in such
problems.

Lemma 2.9. (Huynh, Dung and Wisbauer, [48]). Let M be a finitely generated CS
module. If M contains an infinite direct sum of nonzero submodules N = ⊕NNi,
then the factor module M/N does not have finite uniform dimension.

Proof. Assume to the contrary that M/N has finite uniform dimension, say n. Par-
tition N as a disjoint union of infinite sets P1, P2, ..., Pn+1 and set Uj = ⊕i∈PjNi.
Then N = ⊕∞j=1Uj . Let Ej be a maximal essential extension of Uj for each
j ≤ n + 1. Since M is a CS module, each Ej is a direct summand of M and
hence finitely generated. This implies Ej/Uj 6= 0. Now, M/N = M/(⊕∞j=1Uj) con-
tains a submodule isomorphic to E1/U1⊕E2/U2⊕ ...⊕En+1/Un+1. This yields a
contradiction to our assumption that u.dim(M/N) = n. Hence, the factor module
M/N must have infinite uniform dimension. �

Now we are ready to give the proof of the Theorem 2.8 . Throughout this
proof we will denote by Ae a maximal essential extension of a module A.

Proof. Assume to the contrary that M does not have finite uniform dimension. By
hypothesis M = M1⊕M2 where M1 is CS and M2 is of finite uniform dimension.
This implies u.dimM1 =∞. Thus without loss of generality we can assume M is a
CS module of infinite uniform dimension such that each factor module is a direct
sum of a CS module and a module of finite uniform dimension. Let ⊕i∈IMi be
an infinite direct sum of submodules in M . Then it follows that for every positive
integer k, M = Me

1 ⊕ ...⊕Me
k ⊕Nk for some submodule Nk of M . Note that since

M is cyclic, each summand in the decomposition of M is cyclic, and hence there
exists maximal submodules Ui ⊂ Me

i . Denote the simple module Me
i /Ui by Si.

Then we have

(∗) : M/(⊕i∈IUi) = (Me
1 ⊕ ...⊕Me

k ⊕Nk)/(U1⊕ ...⊕Uk ⊕S′) ' S1⊕ ...Sk ⊕X,

yielding a direct sum S = ⊕i∈ISi of simple modules in the factor moduleM/(⊕iUi).
Set M̄ = M/(⊕i∈IUi. By hpothesis, M̄ = M̄1 ⊕ M̄2, where M̄1 is CS and M̄2 has
finite uniform dimension. We can write S = (S ∩ M̄1)⊕K. Since K ∩ M̄1 = 0, K
is embeddable in M̄2. Note that S ∩ M̄1 must be infinitely generated because S is
infinitely generated. From (*) it follows that every finitely generated submodule of
S, (and hence of S∩M̄1) is a direct summand of M̄and hence of M̄1. Let (S∩M̄1)e

denote a maximal essential extenssion of S∩M̄1 in M̄1 and note that M̄1 is CS and
cyclic because it is a direct summand of a cyclic module. This implies (S ∩ M̄1)e

is a direct summand of M̄1 and hence cyclic. Claim: (S ∩ M̄1)e/(S ∩ M̄1) is CS.
We write (S ∩ M̄1)e/(S ∩ M̄1) = C̄ ⊕ D̄, where C̄ = C/(S ∩ M̄1) is CS and
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D̄ = D/(S ∩ M̄1) has finite uniform dimension. We procced to prove that D̄ = 0.
Now D̄ = dR+S∩M̄1

S∩M̄1
for some element d ∈ R. By hypothesis, write dR = L ⊕ T

where L is CS and u.dimT is finite. As S∩M̄1 ⊂e (S∩M̄1)e, dR+S∩M̄1
S∩M̄1

is singular
and so dR ∩ (S ∩ M̄1) is essential in dR. This gives, Socle(dR) ⊂e dR. We have
Socle(dR) = Socle(T ) ⊕ Socle(L) and Socle(dR) ⊂e dR, so Socle(T ) ⊂e T . But,
Socle(T ) is a finite direct sum of simple modules and hence by (*), Socle(T ) is a
direct summand of T . Hence, Socle(T ) = T ⊂ S∩M̄1. Moreover, L/(L∩(S∩M̄1)) ∼=
(L + S ∩ M̄1)/(S ∩ M̄1) ∼= (dR + S ∩ M̄1)/(S ∩ M̄1) = D̄ has finite uniform
dimension. Therefore by Lemma 2.9, S ∩ M̄1 is finitely generated and hence is a
direct summand of (S∩M̄1)e. Thus, L = L∩ (S∩M̄1) ⊂ S∩M̄1 and hence D̄ = 0.
Therefore, (S ∩ M̄1)e/(S ∩ M̄1) is CS. Now, we partition N as a disjoint union of
infinite sets {Pi}i∈N. Then S ∩ M̄1 = ⊕∞j=1(⊕i∈Pj

(Si∩ M̄1)). Let (⊕i∈Pj
(Si∩ M̄1)e

be a maximal essential extension of (⊕i∈Pj (Si ∩ M̄1) in (S ∩ M̄1)e. For simplicity
we denote (⊕i∈Pj

(Si ∩ M̄1)e by Yj . Let Ȳj be the image of Yj under the canonical
morphism (S∩M̄1)e → (S∩M̄1)e/(S∩M̄1). Since (S∩M̄1)e/(S∩M̄1) is CS, we may
find a maximal essential extension Ȳ of⊕NȲj in (S∩M̄1)e/(S∩M̄1) which is a direct
summand of (S ∩ M̄1)e/(S ∩ M̄1). As Ȳ is cyclic, there exists a cyclic submodule
Y ⊂ (S∩M̄1)e with Ȳ = (Y +S∩M̄1)/(S∩M̄1). For each j ∈ N, we have Ȳj ⊂ Y +
S∩M̄1 = Y +(Y ∩(S∩M̄1))+S∩M̄1 = Y +(Y ∩(S∩M̄1)⊕V ) = Y ⊕V for a suitable
submodule V of S ∩ M̄1. On the other hand, by (*), Y = Y ′⊕ Y ′′ where Y ′ is CS
and Y ′′ has finite uniform dimension. We have Socle(Y ) = Socle(Y ′)⊕Socle(Y ′′)
and Socle(Y ) ⊂e Y , so Socle(Y ′′) ⊂e Y ′′. But, Socle(Y ′′) is a finite direct sum of
simple modules and hence by (*), Socle(Y ′′) is a direct summand of Y ′′. Hence,
Socle(Y ′′) = Y ′′ ⊂ S∩M̄1, and for each j ∈ N, we have Ȳj ⊂ Y +S∩M̄1 = Y ′⊕V ′
with V ′ = V ⊕ Y ′′ ⊂ S ∩ M̄1. Assume Y ′ ∩ Yj = 0 for some j ∈ N. Then Yj can
be embedded in V ′. This implies Yj is semisimple of finite length, a contradiction.
Hence Y ′ ∩ Yj 6= 0 for each j ∈ N. Now take a minimal submodule Wj in every
Y ′ ∩ Yj and denote by (⊕NWi)e a maximal essential extension of ⊕NWi in Y ′.
Since Y ′ is CS, (⊕NWi)e is a direct summand of Y ′. Then (⊕NWi)e is a cyclic
module with an essential socle of infinite length and hence (⊕NWi)e 6⊂ S ∩ M̄1.
Thus, ((⊕NWi)e + S ∩ M̄1)/(S ∩ M̄1) 6= 0. We have ⊕mj=1Wj ⊂e (⊕NWi)e. This
yields (⊕mj=1Wj)∩ (⊕mj=1Yj) ⊂e (⊕NWi)e∩ (⊕mj=1Yj). But as each Wj ⊂ Yj , we get
(⊕mj=1Wj) ⊂e (⊕NWi)e ∩ (⊕mj=1Yj). But as (⊕mj=1Wj) is also a direct summand of
(⊕NWi)e ∩ (⊕mj=1Yj), we conclude that (⊕mj=1Wj) = (⊕NWi)e ∩ (⊕mj=1Yj) for each
m ∈ N. This implies (⊕NWi)e ∩ (⊕j∈NYj) ⊂ S ∩ M̄1 which yields a contradiction
to the fact that ((⊕j∈NYj) + S ∩ M̄1)/(S ∩ M̄1) is essential in Ȳ . Therefore, M
must have finite uniform dimension. �

Boyle ([10], [11]) initiated the study of right noetherian rings over which
each proper cyclic module is injective. Note that this property does not hold for
all Dedekind domains. Boyle called these rings right PCI rings and studied right
noetherian right PCI-rings. Right PCI-rings without chain condition were studied
by Faith. Later Damiano proved that they are indeed right noetherian.
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Theorem 2.10. (Boyle, [10]). A right noetherian right PCI-ring is either a semisim-
ple artinian ring or a simple right hereditary domain.

We first prove a lemma for rings R over which proper cyclic modules are
quasi-injectve. Thus this lemma holds for right PCI-rings also.

Lemma 2.11. Let R be a prime ring such that each proper cyclic right module is
quasi-injective. Then R is either artinian or a right Ore domain.

Proof. We first show that R is right nonsingular. Assume to the contrary that
Z(RR) 6= 0. By Theorem 2.8, R has finite right uniform dimension and therefore,
there is a uniform submodule U of RR. Consider S = U ∩Z(RR). Since R is prime
and S 6= 0, we have S2 6= 0. Let a ∈ S be such that aS 6= 0 and 0 6= x ∈ S∩annr(a).
Since x ∈ Z(RR), xR 6∼= R. Therefore, by hypothesis, xR is quasi-injective. Let
E(S) be the injective hull of S. As U is uniform, xR ⊂e U and hence xR ⊂e S.
Therefore, xR is a fully invariant submodule of E(S). In particular, S(xR) ⊆ xR.
Thus (aS)(xR) = a(SxR) ⊆ a(xR) = 0, while aS 6= 0 and xR 6= 0, a contradiction
to the primeness of R. Therefore, R is right nonsingular. Hence, R is a right Goldie
ring. If RR is uniform the either R is a division ring or a right Ore domain. Assume
that RR is not uniform. Let U1 ⊕ U2 ⊕ ...⊕ Um ⊂e RR, where m > 1 and each Ui
is a uniform right ideal of R. Let 0 6= a1 ∈ U1. Then a1R 6∼= R. Therefore, a1R is
quasi-injective. Since R is a prime right Goldie ring, all uniform right ideals of R
are subisomorphic to each other. Hence, each Ui, (i ≥ 2) contains an isomorphic
copy aiR of a1R. It follows that A = a1R⊕a2R⊕ ...⊕amR is quasi-injective. Since
A is essential in RR, A contains a regular element b. Thus, as A is bR-injective
and bR ∼= R, A is injective. Therefore, A = R and R is right self-injective. Hence
R is simple artinian. �

Faith proved the following for right PCI-rings without assuming any chain
condition.

Theorem 2.12. (Faith, [29]). A right PCI ring R is either semisimple artinian or
a simple right semi-hereditary right Ore V -domain.

Proof. If A is any nonzero ideal, then by Osofsky theorem R/A is semisimple
artinian. In particular, every nonzero prime ideal is maximal.

