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1 Background and Motivation

Definition 1 An element a of a ring R is said to be unit
regular if a = aua for some unit w in R. Equivalently, a
is unit regular if and only if a = eu for some idempotent

e and some unit u in R.

Definition 2 A ring R is called unit regular if each of its

elements is unit regular.

Definition 3 An element a € R is called clean if a =
e + u for some idempotent e and some unit u in R.

Definition 4 A ring R is called clean if each of its ele-

ments is clean.



Generalizations

e Strongly Clean,

e Uniquely Clean,

e 2-clean,

e n-clean, etc.



2 Definitions and Remarks

Definition 5 An element a of a ring R is said to be Lie
regular ifa = [e, u] = eu—ue, where e is an idempotent
in R and w is a unit of R. Further, a unit in R is said to

be a Lie regular unit if it is Lie regular as an element of
R.

Example 1 Forany field F' and a € F', any matrix of the
form ( @ ) in M>(F') is a Lie regular element.

—a —a
For

(o) =(eo)(as)(2e)(50)

ifa2#1. Ifa®? =1 thena =1 or —1 and

(A A)==(e0)(Ra)=(30) (0 0)



Remark 1 A ring in which all idempotents are central or
a ring with no non trivial idempotents has no Lie regular
elements. In particular, commutative rings, local rings,
and reduced rings have no Lie regular elements.

Remark 2 Every Lie regular unit is unit regular. A Lie
regular element need not be unit regular. A unit regular
element need not be Lie regular.



Example 2 Let R = Z5[S3]. Then 7 4+ o1 is a Lie
regular element but not a unit regular element.

Nontrivial idempotents of Z»[S3] are

{a+o'+0% |a€ Z7,0<4,j<2,i#j}

and

{a+oi+olr+okr|ae Z,,0<i,j,k<2,j#k}.
Units in Z»[S3] are

{oiti|0<i<2,0<5 <1},
{1+04+0?2+o7+097|0<14,5<2,i+#j},
{(1+0'+74+07+0%7|0<i<2},

and



{c+ 02+ T+0T+ 0%}

The element T + o = [0 + T + oT,0]| is a Lie regular
element. It can be seen that T + o7 is not a unit regular
element.

Example 3 If o # 0 is an element in a field F', u =

a 0 1 0 a 0
(0 1)ande—<0 O)thena—eu—<o O)

is a unit regular element in M>(F') but it is not Lie reg-
ular.

Remark 3 The product of two Lie regular elements need

not be Lie regular. Note that u; = ( (1) (0; ) and

Uy = ( 2 é ) are both Lie regular units. However, the

product ujus = ( (g (1) ) Is not a Lie regular element
if o # —1.



Remark 4 [/f ¢ is an isomorphism from a ring R to a ring
S and a is a Lie regular element (unit) in R then ¢(a) is
a Lie regular element (unit) in S.

Proposition 4 An element a = (a1,a,a3,...,an) €
R1 X Ry X R3 X ... X Ry, is a Lie regular element (unit)

if and only if a; is a Lie regular element (unit) for each 1
(1<i<n)

Corollary b [f for some i, all idempotents in R; are cen-
tral then R1 X Ry X R3 X ... X Ry has no Lie regular
units.

Proposition 6 /f R has no Lie regular units then for any
group G, the group ring RG has no Lie regular units.



Proposition 7 The inverse of a Lie regular unit in Mo(F’)
Is again Lie regular.

Proof. If o = ( CCL Z ) is a Lie regular unit in M(F)
1
thena = | b = [e, u] and hence a1 = [e, — ul
c —a det(«)

which is lie regular. =

Remark 5 If a = [e,u] is a Lie regular unit then [1 —
e, u] is also a Lie regular unit.

Remark 6 Ifa = [e, u] is a Lie regular unit then [e, u™1]
is also a Lie regular unit. Note that [e,u" 1] = —u"lau™1.



Proposition 8 No nonzero idempotent in a ring is Lie
Regular.

Proof. Suppose if possible, ¢/ = [e, u] = eu — ue. Then
ele +ee! = eu —ue = €. Also ee’e = eue — eue = 0.