Suppose R is not prime. Then there exists nonzero ideals A and B such that
AB = 0 ⊂ P , for any prime ideal P . This implies either A or B is contained
in P . Furthermore, R/A and R/B are semisimple artinian. This means there are
only finitely many prime ideals above A and B. Since every prime ideal contains
either A or B, it follows that there are only finitely many prime ideals in R. This
gives that the prime radical N = P1 ∩ ... ∩ Pk and R/N ∼= R/P1 × ... × R/Pk.
By Ososfsky, R/Pi is simple artinian for each i. Thus R/N is semisimple artinian.
Since N is nil, it implies N = J(R). Hence R is semiperfect. Suppose R is not
local. Then R = e1R+ ...+enR, where eiR are indecomposable right ideals and by
hypothesis these are injective. Then RR is injective. Then by Osofsky theorem R is
semisimple artinian. Assume now R is local. We claim N = 0. Else, let 0 6= a ∈ N .
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If aR 6∼= R, then aR is injective and hance a summand of R. Since R is local,
this gives aR = R, a contradiction because a ∈ N . Thus aR ∼= R. This too is
not possible because a is a nil element. Thus N = 0 and we conclude that R is
semisimple artinian if it is not prime.

If R is prime then by the above lemma, R is either artinian or a right Ore
domain.

Now we proceed to show that R is right semi-hereditary, that is, each finitely
generated ideal ofR is projective. The proof is by induction. Let A = aR+bR. Then
aR+bR/bR is cyclic. In case aR+bR/bR is isomorphic toR, then aR+bR = bR⊕K,
where K ∼= R. So aR+ bR is projective. In the other case, aR+ bR/bR is injective
and so a direct summand of R/bR. This gives aR+ bR/bR ⊕X/bR = R/bR, that
is, (aR+bR)+X = R, where (aR+bR)∩X = bR. Thus, (aR+bR)×X ∼= R×bR,
proving that aR+bR is projective. By induction, we may deduce that each finitely
generated right ideal of R is projective. �

The following is an example of a right and left noetherian domain which is
both right and left PCI-ring. We do not know any example of a right PCI-domain
which is not a left PCI-domain.

Example. (Cozzens, [23]). Let k be a universal differential field with derivation D
and let R = k[y,D] denote the ring of differential polynomials in the indeterminate
y with coefficients in k, i.e., the additive group of k[y,D] is the additive group of
the ring of polynomials in the indeterminate y with coefficients in field k, and
multiplication in k[y,D] is defined by: ya = ay + D(a) for all a ∈ k. Let f =
Σni=1aiy

i ∈ k[y,D], an 6= 0. We define the degree of f , δ(f) = n. Clearly we
have the following: (i) δ(fg) = δ(f) + δ(g), (ii) for f, g ∈ k[y,D], there exist
h, r ∈ k[y,D] such that f = gh+ r with r = 0 or δ(r) < δ(g) (a similar algorithm
holds on the left). From (ii) it follows that this ring R = k[y,D] is both left and
right principal ideal domain. The simple right R-modules are precisely of the form
Vα = R/(y − α)R where α ∈ k. We claim that Vα = R/(y − α)R is a divisible
right R-module for all α ∈ k. For this, it suffices to show that Vα(y + β) = Vα for
all α, β ∈ k. Equivalently, given h ∈ R, δ(h) = 0, there exist f, g ∈ R such that
f(y+β)+(y+α)g = h. We shall determine a, b ∈ k such that a((y+β)+(y+α)b = h.
This is equivalent to an equation of the form D(b) + (α − β)b = h. Since k is a
universal differential field, there exists a b ∈ k satisfying this equation. Hence,
each simple right R-module is divisible. Since R is a principal right ideal domain,
this implies that each simple right R-module is injective. Therefore, R is a right
V -ring. Similarly, R can be shown to be a left V -ring as well. Hence by (Corollary
10, [12]), R is both left as well as a right PCI-domain.

Osofsky provided another example of right and left PCI-ring.

Example. (Osofsky, [95]). Let F be a field of characteristic p > 0, and σ an en-
domorphism of F defined by σ(α) = αp for all α ∈ F . We then form the ring of
twisted polynomials with coefficients on the left, R = F [x, σ] with R = {Σni=0αix

i :
n ∈ Z, αi ∈ F} under usual polynomial addition and multiplication given by the
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relation xα = σ(α)x for all α ∈ F . It may be observed that this ring R is a left
and right principal ideal domain. If F is separably closed then every simple right
(left) R-module is divisible and hence injective. Therefore, every proper cyclic right
(left) R-module is injective, that is, R is a both left and right PCI-domain.

In [24], Cozzens and Faith asked the question if every right PCI- ring is right
noetherian. This question was later answered in the affirmative by Damiano [25].
We provide a different proof that uses, in particular Osofsky-Smith theorem.

Theorem 2.13. (Damiano, [25]). Let R be a right PCI ring. Then R is right
noetherian and right hereditary.

Proof. The proof follows as a special case of a result of Holston-Jain-Leroy proved
recently (Proposition 9, [42]) that states for a waekly-V ring R if each cyclic right
R-module is projective, CS, or noetherian then R is right noetherian.

First recall that a right PCI-ring is either semisimple artinian or a simple
right Ore domain. Assume R is a right Ore domain which is not a division ring.
So each right ideal is essential and socle is zero. Furthermore, each simple right
R-module is isomorphic to R/M where M is a an essential maximal right ideal
and thus it is not isomorphic to R. Therefore, each simple module is injective. So
R is a V -ring. Also, by Osofsky-Smith theorem R/E has finite uniform dimension
for every nonzero right ideal E. We proceed to prove R/E is right noetherian.

Suppose that R/E is not right noetherian. Then there is an infinite ascending
sequence a1R ⊂ a1R + a2R ⊂ a1R + a2R +a3R+ ⊂ ... of submodules of R/E.
Put X = ∪n(a1R+ ...+ anR). Let N1 be a maximal submodule contained in a1R.
We denote U1 = a1R and let S1 be the simple right module a1R/N1. Since R/E
is injective, we conclude that S1 is a direct summand of X/N1 and we can write
U1/N1 ⊕ T1/N1 = X/N1 for some submodule T1 of X. Clearly, T1/N1 is not right
noetherian and hence, using the same arguments, we can find a quotient module of
T1/N1 with a simple direct summand, i. e., we can find T2 and U2 submodules of T1

such that U2/N2 ⊕ T2/N2 = T1/N2. Continuing this process we can get sequences
of submodules of X having the following properties: N1 ⊂ N2 ⊂ ...; T1 ⊃ T2 ⊃....

Set Si = Ui/Ni, Ni ⊂ Ui ⊂ Ti−1, Ui ∩ Ti = Ni, N = ∪Ni. Let pi : X/Ni →
X/N be the canonical map. Because Ui ∩N = Ni, p(Si) ∼= Si. We can show that∑
p(Si) is an infinite direct sum of submodules in X/N ⊂ R/N , a contradic-

tion. Hence R/E is right noetherian for all nonzero right ideals E. This yields
R/Socle(R) = R is right noetherian as desired. Now, in view of Theorem 2.12, R
must be right hereditary. �

Rings for which every singular right module is injective are called right SI
rings. The right PCI and right SI conditions are equivalent for domains. Boyle
and Goodearl studied the question of left-right symmetry of PCI-domains. They
proved the following.

Theorem 2.14. (Boyle and Goodearl, [13]). Let R be a right and left noetherian
domain. Then R is a right PCI-domain if and only if R is a left PCI-domain.
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Proof. We first remark that in order to prove left PCI-domain, it suffices to assume
that R is left Ore domain, because a right PCI-domain which is left Ore is left
noetherian (See [24], Page 112).

Now we show that a left and right noetherian right PCI-domain is a left
PCI-domain. Note each proper cyclic right as well as left module is torsion since
R is right and left Ore domain. Furthermore, the functor Hom(−, Q(R)/R) defines
a duality between the category of finitely generated torsion right modules and the
category of finitely generated torsion left modules. Because R is a right PCI-
domain, each proper cyclic right module is semisimple. This gives each proper
cyclic left module is semisimple. Therefore, R is a left PCI domain. �

In [25], Damiano had proved that a right PCI ring R is left PCI if and only if
R is left coherent. But this is incorrect (see e.g. Remark 6.3, [60]). Jain-Lam-Leroy
[60] considered twisted differential polyniomial rings over a division ring which are
right PCI domains and found equivalent conditions as to when it will be left PCI.
However, in general, the question of left-right symmetry of PCI domains is still
open.

In [49] Huynh, Jain and Lopez-Permouth had proved that a simple ring R
is right PCI if and only if every proper cyclic right R-module is quasi-injective.
Barthwal-Jhingan-Kanwar showed that R is a simple right PCI domain if and
only if each proper cyclic right module is continuous [4]. Huynh, Jain and Lopez-
Permouth later strengthened their result by proving the following.

Theorem 2.15. (Huynh, Jain and Lopez-Permouth, [50]). A simple ring R is Morita
equivalent to a right PCI domain if and only if every cyclic singular right R-module
is quasi-continuous.

As a consequence of this, they also showed the following.

Theorem 2.16. (Huynh, Jain and Lopez-Permouth, [50]). Let R be a simple ring.
If every proper cyclic module is quasi-continuous, then R is Morita equivalent to
a right PCI domain and has right uniform dimension at most 2.

Theorem 2.17. (Huynh, Jain and Lopez-Permouth, [50]). For a right V -ring R
with Soc(RR) = 0 the following conditions are equivalent:

(i) Every cyclic singular right R-module is quasi-continuous.
(ii) R has a ring-direct decomposition R = R1⊕R2⊕ ...⊕Rn, where each Ri

is Morita equivalent to a right PCI domain.

Carl Faith called a ring right CSI ring [31] if for each cyclic module C, the
injective hull E(C) is Σ-injective. It is still an open question whether every right
CSI ring is right noetherian. In the following theorem Faith showed that right
CSI rings are right noetherian in some special cases.

Theorem 2.18. (Faith, [31]). A right CSI ring R is right noetherian under any of
the following conditions:

(i) R is commutative.
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(ii) R has only finitely many simple modules up to isomorphism, e.g. R is
semilocal.

(iii) R satisfies the acc on colocal right ideals.
(iv) R or R/J(R) is right Kasch.
(v) R/J(R) is von Neumann regular, e.g. R is right continuous.
(vi) The injective hull of any countably generated semisimple right R-module

is Σ-injective.

3. Rings whose Cyclic or Proper Cyclic Modules are
Quasi-injective

In [29] Faith proposed to study the class of rings which satisfy the following con-
dition: (P) Every proper cyclic module is injective modulo its annihilator ideal.

Clearly, every right PCI ring satisfies the condition (P). Commutative rings
with the condition (P) are precisely the pre-self injective rings studied by Klatt and
Levy [74]. It may be observed that in a right self-injective ring with the condition
(P), each cyclic module is quasi-injective. These rings were studied by Ahsan [2],
and Koehler ([75], [76]) among others and are called qc-rings. Koehler provided a
complete characterization of qc rings in the following theorem.

Theorem 3.1. (Koehler, [76]). For a ring R the following are equivalent:

1. Each cyclic right R-module is quasi-injective.
2. R = A ⊕ B where A is semisimple artinian and B is a finite direct sum of

self-injective, rank 0, valuation, duo rings with nil radical.
3. Each cyclic left R-module is quasi-injective.

Proof. If R is prime then by the Lemma 2.11 above, R is either simple artinian
or Ore domain. But because R is also right self-injective, R is simple artinian
in both the cases. This implies that each prime ideal is maximal. By the same
argument as in Theorem 2.12, R is semiperfect. If eiR and ejR are indecompos-
able quasi-injective (hence uniform) right ideals such that eiR × ejR is quasi-
injective and HomR(eiR, ejR) 6= 0, then eiR ∼= ejR, and are minimal right right
ideals (see Lemma 4.1 proved later). Write R = e1R ⊕ ..... ⊕ enR as a direct
sum of indecomposable quasi-injective right ideals. We can group all isomorphic
indecomposable right ideals as explained above, and write after renumbering, if
necessary, R = [e1R] ⊕ ... ⊕ [ekR] as a direct sum of ideals, where each bracket
represents the sum of indecomposable right ideals isomorphic to the term in the
bracket. By taking endomorphism rings of R-modules on both sides, we obtain
R = Mn1(e1Re1) ⊕ .... ⊕Mnk

(ekRek), where each Mni(eiRei) represents ni × ni
matrix ring over a division ring eiRei. So for ni ≥ 2, the matrix ring Mni

(eiRei)
is simple artinian. It then follows all matrix rings in the decomposition of R are
simple artinian excepting those which are local rings. It is trivial to show a right
self-injective local ring with nil radical is duo. This proves (1) =⇒ (2). That



14 S. K. Jain and Ashish K. Srivastava

(2) =⇒ (1) is straightforward. The right-left symmetry of (2) completes the
proof. �

Jain, Singh, Symonds generalized the notion of right qc-ring and called a
ring R a right PCQI ring if each proper cyclic right R-module is quasi-injective.
Clearly rings with the property (P) are right PCQI-rings. Jain et al [71] showed
the following.

Theorem 3.2. (Jain, Singh and Symonds, [71]).
(i) A right PCQI ring R is either prime or semiperfect.
(ii) If R is non-prime, non-local then R is a right PCQI-ring if and only if

either R is qc-ring or R =
(
D D
0 D

)
where D is a division ring.

(iii) A local right PCQI-ring with maximal ideal M is a right valuation ring
or M2 = 0 and MR has composition length 2.

(iv) A right PCQI-domain is a right Ore domain.
(v) A nonlocal semiperfect right PCQI-ring is also a left PCQI-ring.

Proof. Here also, every nonzero prime ideal is maximal because if P is a prime
ideal then R/P is a qc-ring and hence simple artinian.

Noting that for every nonzero ideal A, R/A is a qc-ring and has finitely many
prime ideals (see the structure of qc-rings). By arguing as before (see Theorem
2.12) PCQI-ring is either prime or semiperfect. If it is prime, then it is a right
Ore domain (see Lemma 2.11). If R is a nonlocal semiperfect ring, then we proceed
to show that it is either semisimple artinian or 2× 2 upper triangular matrix ring
over a division ring. The reader is referred to Lemma 5 - Theorem 13 in ([71], pp
462-464) for its proof. For proving (iii), the reader is referred to (Theorem 14, p.
466, [71]) (iv) follows from Lemma 2.11. (v) is a consequence of the structure of
nonlocal semipefect right PCQI-ring. �

The following example of Jain, Singh and Symonds shows that a local right
PCQI-ring need not be a left PCQI-ring.

Example. (Jain, Singh and Symonds, [71]). Let F be a field which has a monomor-
phism σ : F → F such that [F : σ(F )] > 2. Take x to be an indeterminate
over F . Make V = xF into a right vector space over F in a natural way. Let
R = {(α, xβ) : α, β ∈ F}. Define

(α1, xβ1) + (α2, xβ2) = (α1 + α2, xβ1 + xβ2)

and
(α1, xβ1)(α2, xβ2) = (α1α2, x(σ(α1)β2 + β1α2))

Then R is a local ring with maximal ideal M = {(0, xα) : α ∈ F}. In fact,
M is also a maximal right ideal with M2 = 0 and hence R is a right PCQI-ring.
Further, if {α}i∈I is a basis of F as a vector space over σ(F ) then M = ⊕R(0, xαi)
is a direct sum of irreducible left modules R(0, xαi). Since |I| > 2, R is not a left
PCQI-ring.
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In an attempt to understand rings R satisfying condition (P), Jain and Singh
[69] obtained the following.

Theorem 3.3. (Jain and Singh, [69]). Let R be a ring satisfying the condition
property (P). Then either R is a right Ore-domain or semiperfect. Further, a
semiperfect ring R satisfies the property (P) if and only if R is a right PCQI-
ring.

The question of characterizing right Ore-domains with the property (P) is
still open.

4. Rings whose Cyclic or Proper Cyclic Modules are Continuous

A ring R is called, respectively, a right cc-ring, a right πc-ring if each cyclic module
is continuous, or π-injective. Note that π-injective modules are known as quasi-
continuous modules. Jain and Mohamed [64] generalized Koehler’s theorem and
gave the structure of cc-rings. But first we prove a more general result in the
following lemma that holds for rings over which cyclic modules are π-injective (=
quasi-continuous). The reader will come across the application of the next lemma
at several places.

Lemma 4.1. Let R be a ring over which each cyclic module is π-injective (= quasi-
continuous). If e and f are indecomposable orthogonal idempotents in R such that
eRf 6= 0, then eR and fR are isomorphic minimal right ideals of R.

Proof. Let 0 6= eaf ∈ eRf . Now eafR × eR ∼= (fR/r.ann(ea) ∩ fR) × eR ∼=
(e+f)R/r.ann(ea)∩fR. This gives by hypothesis, eafR×eR is π-injective. Since
eafR ⊂ eR, and eR is indecomposable, eafR = eR. Then eR ∼= fR/r.ann(ea) ∩
fR) gives eR ∼= fR. To prove that eR is minimal, let 0 6= eb ∈ eR. If eb(1−e) 6= 0,
then as before eR = eb(1 − e)R. This implies eR = ebR. On the other hand, if
eb(1−e) = 0, then ebe 6= 0. Since ebeR⊕fR = (ebe+f)R, ebeR⊕fR is π-injective.
Furthermore, eR ∼= fR implies ebeR ⊕ fR ∼= ebeR × eR. Therefore, ebeR × eR is
π-injective, and so as explained earlier ebeR = eR. This proves eR is a minimal
right ideal. �

Theorem 4.2. (Jain and Mohamed, [64]). A ring R is a right cc-ring if and only
if R = A⊕B where A is semisimple artinian and B is a finite direct sum of right
valuation right duo rings with nil radical.

Proof. Since R a continuous ring J(R) = Z(RR) and idempotents modulo J(R)
can be lifted. Also, R/J(R) is a von-neumann regular ring that has finite uniform
dimension (Theorem 2.8). This gives R/J(R) is semisimple artinian which yield
that R is semiperfect. In what follows, we shall use that if A ⊕ B is direct sum
of indecomposable projective right ideals such that for some right ideal C ⊂ A,
A/C embeds in B and A/C × B is continuous, then C = 0 and A ∼= B. Since
R is semiperfect, write R = e1R ⊕ ... ⊕ enR as a direct sum of indecomposable
continuous right ideals. We can group all isomorphic indecomposable right ideals as
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explained above, and write after renumbering if necessary R = [e1R]⊕ ...⊕ [ekR] as
a direct sum of ideals, where each bracket represents the sum of indecomposable
right ideals (possibly only one term in the sum) isomorphic to the term in the
bracket. By taking endomorphism rings of R-modules on both sides, we obtain
R = Mn1(e1Re1) ⊕ ... ⊕Mnk

(ekRek), where each Mni
(eiRei) represents ni × ni

matrix ring over eiRei which is local. It is known that matrix ring of size greater
than 1 is continuous if and only if it is self-injective and so Mni(eiRei) is self-
injective if ni ≥ 2. Furthermore, it can shown that if eR × fR is continuous with
HomR(eR, fR) 6= 0, and every cyclic is continuous then eR ∼= fR is minimal (see,
for example, Lemma 2.5 and Proposition 2.6 [64]). All this gives Mni

(eiRei) is
semi-simple artinian for each ni ≥ 2. Now we consider the ring direct summand S
of R which is a local cc-ring. We show S is right duo. Let xS be a right ideal and
a ∈ S. If a /∈ J(S), then (1− a) is unit and so (1− a)xS ∼= xS. If (1− a)xS ⊂ xS,
we obtain axS ⊂ xS. If xS ⊂ (1 − a)xS. Since (1 − a)xS is continuous, xS is
a direct summand of (1 − a)xS which is indecomposable as S is local. Hence
xS = (1− a)xS, proving that axS = xS. If a ∈ J(S), we can similarly show that
axS ⊂ xS. So xS and thus every right ideal of S is two-sided. Finally we show
J(S) is nil. This is standard argument of taking a non-nil element a ∈ J(S) and
finding a maximal element P in the family of right ideals that does not contain
any power of a. This is a prime ideal. Thus S/P is a prime local cc-ring and hence
right duo. This gives S/P is a continuous integral domain which is then a division
ring. This yields P = J(S), a contradiction because a ∈ J(S). Thus all elements
of J(S) are nil. Hence S is a local right duo ring with nil radical. The converse is
straightforward. �

Remark 4.3. It has been mistakenly noted in Osofsky-Smith [97] that Jain-Mohamad
theorem was proved for semiperfect rings. The remark toward the end in the paper
[64] stated that a cc-ring is always semiperfect.

Lemma 4.4. (Jain and Mueller, [66]). Let R be a ring over which each proper cyclic
module is continuous.Then

(a) Eeah nonzero prime ideal is maximal.
(b) R is either prime or semiperfect with nil radical.

Theorem 4.5. (Jain and Mueller, [66]). Let R be a semiperfect ring over which each
proper cyclic right module is continuous. Then R is one of the following types:

(i) R = ⊕Ai, where each Ai is a simple artinian right valuation right duo
ring with nil radical, or a local ring whose maximal ideal M satisfies M2 = 0 and
l(M)= 2.

(ii) R =
(

∆ V
0 D

)
where D and ∆ are division rings and V is a one-

dimensional right vector space over D.

Proof. Assume that each proper cyclic R-module is continuous. If R = ⊕ni=1eiR
with n ≥ 3, then we can show that every cyclic module is continuous and structure
of this class of rings, called cc-rings has already been given in an earlier theorem
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(Theorem 4.2). The proof is exactly on the same lines as for PCQI-rings. The
reader may refer to (Proposition 7, p. 464, [71]).

Case 1. Assume R is local. Let I be a non-zero right ideal of R, then R/I is
continuous and hence uniform. We claim that if there exist non-zero right ideals A
and B of R such that A∩B = 0 then A,B are minimal right ideals and S = A⊕B
where S is the right socle of R. If X is a non-zero right ideal of R and X ⊂ A then
R/X is uniform. But A/X ∩ B/X = 0 gives A = X. It is immediate now that
S = A⊕B. Let M be the unique maximal ideal of R, and let x ∈M , x 6∈ S. Then
xR must be an essential right ideal, for otherwise xR will be minimal. This implies
S ⊂ xR, and thus xR cannot be indecomposable. Therefore, xR = X1 ⊕ X2 for
some non-zero right ideals X1, X2. But then S = X1 ⊕X2, a contradiction since
x ∈ S. Hence S = M , which gives M2 = 0 and l(M) = 2. Next, if each nonzero
right ideal is essential, it follows immediately that R is a right valuation ring.
To prove that R is right duo, consider right ideal aR and x ∈ R. Then either
xaR ⊂ aR or aR ⊂ xaR. If xaR ⊂ aR, for all x ∈ R, then aR is two-sided. So
assume aR ⊂ xaR for some x ∈ R. In case x 6∈ M then xaR ∼= aR. Since xaR
is continuous, we get xaR = aR. In case x ∈ M , consider 1 − x and proceed as
before. Thus aR is a two-sided ideal. Hence R is a right valuation right duo ring.

Case 2. Consider the case R ∼= eiR ⊕ ejR. Assume eiRej 6= 0. If ejRei
is also not zero then eiR, ejR are subisomorphic to each other. It follows then
eiR ∼= ejR. So every nonzero homomorphism ejR → eiR is a monomorphism.
Next, we claim ejNej = 0. Else, choose a nonzero element ejaej ∈ ejNej . This
induces an R-homomorphism f : ejR → ejR given by f(ejx) = ejaej(ejx). f is
not monomorphism because ejaej is a nil element. Let 0 6= g ∈ HomR(ejR, eiR).
Then 0 6= gf ∈ HomR(ejR, eiR). But gf is not a monomorphism, a contradiction.
Hence ejNej = 0 and so ejRej is a division ring. This proves R is simple artinian.