Thus, (ee’)? = 0 = (¢/e)?. Now
e = €?=(e+ee)?
= ('e)? + (e))? + €'ee’ + e€'e

N,
= eee€.
Thus, e/ = 2 = elee’ee! = 0. m

Proposition 9 Let F' be a finite field of q elements. If
a is a Lie regular unit in Mo(F) then a®(4=1) = I, the
2 X 2 identity matrix.



Lemma 10 /f R is a commutative domain then any non-
trivial idempotent in M>(R) is of the form ( CCL ] E a )
a(l —a) = be.

Corollary 11 /f R is a commutative domain in which 2 is
invertible then any idempotent in My(R) is of the form
— 1> + A where A is an invertible matrix in M>(R) and
I> is the identity matrix.

Corollary 12 /f R is a commutative domain in which 2
is invertible then any Lie regular element in M>(R) can
be expressed as [u1,us] where ui and uy are invertible
matrices in M>(R).

Corollary 13 /f K is a field of characteristic different
from 2 then any Lie regular element in Mo(K) can be

expressed as [u1, up| where w1 and uy are invertible ma-
trices in Mo (K).



Remark 7 For any ring R and any A\ € R, g\ ,

1
0

10 U0 and 0 A are idempotents in
A0 )\ a1 ) 01 P

My(R).

Proposition 14 /f R is a commutative ring then any el-
ement in M>(R) of the form

AY T —AY —y -y Y AYy —x
—y =y )\ Ay )\ —z Ay )y —Ay
where A\, x, and y belong to R and xy is invertible in R,

is a Lie regular element.

Proof. The proof is clear once we observe that

(% 5=l s)(05))
(2w )=l ) (5 8))




Corollary 15 For any field F', any element in My(F’) of
the form

AY T —AYy —y -y Y AYy —x
-y =Xy )\ Ay )\ —x Ay )\ y —Ay

where \, x, and y belong to F', is a Lie regular element.

Corollary 16 Any matrix in My(F') with trace 0 is Lie
regular.

Remark 8 In general, the Lie product of Lie regular ele-
ments need to be Lie regular. The elementsx = 7+ o1
and y = o + 0% 4+ o1 + o7 in Z[S3] are both Lie
regular. Their Lie product [z, y] = o + o2 is, however,
not Lie regular.



Corollary 17 Lie product of any two Lie regular elements
in Mo(F") is again a Lie regular element.

Recall the infinite dihedral group D~o, the group gener-
ated by two elements a and b where a is of infinite order
and b2 =1, ab = ba~1.

If K is a field of characteristic 2 then K D~ has no non-
trivial idempotents and hence has no Lie regular elements.

Proposition 18 /f K is a field of characteristic different
from 2 then every Lie regular element in K Dso can be
written as [u1, up] where uy and up are units in K D.

Proof. First observe that any element of K Do can be
written as a 4+ b where o and 8 belong to K (a). Also
observe that for any Lie regular element the idempotent

e in [e, u] must be a nontrivial idempotent.



For any o = Y. a;a’ in K (a), let a* denote the element
S a;a”t in K (a). Since ab = ba"1, it follows that
ab = ba™. We show that for every idempotent e in
KDxso, e+ 1isaunit. So let e = o+ b3 be a nontrivial
idempotent in K Dso. Then a2+55*—|—b(a*5—|—5a) =
o + bB and hence a? + B88* = a and a*8 + Ba = B.
If 5 = 0 then a® = . Since K (a) is a domain, it
follows that o is O or 1, a contradiction. Thus 8 #
0. Invoking once again the fact that K {(a) is a domain
a*B + Ba = B gives a + a* = 1. Since a? + B8* =
a we get B8* = a — a® = aa®. But then [(a +

*4+1
1) 4+ b0 [(a 2+ ) _ bg] = 1. It follows that e + 1 =

(a4 1) 4+ b3 is a unit in K Dx. In other words, every
idempotent in K Do can be expressed as u — 1 for some
unit w in K Dy. 1

Remark 9 In general Lie regular elements need not be
of the form [uq, up] where uq1 and uy are units. Consider
Zo[S3]. The Lie regular element o + o2 + o1 + o7 is
not a Lie product of two units.