Consider now the case ejRei = 0. Then ejN = ejN(ei + ej) = ejNej = 0,
and so ejR is a minimal right ideal. This gives ejRej is a division ring. In this case,
since eiR is uniform, for all 0 6= eixej ∈ eiRej , eixejR is the unique minimal right
ideal in eiR. But then eixejR = eiRejR, for all 0 6= eixej ∈ eiRej . We proceed to
prove that eiNei = 0 and thus eiRei is also a division ring. If possible, let 0 6= eixei
∈ eiNei. Consider the mapping σ : eiR → eiR given by left multiplication with
eixei. Since eixei is nil, σ is not one-one. Thus ker(σ) contains the uniquie minimal
right ideal eiRejR. Therefore, eixeiRejR = 0. But then eixeiRej = 0. Now the
unique minimal right ideal eiRejR is contained in every nonzero right ideal. So
eiRejR ⊂ eixeiR. Therefore, eiRejRej ⊂ eixeiRej = 0. Since ejRej is a division
ring, we obtain eiRej = 0, a contradiction. Thus eiNei = 0, which gives eiRei is
a division ring.

We now prove that eiRej is a one-dimensional right vector space over ejRej .
Let N denote the radical of R. Then eiN = eiNej because eiNei = 0. Since
eiRejR is a unique minimal right ideal in eiR, eiN ⊇ eiRejR. Because ejRei =
0, eiRejR = eiRejRej . This implies eiRejR = eiRej because ejRej is a division
ring. Furthermore, eiRej is a right ideal as shown above and (eiRej)2 = 0. This im-
plies eiRej ⊂ eiN , and so eiRej = eiN = eiRejR = eixejRej . This proves eiRej is



18 S. K. Jain and Ashish K. Srivastava

a one-dimensional right vector space over ejRej . Hence, R =
(
eiRei eiRej

0 ejRej

)
∼=(

∆ V
0 D

)
where D and ∆ are division rings and V is a one-dimensional right

vector space over ejRej . �

5. Rings whose Cyclic or Proper Cyclic Modules are
Quasi-continuous (π-Injective)

The class of right cc-rings was further generalized by Goel and Jain [33] who
studied rings over which each cyclic module is quasi-continuous (in other words,
each cyclic module is π-injective). Goel and Jain called such rings πc-rings and
obtained the following results.

Theorem 5.1. (Goel and Jain, [34]).
(i) Let R be a right self-injective ring. Then R is a right πc-ring if and only

if R = A⊕B where A is semisimple artinian and B is a finite direct sum of right
self-injective right valuation rings.

(ii) Let R be a semiperfect ring. Then R is a right πc-ring if and only if
R = A ⊕ B where A is semisimple artinian and B is a finite direct sum of right
valuation rings.

(iii) Let R be a right πc-ring with zero right singular ideal. Then R = A⊕B
where A is semisimple artinian and B is a finite direct sum of right Ore domains.

By appealing to the Theorem 2.8, we can prove, in general, the following
theorem whence the above theorem comes as special case.

Theorem 5.2. If R is a right πc-ring, then R =R1 ⊕ R2 ⊕ .... ⊕ Rk, where Ri is
either simple artinian or a right uniform ring.

Proof. By Theorem 2.8, R is a direct sum of uniform right ideals. Write R =
e1R ⊕ ...⊕ ekR as a direct sum of uniform π-injective (= quasi-continuous) right
ideals. It can be shown that if eiR×ejR is π-injective such that Hom(eiR, ejR) 6= 0
then eiR ∼= ejR minimal right ideals (see [33], Corrolary 1.13 and Lemma 2.3).
By summing all isomorphic right ideals eiR we can show that the sum is indeed
two-sided ideal. This proves the desired result. �

We now consider semiperfect rings over which each proper cyclic right module
is π-injective (= quasi-continuous).

We call a ring R to be a right pcπi-ring if each proper cyclic right R-module is
π-injective. The following lemma follows from the definition of π-injective module.

Lemma 5.3. Let A and B be R-modulcs such that A is embeddable in B. If A×B
is π-injective then the exact sequence 0→ A→ B splits.
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If A,B are continuous R-modules such that A is embeddable in B and B is
embeddable in A, then it is well-known that A ∼= B. However, this is not true for π-
injective modules, in general. But, if both A and B are indecomposable projective
and A×B is π-injective, then A ∼= B.

Lemma 5.4. If M1 and M2 are π-injective such that M1 ×M2 is π-injective and
E(M1) ∼= E(M2) then M1

∼= M2.

Theorem 5.5. Let R = ⊕i∈IeiR be a semiperfect ring with nil radical, where eiR
are indecomposable right ideals and |I| ≥ 3. Then R is right a pcπi-ring if and
only if R = ⊕Ri where each Ri is either simple artinian or a right valuation ring.

Proof. Since the number of summands is more than 2, for each pair of indecom-
posable right ideals eiR, ejR, we have eiR×ejR is π-injective. Suppose eiRej 6= 0.
By above lemmas, eiR ∼= ejR since eiR × ejR is π-injective and the Lemma 4.1
applies to give eiR is minimal. If eiRej = 0 and ejRei = 0 for all j 6= i then eiR
is a two-sided ideal and is a ring direct summand of R which is a right valuation
ring. This proves the theorem. �

Lemma 5.6. Let R = e1R ⊕ e2R be a semiperfect ring with nil radical N , where
e1R, e2R are indecomposable right ideals such that e1Re2 6= 0 and e2Re1 6= 0.
Then R is a right pcπi-ring if and only if it is simple artinian.

Proof. Suppose R is a right pcπi-ring. By hypothesis, there exists a nonzero homo-
morphism f : e1R→ e2R. This gives R/ ker f ∼= e1R/ ker f × e2R. If R/ ker f ∼= R
then R ∼= R × ker f , and this implies ker f = 0, because R is semiperfect. If
R/ ker f 6∼= R, then e1R/ ker f × e2R is π-injective and e1R/ ker f embeds in e2R.
This implies e1R/ ker f ∼= e2R and so kerf = 0. In any case, e1R is embeddable
in e2R and similarly e2R is embeddable in e1R. This yields either e1R ∼= e2R, or
e1R embeds in e2N and e2R embeds in e1N . Therefore, either e1R ∼= e2R or R
embeds in N . The latter is impossible. Hence e1R ∼= e2R.

We now show e1Ne1 = 0. SinceN is nil, there exists (e1xe1) such that
(e1xe1)k−1 6= 0 but (e1xe1)k = 0. Consider the mapping g : e1R → e1R given
by left multiplication with e1x. Then the image of (e1xe1)k−1 is zero, a contradic-
tion because this mapping naturally induces a mapping from e1R to e2R which
as proved above must be one-to-one. Hence e1Ne1 = 0. This yields R is a 2 × 2
matrix ring over a division ring e1Re1. �

Theorem 5.7. Let R = e1R ⊕ e2R be a semiperfect right pcπi-ring with nil rad-
ical N , where e1R, e2R are indecomposable right ideals such that e1Re2 6= 0 and
e2Re1 = 0. Then e2R is a minimal right ideal and anne1Re1(e1Re2) = e1Ne1.

Proof. As in the previous theorem any nonzero map from e2R to e1R is a monomor-
phism. We show e2N = 0. Choose e1xe2 6= 0 and if possible let e2y 6= 0. Since N is
nil, we can assume (e2y)2 = 0. Then, (e1xe2ye2)e2y = 0. This yields e1xe2ye2 = 0.
Again e2ye2 = 0. This gives e2y = 0 since e2Re1 = 0, a contradiction. Hence
e2N = 0, and so e2R is unique minimal right ideal in e2R because e2R is uniform.
The last part is straightforward. For more details the reader may refer to [34]. �
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Lemma 5.8. Under the hypothesis of the above lemma A =
[
e1Ne1 0

0 0

]
is an

ideal in S =
[
e1Re1 e1Re2

e2Re2

]
∼= R and

S/A ∼=
[
e1Re1/e1Ne1 e1Re2

0 e2Re2

]
is not π-injective as S or S/A-module and

therefore R is not a right pcπi-ring if A 6= 0.

Proof. It follows from above lemma that e1Re2 is a one-dimensional right vector

space over e2Re2. Thus we may write
[
e1Re1/e1Ne1 e1Re2

0 e2Re2

]
=
[
K D
0 D

]
∼=[

K D
0 0

]
⊕
[

0 0
0 D

]
as S/A-modules, where K and D are division rings. Since

the second summand can be embedded in the first but the embedding is not onto,
S/A cannot be π-injective. This completes the proof. �

Theorem 5.9. Let R = e1R ⊕ e2R be a semiperfect ring with nil radical such that
e1, e2 are primitive orthogonal idempotents, e1Re2 6= 0, e2Re1 = 0. Then R is a

right pcπi-ring if and only if R ∼=
[
K V
0 D

]
where K and D are division rings

and V is one-dimensional right space over D.

Proof. By Theorem 5.7, e2R is a minimal right ideal and hence e2Re2 is a division
ring. Since each proper ring homomorphic image of R is a πc-ring it follows that

e1Ne1 = 0. Thus R ∼=
[
K V
0 D

]
where K and D are division rings and V is

one-dimensional right space over D. Thus the “only if” part of the theorem is
completed. The converse is straightforward. �

To complete our discussion we need to give characterization of local pcπi-
rings, This is contained in the following theorem whose proof is similar to the
proof of local rings over which every proper cyclic module is continuous. However,
note that the local right pcπi-ring need not be right duo.

Theorem 5.10. Let R be a local ring with unique maximal ideal N . Then R is a
right pcπi-ring if and only if R is either a right valuation ring or N2=0, and the
composition length of N is 2.

In summary, we have obtained the following description of non-local right
pcπi-rings.

Theorem 5.11. (a) Let R be a non-local semiperfect right pcπi-ring Then either R
is a direct sum of rings of the following types (not necessarily all)

(i) semisimple artinian ring.
(ii) right valuation rings with maximal ideal M satisfying M2 = 0,and l(M)=

2.
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(iii)
(
K V
0 D

)
where K and D are division rings and V is one-dimensional

right space over D.

Gomez-Pardo and Guil Asensio studied rings over which a family of modules
that are quasi-continuous with respect to pure-essential sequences [38]. A right
module M is called a pqc-module when (i) every pure submodule of M is purely
essential in a direct summand of M , and (ii) if U, V are direct summands of M
such that U ∩ V = 0 and U ⊕ V is pure in M , then U ⊕ V is a direct summand of
M . A module M will be called a completely pqc-module when every pure quotient
of M is a pqc-module. The main result in (Theorem 2.9, [38]) shows that if M is a
finitely presented completely pqc-module, then M has ACC (and DCC) on direct
summands and so it is a (finite) direct sum of indecomposables.

It will be interesting to study rings over which every proper quotient of M is
a finitely presented (i) completely pqc-module, or (ii) a completely pure injective
module. For definitions of purely essential and other relevant terms, the reader
may refer to [38].

6. Rings over which Cyclic Modules are Weakly Injective

In [61] Jain, Lopez-Permouth and Singh studied rings whose each cyclic module
is weakly-injective and proved the following.

Theorem 6.1. (Jain, Lopez-Permouth and Singh, [61]). The following conditions
on a ring R are equivalent:

(a) R is right weakly-semisimple, that is, each right R-module is weakly-
injective.

(b) Each cyclic right R-module is weakly R2-injective and R is right noether-
ian.

(c) Each cyclic uniform right R-module is weakly R2-injective and R is right
noetherian.

Proof. (a) =⇒ (b). Let R be a right weakly-semisimple ring. We will show
that R must be right noetherian. Let M be a quasi-injective right R-module. By
assumption, M is weakly-injective. Suppose M is not injective. Then by Zorn’s
lemma, there exists a submodule A of E(M) and a homomorphism f : A → M
which cannot be extended to any f ′ : B → M with B a submodule of E(M)
containing A properly. Let b ∈ E(M)/A. As A ⊂e E(M), we have C = bR∩A 6= 0.
Let f1 : C → M be the restriction of f to C. As M is weakly-injective, bR
embeds in M . Therefore, M is bR-injective and f1 extends to g : bR→M . Define
f ′ : A+ bR → M by f ′(a+ br) = f(a) + g(br) for a ∈ A, r ∈ R. Since f ′ extends
f , this yields a contradiction. Hence, M must be injective. Thus, R is a right QI
ring and hence by Boyle, R must be right noetherian.

Clearly (b) =⇒ (c).
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(c) =⇒ (a). Suppose each cyclic right R-module is weakly R2-injective and
R is right noetherian. Let M be any right R-module and x1, ..., xn ∈ E(M). Let
K = Σni=1xiR. It follows that E(M) = E(K)⊕L for some submodule L of E(M)
and E(K) has finite uniform dimension. Therefore, M ∩ E(K), being essential in
E(K), has finite uniform dimension. Let N be a finite direct sum of uniform cyclic
modules which is essential in M ∩ E(K). Note that if a cyclic right R-module is
weakly R2-injective then it is weakly-injective. Since over a right q.f.d. ring every
direct sum of weakly-injective modules is again weakly-injective, it follows that
N is weakly-injective. Thus there exists an automorphism σ : E(K) → E(K)
with K ⊆ σ(N) ⊆ σ(M ∩ E(K)). Clearly σ extends to an automorphism φ of
E(M) which is identity on L. This automorphism satisfies K ⊆ φ(M). Hence M
is weakly-injective. Thus, every right R-module is weakly-injective. Therefore, R
is right weakly-semisimple. �

7. Rings over which cyclic modules are quasi-projective

Rings over which each cyclic module is projective are obviously semisimple ar-
tinian. The study of rings over which each cyclic module is quasi-projective was
initiated by Koehler. She called a ring a right q∗-ring if each cyclic module is
quasi-projective. Koehler proved the following.

Theorem 7.1. (Koehler, [75]).
(i) A semiperfect ring R is a left q∗-ring if and only if every left ideal in the

Jacobson radical of R is an ideal.
(ii) Let R be a left self-injective semiperfect left q∗-ring. Then R = A ⊕

B, where A is semisimple artinian and B is a finite direct sum of paiwise non-
isomorphic uniform left ideals.

(iii) If R is a prime semiperfect left q∗-ring then R is either semisimple
artinian or R is local.

(iv) Let R be a quasi-Frobenius ring. Then R is a left q∗-ring if and only if
R is a right q∗-ring.

(v) A proper matrix ring Mn(R), (n > 1) is a left q∗-ring if and only if R is
semisimple artinian.

Proof. (i) To prove this we first note the following useful facts proved by Miyashita
[84] and Wu-Jans [106]. Let P be a projective module, φ : P → M be an endo-
morphism and S = End(P ). Then

(a) M is quasi-projective if ker(φ) is invariant under S, and
(b) ker(φ) is invariant under S if ker(φ) is small in P and M is quasi-

projective.
Let R be a semiperfect left q∗-ring. Let I be a left ideal of R contained in

J(R). Consider φ : R → R/I. Since I is small in R and R/I is quasi-projective,
I is invariant under End(R) ∼= R by (b) above. Hence I is an ideal. Conversely,
assume that every left ideal in J(R) is an ideal. Let K be a left ideal in R. Then
R/K has a projective cover φ : P → R/K, and P can be considered to be a
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direct summand of R. Since ker(φ) is small in P , it is small in R and contained
in J(R). If f ∈ End(P ), then there is an r ∈ R such that f(x) = xr for every
x ∈ P . Therefore, ker(φ) is invariant under End(P ). Hence by (b) above, R/I is
quasi-projective. Therefore, R is a left q∗-ring.

(ii) Since R is semiperfect, R = Re1 + ... + Rek + Rek+1 + ... + Ren, where
e1, ..., en are orthogonal indecomposable idempotents. We may assume Re1, ..., Rek
are all the simple components of the decomposition. By (i), J(R)ei.eiRej = 0 if
i 6= j. Since Hom(Rei, Rej) = eiRej , Rei 6∼= Rej , for i, j > k and i 6= j. Let
A = Re1 + ...+Rek, and B = Rek+1 + ...+Ren. To complete the proof we show
that A and B are ideals. Let i ≤ k and j > k. Then Rei.eiRej is 0 or simple and
is contained in Rej . Since Rei is a simple injective module, and Rej is not simple
and is indecomposable, Rei.eiRej = 0. Similarly Rej .ejRei = 0 because Rei is a
simple projective module.

(iii) Since R is semiperfect, R = Re1 + ...+Ren where e1, ..., en are nonzero
orthogonal indecomposable idempotents. If n = 1, thenR is local because J(R)e1 is
a unique maximal left ideal in Re1. From (i), J(R)ei.J(R)ej ⊆ J(R)ei∩J(R)ej = 0
for i 6= j. Hence J(R)ei = 0 for all but at most one i, say i = k, because R is
prime. Since ekRei 6= 0 (because R is prime), there is an epimorphism from Rek
to Rei. So, Rek ∼= Rei for i = 1, 2, ..., n because Rei is simple and projective, and
Rek is indecomposable. Therefore R is simple artinian if n > 1.

(iv) Let R be a quasi-Frobenius left q∗-ring. We first claim that each essential
left ideal of R is an ideal. Let I be an essential left ideal of R. Then R/I has a
projective cover φ : P → R/I. Let f : R→ R/I be the canonical homomorphism.
Then there is an epimorphism f ′ : R → P such that φ ◦ f ′ = f because P is
projective and ker(φ) is small. Since P is projective and f ′ is onto, R = Re1⊕Re2

with Re1
∼= P . Also, it can be seen that I = K ⊕ Re2 where K ∼= ker(φ) and

K ⊆ Re1. The left ideal K is small in R, and R is a left q∗-ring. Thus K ⊆ J(R),
and K must be an ideal by (i). Now as I is an essential left ideal of R, the
left socle Soclel(R) of R is contained in I. The left ideal J(R)e2 is an ideal in
R. So Re2.eeRe1 ⊆ Soclel(R) because J(R)e2.e2Re1 = 0 and R is semiperfect.
Therefore, I is an ideal. Next, we claim that each left ideal of R is quasi-injective.
Let A be any left ideal of R. If B is a complement of A in R then A ⊕ B is an
essential left ideal of R. We have just now shown that A⊕B must be an ideal of
R. Since R is right self-injective, A ⊕ B is quasi-injective and hence A is quasi-
injective. Thus each left ideal of R is quasi-injective. Now, we proceed to show
that R must be right q∗. Let L be a right ideal contained in J(R) and a ∈ L.
Since R is left self-injective, J(R) = {a : annl(a) is an essential left ideal of R}
and annr(annl(aR)) = aR. In addition, annl(aR) = annl(a) which is an essential
left ideal of R. Therefore, aR is an ideal, that is, L is an ideal. Hence, by (i), R is
a right q∗-ring. The converse is similar.

(v) For proof of this part, the reader is referred to the Theorem 2.5, [75]. �

Koehler gave example of a ring which is both left and right artinian, a right
q∗-ring but not a left q∗-ring.
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Example. (Koehler, [75]). Let R be the ring of matrices of the form
[
ā b̄
0 c̄

]
such

that ā ∈ Z4 and b̄, c̄ ∈ Z2. Clearly, J(R) consists precisely of the matrices of the

form
[
ā b̄
0 0̄

]
such that ā = 0̄ or 2̄ ∈ Z4 and b̄ ∈ Z2. Every right ideal in J(R)

is an ideal. However the left ideal I consisting of exactly two elements
[

0̄ 0̄
0 0̄

]
and

[
2̄ 1̄
0 0̄

]
is not an ideal. Therefore, by (i) of the above theorem, R is a right

q∗-ring but not a left q∗-ring.

8. Hypercyclic, q-Hypercyclic and π-Hypercyclic Rings

Caldwell [15] initiated study of rings whose each cyclic module has a cyclic injective
hull. Such rings are called hypercyclic rings. A ring R is called restricted hypercyclic
if R is hypercyclic and R/J(R) is artinian. Caldwell proved the following.

Theorem 8.1. (Caldwell, [15]). A commutative hypercyclic ring must be restricted.

Proof. Let R be a commutative hypercyclic ring. Then R is self-injective. There-
fore, R/J(R) is a self-injective von Neumann regular ring. Clearly, R/J(R) is either
semisimple artinian or it has an infinite set of orthogonal idempotents. Suppose
R/J(R) has an infinite set of orthogonal idempotents. Since orthogonal idempo-
tents can be lifted orthogonally modulo J(R), R has an infinite set of orthogonal
idempotents, say {ei}. Let I = ΣeiR. Then R/I would be non-injective, a con-
tradiction to the fact that if {ei} is any set of idempotents in a commutative
hypercyclic ring R, and if I = ΣeiR then R/I is an injective R-module. �

Osofsky continued the study of hypercyclic rings and showed the following.

Theorem 8.2. (Osofsky, [94]). A ring is restricted hypercyclic if and only if it is a
ring direct sum of matrix rings over hypercyclic local rings.

Rosenberg and Zelinsky [99] considered rings over which each cyclic module
has injective hull of finite length. This led Jain and Saleh [67] to consider rings
over which each cyclic module has finitely generated injective hull. A ring R is
called q-hypercyclic if each cyclic ring R-module has a cyclic quasi-injective hull.

Lemma 8.3. (Jain and Saleh, [67]).
(a) Let R be any ring such that R/J(R) is semisimple artinian and J 6= J2.

Then any simple R-module A that is not injective can be embedded in J/J2.
(b) Let M be an injective R-module and I,K be ideals in R, where K ⊆ I.

Then Hom(I/K,M) ∼= annM (K)/annM (I) as R-modules.
(c) Let R be a ring such that every cyclic R-module has finitely generated

quasi-injective hull. Then every ring homomorphic image of R has this property.
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Proof. (a) This is straightforward. (b) The proof follows from the canonical em-
bedding of annM (K)/annM (I) into Hom(I/K,M) and the Baer criterion for
injective modules. (c) Let A be a two-sided ideal of R. Let R̄ = R/A and R̄/Ī be
a cyclic R̄-module, where Ī = I/A. We have R̄/Ī ∼= R/I as R-modules. Denote
by P the quasi-injective hull of R/I as an R-module. P is a finitely generated
R-module. Since P = EndR(E(R/I))R/I, A annihilates P and hence P is an
R/A-module and indeed P is quasi-injective as an R/A-module. If B ⊂ P , and
B is quasi-injective as an R/A-module, then B is also quasi-injective as an R-
module. Hence, P is the quasi-injective hull of R/I as an R/A module. Since P is
a finitely generated R-module and A annihilates P , P is also finitely generated as
an R/A-module. �

Theorem 8.4. (Jain and Saleh, [67]). Let R be a right artinian ring. The following
statements are equivalent.

(a) Every cyclic R-module can be embedded in a finitely generated injective
module.

(b) Hom(J/J2, A) is finitely generated for every simple R-module A.
(c) Every cyclic R-module has finitely generated quasi-injective hull.
(d) The injective hull of R/J2 is a finitely generated R-module .