3 Lie Regular Generators of Gen-

eral Linear Groups

Theorem 19 Let F' be the finite field with p elements,
that is, F' = Zy. The unit group of M>(F’) is generated
0 1

a 0 )

1 0 01 . o
b—<_1 _1>,c—<1 O),Wherealsapr/m/t/ve

root modulo p. Indeed, the unit group of M>(F) is the
group

by Lie regular units a, b, and c where a =

(a, b, e| 2, (cal™?, (ca) P~V 2(caP~1)3e, (e(caP =) M),
(ca) " (c(caP~1)71b)(ca) = (c(caP~1)~1p)%,
(ca)_l(cap_l)ca = (cap_l)(c(cap_l)_lb)l/a
(cap_l)(c(cap_l)_1b)a(cap_1)(c(cap_1)_1b)
(caP=1), (caP~1)? = (c(caP~1)"Lb(cal 1))’ =

((c(caP~1)"1b)* (caP~ 1) (c(caP 1)~ 16) P+ D2 (car-1))"

l/c



Proposition 20 For any prime p, the order of the linear
group GL(2, Zyn) is p?~1(p + 1)(¢(»™))?.

Proof. Use order of GL(2,7Zy) is p(p + 1)(p — 1)>.
and the surjective homomorphism o : GL(2, Zyn) —
GL(2,Zp) w

Corollary 21 For any prime p, the order of SL(2,Zyn)
is p*"~H(p + 1)p(p").

Proposition 22 If p is an odd prime then the order of
GL(2, Zp) is 6p(p + 1)¢(2p)°.

Proof. Use GL(2,Z3,) = GL(2,7Z3) X GL(2,Zp) m

Corollary 23 If p is an odd prime then the order of
SL(2, Zap) is 6p(p + 1)$(2p).



Theorem 24 Let p be an odd prime and o« # 2 be a
primitive element modulo p. Then GL(2,Zy),) is gen-

1 0 01
eratedbya—<_1 _1),b—<1 O)andc—
0 «
1 0 /)

Theorem 25 Ifn > 2 then GL(2,Zyn) is generated by

1 0 0 1 0 3
&_<—1 —1)'b_<1 o>'c_<1 o>'a”d

0 —1
d_lO

Theorem 26 If p is an odd prime then GL(2,Zyn) is

generated by a = (_11 _01 ) b = ((1) (1)> and
c = 2 where o is a primitive element modulo

(8
0
p".



Theorem 27 If p is an odd prime then GL(2, Zo,n) is

1 O 01
generatedbya—<_1 _1>,b—<1 O),andc—
(1) (g where v #£ 2 is a primitive element modulo p™.



Theorem 28 GL(2,7Z4) = (a,b,c|a?,b?, c*, c2a = ac?, c?b =
be2, be = ¢~ 1b, (ab)3, (cba)?), where a = 10

-1 -1
0 1 0O 3
b—(l())andc—(l()).

Theorem 29 The group GL(2,Zg) is generated by a =

1 0 01 0 5
(_1 _1>,b—<10>,andc—<1o>. The
relators on the generators are a2, b2, ¢, ?b = be?, c?a =

ac?, (ab)3, (be)?, (ac)l® = ¢? (ca)2b(ca)2 (ac)2b(ac)2.
In other words,
GL(2,Z¢) = (a, b,c|a?,b?, c*, c?b = be?, Pa = ac?,

(ab)3, (bc)?, (ac)12 = ¢,
(ca) b(ca)2 (ac)zb(ac)2>



Theorem 30 The group GL(2,7Zg) is generated by a =

1 O 0 1 0 3

(-1 —1>'b_ (1 o)'c_ (1 0>'a”dd_

0 7

10| Indeed,

GL(2,7g) = (a,b,c,d|a?, b, c*, d*, c?a = ac?,
2b = be?, ?d = de?, d%a = ad?, d?b = bd?,
d*c = cd?, (ab)3, (be)?, (bd)?, (cd)?, (ac)®,
c(ad)? = ba(ca)?bc3a, (ad)®, (dab)d),

Theorem 31 The group GL(2,7Z1g) is generated by a =

1 0 01 0 3
(_1 _1>,b—<1 O),andc_<1 O)' In-

deed,

GL(2,7Z19) = (a,b,c|a?,b?, B, c?b = be?, c?a = ac?,
(ab)3, (be)?, bea(cb)?ab = cab(ac)?)



Thant Dou