Proof. (a) =⇒ (c): Let M be a cyclic R-module. Since q.inj.hull(M) ⊂ E(M),
and R is artinian, it follows that q.inj.hull(M) is also finitely generated. (c) =⇒
(d): Let E1 and E2 denote respectively the injective hull of R/J as R/J-module and
as R-module. By Lemma 8.3, the quasi-injective hull of every cyclic R/J2-module
is finitely generated. In particular, q.inj.hull(R/J2) (= E1) is a finitely generated
R/J2-module. This implies Hom(J/J2, I/J2) is also finitely R/J2-module gener-
ated for any minimal right ideal I/J2 of R/J2 by Rosenberg-Zelinsky [99]. But then
Hom(J/J2, I/J2) is a finitely generated K-module, where K = (R/J2)/(J/J2) ∼=
R/J . Therefore, HomR/J2(J/J2, I/J2) is a finitely generated R/J-module, and
so HomR(J/J2, I/J2) is a finitely generated R-module for each simple submodule
I/J2 of R/J2. This yields E2, the injective hull of R/J2 as an R-module, is finitely
generated (see [99], Theorem 1). (d) =⇒ (b): Let A be a simple R-module. If A is
injective, then by the above lemma, Hom(J/J2, A) = 0, or A which is finitely gen-
erated. If A is not injective, then by above lemma, A can be embedded in J/J2. So
there exists a right ideal I of R such that I ⊂ J and A = I/J2. Since I/J2 is a sim-
ple submodule of R/J2, and the injective hull of R/J2 as an R-module is finitely
generated, HomR(J/J2, I/J2) is finitely generated. Therefore, HomR(J/J2, A) is
finitely generated. It remains to see that (b) =⇒ (a), and this holds by ([99],
Theorem 1) and the above lemma. �

Next, we consider rings with Krull dimension over which each cyclic module
has cyclic injective hull. Indeed such rings turn out to be artinian rings. We shall
need the following.
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Lemma 8.5. (Gordon and Robson, [39]). If R is a ring with Krull dimension K(R)
then K(R) = K(R/P ), for some prime ideal P . In fact P is a minimal prime
ideal.

The following is straightforward.

Lemma 8.6. If R is a valuation ring, and P = aR is a nonzero prime ideal P 6= J ,
then R/P is not a domain.

Proposition 8.7. (Jain and Saleh, [67]). Let R be a local hypercyclic ring. If R has
Krull dimension, then R is right artinian.

Proof. First suppose J = J(R) is nil. Then, since R has Krull dimension, J is
nilpotent. This implies J is the only prime ideal of R. But then by Lemma 8.5,
K(R) = K(R/J) = 0, which proves that R is artinian. Suppose J is not nil. Then
by Osofsky ([94], Theorem 2.12) there exists a nonzero nilpotent ideal aR ⊂ J ,
a ∈ R such that aR is the maximal proper two-sided ideal below J . Since R has
Krull dimension, R satisfies acc on prime ideals. If J is not the only prime ideal,
there exists a prime ideal Q such that Q is maximal among all the prime ideals
different from J . Then Q ⊂ aR. Since aR is nilpotent, Q = aR. Thus Q 6= (0),
since aR is not zero. So by Lemma 8.6 and R being valuation, Q is not completely
prime. Consider now the prime ring R/Q. Since R/Q has Krull dimension, it is
a prime Goldie ring. Therefore Z(R/Q), the right singular ideal of R/Q, is zero.
Thus ann(x̄) = 0̄, for every 0̄ 6= x̄ ∈ R/Q, since R is a valuation ring. Hence Q is
completely prime, which is a contradiction. This proves that J is the only prime
ideal. Therefore, K(R) = K(R/J) = 0, and hence R is artinian. �

Theorem 8.8. Let R be a hypercyclic ring. Then R has Krull dimension if and only
if R is artinian.

Proof. If R has Krull dimension, then each homomorphic image of R has acc
on direct summands. Thus by Osofsky ([94], Lemma 1.7), R has acc on direct
summands. Thus, by Osofsky, R is a ring direct sum of matrix lings over local
hypercyclic rings and hence R is artinian. �

Corollary 8.9. (Jain and Saleh, [67]). A hypercyclic ring with Krull dimension is
quasi-Frobenius.

Dinh, Guil Asensio and Lopez-Permouth studied hereditary ring R such that
the injective hull E(RR) is finitely generated (or cyclic) and proved the following
which answers in the affirmative a question posed by Dauns in [26] and Gomez-
Perdo, Dung and Wisbauer in [36].

Theorem 8.10. (Dinh, Guil Asensio, Lopez-Permouth, [27]). Let R be a right hered-
itary ring. If the injective hull E(RR) is finitely generated (or cyclic), then R is
right artinian.

More generally, they obtained the following.
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Theorem 8.11. (Dinh, Guil Asensio, Lopez-Permouth, [27]). Let R be a right hered-
itary ring. If the injective hull E(RR) is countably generated, then R is right noe-
therian.

For a commutative ring R, R can be shown to be q-hypercyclic (= qc-ring) if
R is hypercyclic. Whether a hypercyclic ring (not necessarily commutative) is q-
hypercyclic is considered by showing that a local hypercyclic ring R is q-hypercyclic
if and only if the Jacobson radical of R is nil. However, It is not known if there
exists a local hypercyclic ring with non-nil radical.

Lemma 8.12. Let R be semiperfect and q-hypercyclic. Then R is right self-injective.

Proof. Let I be a right ideal of R such that R/I is the quasi-injective hull of R. Let
φ : R→ R/I be the embedding. Since R/I contains a copy of R, R/I is injective.
Let φ(R) = B/I. Then B/I ⊂e R/I. Hence B ⊂e R. Since R ∼= B/I, B/I is
projective. Thus B = I ⊕K for some KR ⊆ BR. Now R ∼= B/I = (I ⊕K)/I ∼= K.
Therefore E(R) ∼= E(K). But then I ⊕K ⊆e R implies E(R) = E(l) ⊕ E(K) ∼=
E(l) ⊕ E(R). Since E(R) ∼= R/I, E(R) is a finite direct sum of indecomposable
modules, by [94]. Thus E(R) has finite Azumaya-Diagram. Therefore, E(R) ∼=
E(R)⊕ E(l) implies E(I) = 0. Hence I = 0. Thus R is right self-injective. �

Lemma 8.13. (Jain and Malik, [63]). Let R be q-hypercyclic. Then every homo-
morphic image of R is also q-hypercyclic.

Proof. Let A be a two-sided ideal of R. Let R̄ = R/A. Let R̄/Ī be a cyclic R̄-
module, where Ī = I/A. But R̄/Ī ∼= R/I. Since A ⊂ I, A annihilates R/I. Let R/K
be the quasi-injective hull ofR/I as anR-module. ThenR/K ∼= EndR(E(R/I))R/I.
Then it follows that A annihilates R/K. Thus R/K may be regarded as an R̄-
module. Since R/K is quasi-injective as an R-module, R/K is quasi-injective as
an R-module. Since A is a two-sided ideal and annihilates R/K, A ⊂ K. Hence
R/K ∼= (R/A)/(K/A). Clearly R̄/K̄ is the quasi-injective hull of R̄/Ī as an R̄-
module. Hence R̄ is q-hypercyclic. �

Jain and Malik [63] studied local q-hypercyclic rings and obtained the follow-
ing results.

Lemma 8.14. (Jain and Malik, [63]). Let R be a local q-hypercyclic ring. Then
(i) Both right and left ideals of R are linearly ordered.
(ii) R is left bounded or right bounded.
(iii) R is a duo ring.

Theorem 8.15. (Jain and Malik, [63]).
(i) Let R be a local ring. Then R is q-hypercyclic if and only if R is a qc-ring.
(ii) Let R be a local hypercyclic ring. Then R is q-hypercyclic if and only if

J(R) is nil.

Proof. (i) Let R be q-hypercyclic and let A be a non-zero right ideal of R. Then
by above lemma, A is a two-sided ideal of R. But then by Lemma 8.13, R/A is
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a self-injective ring. Thus R/A is a quasi-injective R-module, proving that R is a
qc-ring. The converse is obvious.

(ii) Let R be a local hypercyclic ring with J(R) nil. Then by [94], R is a duo,
self-injective, valuation ring. But then R is maximal. Therefore, R is a qc-ring and
hence a q-hypercyclic ring. Conversely, suppose R is a local q-hypercyclic ring. Let
a ∈ J(R). Suppose an 6= 0 for any positive integer n. Let S = {an : n > 0}. By
Zorn’s lemma there exists an ideal P of R maximal with respect to the property
that P ∩ S = ∅. Then P is prime. Hence R/P is a prime local q-hypercyclic ring.
Thus R/P is either left bounded or right bounded. Then it follows that R/P is
a domain. Since R/P is also local and q-hypercyclic, R/P is self-injective and
hence a division ring. Therefore P is a maximal ideal of R. Thus P = J(R), a
contradiction. Hence J(R) is nil. �

Theorem 8.16. (Jain and Malik, [63]).
(i)Let R be a commutative q-hypercyclic ring. Then R must be self-injective.
(ii) Let R be a commutative ring. Then R is q-hypercyclic if and only if R is

a qc-ring.
(iii) Let R be a commutative hypercyclic ring. Then R is q-hypercyclic

Proof. (i) This is obvious.
(ii) This is similar to the proof of Theorem 8.15 (i).
(iii) Let R be a commutative hypercyclic ring. Then by ([15], Theorem 2.5), R

is a finite direct sum of commutative local hypercyclic rings. So it suffices to show
that a commutative local hypercyclic ring is q-hypercyclic. Let R be commutative
local and hypercyclic. Then by [15], R is valuation and self-injective, and J(R) is
nil. Then by ([74], Theorem 2.3), R is maximal. Since J(R) is nil, R has rank 0.
Then R is rank 0 maximal valuation ring. Thus R is a qc-ring [76], proving the
theorem. �

The following example of Jain and Malik shows that a q-hypercyclic ring need
not be hypercyclic.

Example. (Jain and Malik, [63]). Let F be a field, and x be an indeterminate over
F . Let W = {{αi} : {αi} is a well ordered sequence of nonnegative real numbers}.
Let T = {Σ∞i=0aix

αi : ai ∈ F, {αi} ∈ W} and R = T
xJ(T ) . Let S be the socle of R.

Then R/S is a q-hypercyclic ring but not a hypercyclic ring.

Jain and Malik also obtained an anologue of Osofsky’s result by considering
semiperfect q-hypercyclic ring.

Theorem 8.17. (Jain and Malik, [63]). Let R be a semiperfect q-hypercyclic ring.
Then R is a finite direct sum of q-hypercyclic matrix rings over local rings.

Proof. R = e1R ⊕ ... ⊕ enR, where ei, 1 ≤ i ≤ n are primitive idempotents. We
will show that for i 6= j, either eiR ∼= ejR, or HomR(eiR, ejR) = 0. Suppose for
some i 6= j, HomR(eiR, ejR) 6= 0. By renumbering, if necessary, we may assume
that i = 1, j = 2. Let α : e1R → e2R be a non-zero R-homomorphism. Then
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e1R/Ker(α) embeds in e2R. Since e2R is indecomposable, E(e1R/Ker(α)) ∼= e2R.
Hence B = e2R⊕ ...⊕ enR contains a copy of E(e1R/Ker(α)). Now R/Ker(α) ∼=
(e1R)/Ker(α) × e2R × ... × enR. Let A = (e1R)/Ker(α). Then B is injective
and contains a copy of E(A). Hence HomR(B,E(A))B = E(A). Since R is q-
hypercyclic, for some right ideal I, R/I ∼= q.i.h.(R/Ker(α)) ∼= q.i.h.(A × B) ∼=
E(A) × B. Thus R/I ∼= e2R × B. Then R/I is projective. Hence R = I ⊕K for
some right ideal K. Then K ∼= R/I ∼= e2R × e2R × ...× enR. Thus R = I ⊕K ∼=
I × e2R × e2R × ... × enR. Hence by Azumaya Diagram, e1R ∼= I × e2R. Since
e1R is indecomposable, I = 0. Consequently, R = K. Then e1R × e2R × ... ×
enR ∼= e2R × e2R × ...× enR. Again by Azumaya Diagram, e1R ∼= e2R. Thus for
i 6= j, either eiR ∼= ejR or HomR(eiR, ejR) = 0. Set [ekR] = ΣeiR, eiR ∼= ekR.
Renumbering, if necessary, we may write R = [e1R] ⊕ ... ⊕ [etR], t ≤ n. Then for
all 1 ≤ k ≤ t, [ekR] is an ideal. Since for any k, 1 ≤ k ≤ n, ekR is indecomposable,
EndR(ekR) ∼= ekRek is a local ring. Thus [ekR] = ⊕ieiR is the nk × nk matrix
ring over the local ring ekRek where nk is the number of eiR appearing in ⊕ieiR.
Since a finite direct sum of q-hypercyclic rings is q-hypercyclic, the matrix ring is
q-hypercyclic. �

Following the same method as for semiperfect q-hypercyclic rings [63], Jain
and Saleh obtained the following:

Lemma 8.18. (Jain and Saleh, [67]). Let R be a q-hypercyclic ring with finite right
uniform dimension. Then R is right self-injective.

This lemma is used in the proof of the following theorem.

Theorem 8.19. (Jain and Saleh, [67]). Let R be a q-hypercyclic ring with Krull
dimension. Then R is artinian.

Proof. There exists a prime ideal P of R such that K(R/P ) = K(R). Since R is
q-hypercyclic, S = R/P is a q-hypercyclic ring ([63], Lemma 2.6). Therefore, S
is right self-injective; that is, E(S) = S. Since S is a prime Goldie ring, Q(S) =
E(S) = S. Thus S is artinian, that is, K(S) = 0, which gives R is artinian. �

If R is a ring with Krull dimension such that the injective hull of every cyclic
R-module is finitely generated or the quasi-injective hull of every cyclic R-module
is finitely generated, it is not known whether R is artinian or not.

Remark 8.20. Let R be a ring with Krull dimension, and let P be a minimal
prime ideal of R such that the prime ring R/P has a left classical quotient ring (In
particular, if R has also Krull dimension as a left R-module). Then, if each cyclic
R-module has a finitely generated quasi-injective hull, R must be artinian.

We recall that a module M over a ring R is called π-injective (also called
quasi-continuous) if for every pair of R-submodulcs N1, N2 of M with N1∩N2 = 0
each projection π: N1 ⊕ N2 → Ni, i = 1, 2, can be lifted to an endomorphism of
M .
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Goel and Jain [34] considered rings with finite uniform dimension such that
any cyclic R-module is π-injective, or more generally has cyclic π-injective hull.
These results generalize the results for semiperfect rings over which each cyclic
R-module has injective or quasi-injective hull.

Recall that if K = HomR(E(A), E(A)), then the q.inj.hull(A) = KA and
the π-injective hull of A, denoted by π(A) = V A, where V is the subring of K
generated by the idempotents of K.

Lemma 8.21. (Goel and Jain, [34]). Let M be π-injective and E(M) = ⊕Ai, be a
direct sum of submodules. Then M = ⊕(Ai ∩M).

Lemma 8.22. Let R be a ring with finite uniform dimension. If the π-injective hull
of R is cyclic, then R is π-injective.

Proof. See [34]. �

Remark 8.23. A ring homomorphic image of a π-hypercyclic ring is also a π-
hypercyclic ring.

Lemma 8.24. Let R be a ring with finite uniform dimension. Then R is π-hypercyclic
if and only if R = e1R⊕ ...⊕ enR, where eiR are valuation rings.

Proof. See [34]. Only if part: The proof follows from the fact that each eiR is
uniform and for every submodules A and B of eiR, eiR/A∩B is also uniform. �

The proof of the following is straightforward.

Lemma 8.25. (a) Let A be essential in an injective module B. Then the π-injective
hull of A×B, π(A×B) = E(A)×B.

(b) Let R be an artinian ring with radical J and let I he a right ideal of R.
If R/I = ⊕ni=1Ni then the composition length of R/J ≥ n.

A ring R is called right π-hypercyclic if each cyclic right R-module has cyclic
π-injective hull. Following the techniques given earlier for rings over which each
proper cyclic module is continuous it follws that each proper cyclic R-module is
π-injective if and only if each proper cyclic R-module is continuous where R is a
semiperfect nonlocal ring with nil radical.

Jain and Saleh [68] called a ring π-hypercyclic if each cyclic module has a
cyclic π-injective hull. They studied π-hypercyclic rings with finite uniform dimen-
sion and proved the following.

Theorem 8.26. (Jain and Saleh, [68]). Let R be a π-hypercyclic indecomposable
ring with finite uniform dimension other than 1. Then R = Mn(A), where A is a
right valuation ring, n > 1 if and only if R is self-injective.

Proof. Let R be self-injective. Thus there exist primitive orthogonal idempotents
ei, 1 ≤ i ≤ n are primitive idempotents such that R = e1R ⊕ ... ⊕ enR. Let
α : e1R→ e2R be a non-zero R-homomorphism. Then R/I ∼= e2R×e2R× ...×enR
for some right ideal I of R. Thus R/I is projective and hence R = I ⊕K where
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K ∼= e2R × e2R × ... × enR. Since R is self-injective, Azumaya Diagram gives
e1R ∼= I×e2R which forces I to be zero as e1R is indecomposable. Thus e1R ∼= e2R.
Let [ekR] = ΣeiR, eiR ∼= ekR. Since R is indecomposable, R = [e1R]. Therefore,
R is a matrix ring over a local ring A ∼= eRe where e = e1. It remains to show
that eRe is a right valuation ring. We first show that for any right ideal I ⊂ eR,
eR/I is uniform. Then it follows that the submodules of eR are linearly ordered.
Let A and B be right ideals of eRe. Then AeR ⊂ (eR)2 and BeR ⊂ (eR)2. Since
the submodules of eR are linearly ordered, AeR ⊂ BeR or BeR ⊂ AeR and so
AeRe ⊂ BeRe or BeRe ⊂ AeRe, that is, A ⊂ B or B ⊂ A. The converse follows
from the fact that an n × n matrix ring Mn(A), n > 1 is self π-injective if and
only if it is self-injective. �

9. Cyclic Modules being Direct Sum of Projective, Injective, CS,
and Noetherian

The study of rings via decomposition properties of cyclic modules has been consid-
ered by many authors. Chatters studied rings whose each cyclic module is a direct
sum of a projective module and a noetherian module and proved the following.

Theorem 9.1. (Chatters, [16]). A ring R is right noetherian if and only if every
cyclic module is a direct sum of a projective module and a noetherian module.

In [46] Huynh and Dung showed the following.

Theorem 9.2. (Huynh and Dung, [46]). A ring R is right artinian if and only if
each cyclic right R-module is the direct sum of an injective module and a finitely
cogenerated module.

Huynh extended it and proved the following.

Theorem 9.3. (Huynh, [43]). A ring R is hereditarily artinian if and only if each
cyclic right R-module is the direct sum of an injective module and a finite module.

Huynh, Dung and Smith obtained the following.

Theorem 9.4. (Huynh, Dung and Smith, [47]). The following statements are equiv-
alent for a ring R:

(i) Every right ideal is the direct sum of an injective module and a finitely
generated semisimple right ideal.

(ii) Every essential right ideal is the direct sum of an injective module and a
finitely generated semisimple right ideal.

(iii) R is a direct sum of minimal right ideals and injective right ideals of
length 2.

(iv) Every cyclic right R-module is the direct sum of an injective module and
a semisimple module.

(v) Every right R-module is the direct sum of an injective module and a
semisimple module.
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(vi) R is an artinian serial ring such that (J(R))2 = 0.
(vii) Any of the left-sided analogues of (i)-(v).

Theorem 9.5. (Osofsky and Smith, [97]). A ring R is right noetherian if every
cyclic right module is a direct sum of a projective module and an injective module.

As a consequence, it follows that if each cyclic right R-module is injective or
projective then the ring R is right noetherian.

Goel, Jain and Singh [35] had considered rings whose each cyclic module is
either injective or projective. They obtained the following.

Theorem 9.6. (Goel, Jain and Singh, [35]). If each cyclic right R-module is injective
or projective then R = A⊕B where A is semisimple artinian and B is a simple right
semi-hereditary right Ore-domain whose each proper cyclic module is semisimple.

Smith in his paper [104] independently proved the same result. The structure
of rings whose each cyclic module is a direct sum of a projective module and an
injective module was completely described by Huynh in [45].

In 1991, Smith asked the question whether a ring is right noetherian if each
cyclic module is a direct sum of a projective module and a module that is either
injective or noetherian. This question has been recently answered in the affirmative
by Huynh and Rizvi [51].

Theorem 9.7. (Huynh and Rizvi, [51]). A ring R is right noetherian if and only if
every cyclic module is a direct sum of a projective module and a module Q where
Q is either injective or noetherian.

This clearly extends the above two results of Chatters [16] and Osofsky-Smith
[97].

Holston, Jain and Leroy [42] call a ring R a right WV -ring if each simple
right R-module is injective relative to proper cyclics. If R is a right WV -ring, then
they show that R is either right uniform or a right V -ring.

Lemma 9.8. Let R be a WV -ring, and R/A and R/B be proper cyclic modules
such that A ∩B = 0. Then R is a V -ring.

Proof. Straightforward. �

Theorem 9.9. Let R be a WV -ring which is not a V -ring. Then R must be uniform.

Proof. See ([42], Theorem 2). �

A right R-module M is said to satisfy the property (*) if we can write M =
A⊕B, where A is either a CS-module or a noetherian module, and B is a projective
module. It was shown by Plubtieng and Tansee [98] that a ringR is right noetherian
if and only if every 2-generated right R-module satisfies (*). However, if every cyclic
R-module satisfies (*), then R need not be right noetherian.

Under a stronger assumption on a cyclic right module C than the condition
(*), namely, if every homomorphic image of C is projective, CS, or noetherian,
Holston, Jain and Leroy show that C is noetherian when R is a WV -ring.
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Theorem 9.10. (Holston, Jain and Leroy, [42]). Let C be a cyclic R-module such
that each homomorphic image of C is either CS, noetherian, or projective.

(a) Then C has finite uniform dimension.
(b) If R is a WV -ring, then C is noetherian.

Proof. See ([42], Theorem 11). �

Lemma 9.11. (Holston, Jain and Leroy, [42]).
(a) Let C be an R-module and S = Socle(C). If C/S is a uniform R-module,

then for any two submodules A and B of C with A ∩ B = 0, either A or B
is semisimple. Furthermore, if C/I = A/I ⊕ B/I is a direct sum with B/I a
projective module, then C = A⊕B′, where B = B′ ⊕ I.

(b) Let R be a WV -ring. Let C be a cyclic module with a projective socle
(equivalently, S = Socle(C) is embeddable in R). If C/S is a uniform R-module
and each homomorphic image of C satisfies (*), then C is noetherian.

Proof. See ([42], Lemmas 12-14). �

Theorem 9.12. (Holston, Jain and Leroy, [42]).
(a) Let R be a V -ring. Let M be a finitely generated R-module with projective

socle. Suppose each subfactor of M satisfies (*). Then M is noetherian, and M =
X ⊕ T where X is semisimple and T is noetherian with zero socle. In particular,
if R is a V -ring such that each cyclic module satisfies (*), then R = S ⊕ T , where
S is semisimple artinian and T is a finite direct sum of simple noetherian rings
with zero socle.

(b) For a WV -ring R, R is noetherian if and only if each cyclic R-module
satisfies (*).

The following question of Camillo and Krause remains open:
Is a ring R right noetherian if for any nonzero right ideal A of R, R/A 6∼= R

is an artinian right R-module?

10. Cyclic Modules Embeddable (Essentially) in Free Modules

It is well-known that a ring R is quasi-Frobenius (QF for short) if and only if
each right R-module embeds in a projective or, equivalently, in a free module.
More generally, a ring R is called a right FGF ring if each finitely generated right
R-module embeds in a free module.

It is known that if R is both left and right FGF then R is, again, a QF
ring, but it is an open problem whether a right FGF ring is QF . This problem
appeared first in Levy’s paper [80] as a question for right Ore rings, and it was
later formulated in the present form by Faith. Osofsky proved that a right PF ring
is semiperfect and has finite essential right socle [92]. Using this, Bjork [9] proved
that a right FGF right self-injective ring must be QF . This was also obtained,
independently, by Tolskaya (cf. [30]). Menal [83] used a modification of Osofsky’s
arguments to prove that if each cyclic right R-module embeds in a free module and



34 S. K. Jain and Ashish K. Srivastava

the injective hull E(RR) is projective then R is QF . Jain and Lopez-Permouth
studied rings under a tighter embedding hypothesis, more specifically, rings whose
cyclic modules are essentially embeddable in projective modules (direct summands
of RR) [58]. Such rings are called right CEP (right CES rings). Examples of right
CEP rings include QF -rings and right uniserial rings. Indeed a ring R is a QF -
ring if and only if R is both a right and left CEP -ring. Jain and Lopez-Permouth
[58] provided the following characterization of QF -rings.

Theorem 10.1. (Jain and Lopez-Permouth, [58]). For an arbitrary ring, the fol-
lowing are equivalent:

(a) R is QF .
(b) R is CEP and QF -3.
(c) Every cyclic R-module has a projective injective hull.

For a semiperfect CEP ring, Jain and Lopez-Permouth proved the following.

Theorem 10.2. (Jain and Lopez-Permouth, [58]). A semiperfect ring R is CEP if
and only if the following hold:

(a) R is right artinian.
(b) Every indecomposable projective module is uniform, and
(c) Every indecomposable projective module is weakly R-injective.

The following example due to Jain and Lopez-Permouth [58] is an example
of a local CEP ring which is neither right uniserial nor quasi-Frobenius.

Example. (Jain and Lopez-Permouth, [58]). Let S be a ring having only three right
ideals, namely, (0), J(S) and S and not right self-injective. Let R = S ∝ S be the
trivial extension of S by itself. Then R is a local CEP ring which is neither right
uniserial nor quasi-Frobenius.

In [3] Al-Huzali, Jain and Lopez-Permouth asked if each right CEP ring
(and hence right CES ring) is semiperfect. This question was answered in the
affirmative by Gomez-Pardo and Guil Asensio [37]. Gomez-Pardo and Guil Asensio
first proved the following.

Theorem 10.3. (Gomez-Pardo and Guil Asensio, [37]). Let R be a ring and PR a
finitely generated projective module. Suppose that Ω(R) denotes a set of representa-
tives of the isomorphism classes of simple right R-modules and C(P ) denotes a set
of representatives of the isomorphism classes of simple submodules of P . Assume
that |Ω(R)| ≤ |C(P )| and that every cyclic submodule of E(PR) is essentially em-
beddable in a projective module. Then PR cogenerates the simple right R-modules
and has finite essential socle.

In particular, the above theorem says that if R is a ring such that E = E(RR)
is a cogenerator and every cyclic submodule of ER is essentially embeddable in a
projective module, then RR has finite essential socle. The proof given by Gomez-
Pardo and Guil Asensio involves an adaptation of Osofsky’s counting argument.
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As a consequence of the above theorem, Gomez-Pardo and Guil Asensio ob-
tained the following which answers in the affirmative the question asked by Al-
Huzali, Jain and Lopez-Permouth.

Theorem 10.4. (Gomez-Pardo and Guil Asensio, [37]). Every right CEP ring is
right artinian. In particular, every right CES ring is right artinian.

Proof. It follows from the above theorem that RR has finite essential socle. Since
every cyclic right R-module embeds in a finitely generated free module, it has also
finite essential socle. It is well-known that this implies R is right artinian. �

As a consequence of this result, all results obtained in ([58], [57], [3]) for
semiperfect right CEP or CES ring hold for all right CEP and CES ring. In
[57] Jain and Lopez-Permouth had shown the structure of semiperfect right CES
ring. In view of the result of Gomez-Pardo the result of Jain and Lopez-Permouth
gives the structure of any right CES ring.

Theorem 10.5. ([57], [37]). Let R be a ring. Then the following conditions are
equivalent:

(i) R is right CES.
(ii) R is of one of the following types:
(a) R is (artinian) uniserial as a right R-module,
(b) R is an n× n matrix ring over a right self-injective ring of type (a), or
(c) R is a direct sum of rings of types (a) or (b).

11. Restricted Regular Rings and Restricted Artinian Rings

A ring R is said to satisfy the right restricted minimum condition if for every proper
right ideal I of R, R/I is artinian as a right R-module. Cohen studied commutative
rings with restricted minimum condition [20] and proved the following.

Theorem 11.1. (Cohen, [20]). A commutative ring R satisfies the restricted min-
imum condition if and only if R is noetherian and every proper prime ideal is
maximal.

Chatters studied hereditary noetherian rings with restricted minimum con-
dition and proved the following.

Theorem 11.2. (Chatters, [17]).
(i) Let R be a left Noetherian left hereditary ring, and let I be a finitely

generated essential right ideal of R. Then R satisfies the descending chain condition
for finitely generated right ideals which contain I.

(ii) Let R be a hereditary Noetherian ring. Then R satisfies both the left as
well as right restricted minimum condition.

The following example, due to Small [102], shows that a left hereditary left
noetherian ring does not necessarily satisfy the left restricted minimum condition.
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Example. (Small, [102]). Let R be the ring of all matrices of the form
(
a 0
b c

)
where a is an integer and b and c are rationals. This ring R is left noetherian
and left hereditary. Let I be the ideal of R consisting of all matrices of the form(

0 0
b c

)
.

I is an essential left ideal of R, but R/I is a ring isomorphic to the ring of in-
tegers, and it follows that R/I does not satisfy the minimum condition for left
R-submodules.

Jain and Saroj Jain studied rings whose each proper homomorphic image is
a von Neumann regular ring and called such rings restricted regular rings. They
proved the following.

Theorem 11.3. (Jain and Saroj Jain, [56]). Let R be a nonprime right noetherian
ring. Then R is a restricted regular ring if and only if

(i) R is semisimple artinian, or
(ii) R has exactly one non-trivial ideal, namely, the Jacobson radical J(R),

and is isomorphic to an n× n matrix ring over a local ring, or
(iii) R has exactly three non-trivial ideals, namely, J(R), annl(J(R)) and

annr(J(R)) and is isomorphic to
(
U N
0 V

)
, where U, V are simple artinian and

N is an irreducible U -V bimodule.

Theorem 11.4. (Jain and Saroj Jain, [56]). If R is a prime right noetherian re-
stricted regular ring then R is semisimple and each non-trivial ideal is a unique
product of maximal ideals.

The next result characterizes right duo restricted regular rings without chain
conditions.

Theorem 11.5. (Jain and Saroj Jain, [56]). A right duo ring R is a restricted
regular ring if and only if R is strongly regular or R has exactly one proper ideal.

Almost perfect domains, that is, integral domains whose proper homomorphic
images are perfect were introduced by Bazzoni and Salce [5] in connection with the
study of the existence of strongly flat covers over commutative integral domains
[8]. Since a one-dimensional Noetherian domain is an almost perfect domain, it
is natural to look for conditions ensuring that an almost perfect domain is Noe-
therian. Salce raised a question as to when any ring, not necessarily commutative
domain, is an almost perfect ring?

In a recent work Abuhlail-Jain-Laradji [1] showed, among other results, that
such rings are either perfect or prime and radical of prime local ring is nil.
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12. Questions, Exercises and Open Problems

1. (Koethe, [77]) Describe rings over which each right and left module is a direct
sum of cyclic modules.

2. Is every right PCI-domain also a left PCI-domain?
The only result known in this direction is the one due to Boyle and

Goodearl which says that a left and right noetherian domain is a left PCI-
domain if and only if it is a right PCI-domain.

3. Let R = K[t, σ, δ] be a twisted differential polynomial ring over a division
ring K. Suppose R is a left V -domain. Then R is a right PCI-domain if and
only if σ is onto. Does there exist an example when R is a left V -domain with
σ not onto (see Theorem 6.2, [60]).

4. (Camillo and Krause) Is a right Ore domain D necessarily right noetherian
if every cyclic right D-module is projective or artinian? This is equivalent to:
Is a ring R right noetherian if for any nonzero right ideal A of R, R/A is an
artinian right R-module?

5. (Faith, [29]) Characterize a right Ore domain whose every proper cyclic mod-
ule C is injective modulo its annihilator ideal.

6. (Faith, [31]) Is every right CSI ring right noetherian?
Faith has shown that a right CSI ring is right noetherian under some

additional conditions [31].
7. Describe a ring over which each cyclic module is a proper homomorphic image

of an injective module.
8. Is a prime ring whose each cyclic module is quasi-continuous a right non-

singular ring?
9. Is it true that a cyclic module whose quotients are CS, a finite direct sum of

uniform modules? (this is true for projective modules)
10. (Faith, [30]) Is every right FGF ring also a QF ring?

A ring R is called a right FGF ring if each finitely generated right
R-module embeds in a free module. It is known that if R is both left and
right FGF then R is a QF ring. Bjork [9] proved that a right FGF right
self-injective ring must be QF . This was also obtained, independently, by
Tolskaya (cf. [30]).

11. Describe non-simple prime right noetherian ring R such that each proper ring
homomorphic image is von Neumann regular.

12. Is it true that a local hypercyclic ring R has a nil radical?
13. Study a prime right noetherian restricted regular ring. Is it necessarily ar-

tinian?
14. Is every right PCQI-domain right noetherian? It is known to be true for

simple rings and for V -rings.
15. (Salce, [100]) Study rings such that each R-homomorphic image of RR is a

perfect module.
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Commutative rings with this hypothesis has been studied by Salce in
[100]. It has been shown by Abuhlail-Jain-Laradji [1] that such rings are either
prime or perfect. In case it is prime local or non-domain then the radical is
nil.

16. Study rings over which every proper quotient of M is a finitley presented (i)
completely pqc-module, or (ii) completely pure injective module. See page 21
for the definition of completely pqc-module. Gomez-Pardo and Guil-Asensio
showed that if M is a finitely presented completely pqc-module, then M has
ACC (and DCC) on direct summands and so it is a (finite) direct sum of
indecomposable modules (see [38],Theorem 2.9).

17. (Dinh, Guil Asensio, Lopez-Permouth, [27]) Let E be a finitely generated
module such that any pure quotient is pure-injective. Is E a direct sum of
indecomposable pure-injective modules?

Dinh, Guil Asensio and Lopez-Permouth [27] showed that if R is a ring
of cardinality at most 2ℵ0 and E is a countably generated injective right R-
module such that every quotient of E is injective then E is a direct sum of
indecomposable modules.
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