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1 Background and Motivation

Definition 1 An element a of a ring R is said to be unit
regular if a = aua for some unit u in R. Equivalently, a
is unit regular if and only if a = eu for some idempotent
e and some unit u in R.

Definition 2 A ring R is called unit regular if each of its
elements is unit regular.

Definition 3 An element a ∈ R is called clean if a =
e+ u for some idempotent e and some unit u in R.

Definition 4 A ring R is called clean if each of its ele-
ments is clean.



Generalizations

• Strongly Clean,

• Uniquely Clean,

• 2-clean,

• n-clean, etc.



2 Definitions and Remarks

Definition 5 An element a of a ring R is said to be Lie
regular if a = [e, u] = eu−ue, where e is an idempotent
in R and u is a unit of R. Further, a unit in R is said to
be a Lie regular unit if it is Lie regular as an element of
R.

Example 1 For any field F and a ∈ F , any matrix of the

form

Ã
a a
−a −a

!
in M2(F ) is a Lie regular element.

ForÃ
a a
−a −a

!
=

Ã
1 1
0 0

!Ã
1 a
a 1

!
−
Ã
1 a
a 1

!Ã
1 1
0 0

!
if a2 6= 1. If a2 = 1 then a = 1 or −1 and

±
Ã
1 1
−1 −1

!
= ±

Ã
1 1
0 0

!Ã
0 1
1 0

!
∓
Ã
0 1
1 0

!Ã
1 1
0 0

!
.



Remark 1 A ring in which all idempotents are central or
a ring with no non trivial idempotents has no Lie regular
elements. In particular, commutative rings, local rings,
and reduced rings have no Lie regular elements.

Remark 2 Every Lie regular unit is unit regular. A Lie
regular element need not be unit regular. A unit regular
element need not be Lie regular.



Example 2 Let R = Z2[S3]. Then τ + στ is a Lie
regular element but not a unit regular element.

Nontrivial idempotents of Z2[S3] are

{α+ σi + σ2j | α ∈ Z2, 0 ≤ i, j ≤ 2, i 6= j}

and

{α+σi+σjτ +σkτ | α ∈ Z2, 0 ≤ i, j, k ≤ 2, j 6= k}.

Units in Z2[S3] are

{σiτj | 0 ≤ i ≤ 2, 0 ≤ j ≤ 1},

{1 + σ + σ2 + σiτ + σjτ | 0 ≤ i, j ≤ 2, i 6= j},

{1 + σi + τ + στ + σ2τ | 0 < i ≤ 2},

and



{σ + σ2 + τ + στ + σ2τ}.

The element τ + στ = [σ + τ + στ, σ] is a Lie regular
element. It can be seen that τ +στ is not a unit regular
element.

Example 3 If α 6= 0 is an element in a field F , u =Ã
α 0
0 1

!
and e =

Ã
1 0
0 0

!
then a = eu =

Ã
α 0
0 0

!
is a unit regular element in M2(F ) but it is not Lie reg-
ular.

Remark 3 The product of two Lie regular elements need

not be Lie regular. Note that u1 =

Ã
0 α
1 0

!
and

u2 =

Ã
0 1
1 0

!
are both Lie regular units. However, the

product u1u2 =

Ã
α 0
0 1

!
is not a Lie regular element

if α 6= −1.



Remark 4 If φ is an isomorphism from a ring R to a ring
S and a is a Lie regular element (unit) in R then φ(a) is
a Lie regular element (unit) in S.

Proposition 4 An element a = (a1, a2, a3, . . . , an) ∈
R1×R2×R3× ...×Rn is a Lie regular element (unit)
if and only if ai is a Lie regular element (unit) for each i
(1 ≤ i ≤ n).

Corollary 5 If for some i, all idempotents in Ri are cen-
tral then R1 × R2 × R3 × ... × Rn has no Lie regular
units.

Proposition 6 If R has no Lie regular units then for any
group G, the group ring RG has no Lie regular units.



Proposition 7 The inverse of a Lie regular unit inM2(F )

is again Lie regular.

Proof. If α =
Ã
a b
c d

!
is a Lie regular unit in M2(F )

then α =

Ã
a b
c −a

!
= [e, u] and hence α−1 = [e,− 1

det(α)
u]

which is lie regular.

Remark 5 If a = [e, u] is a Lie regular unit then [1 −
e, u] is also a Lie regular unit.

Remark 6 If a = [e, u] is a Lie regular unit then [e, u−1]
is also a Lie regular unit. Note that [e, u−1] = −u−1au−1.



Proposition 8 No nonzero idempotent in a ring is Lie
Regular.

Proof. Suppose if possible, e0 = [e, u] = eu−ue. Then
e0e+ ee0 = eu− ue = e0. Also ee0e = eue− eue = 0.
Thus, (ee0)2 = 0 = (e0e)2. Now

e0 = e02 = (e0e+ ee0)2

= (e0e)2 + (ee0)2 + e0ee0 + ee0e

= e0ee0.

Thus, e0 = e02 = e0ee0ee0 = 0.

Proposition 9 Let F be a finite field of q elements. If
a is a Lie regular unit in M2(F ) then a2(q−1) = I2, the
2× 2 identity matrix.



Lemma 10 If R is a commutative domain then any non-

trivial idempotent inM2(R) is of the form

Ã
a b
c 1− a

!
,

a(1− a) = bc.

Corollary 11 If R is a commutative domain in which 2 is
invertible then any idempotent in M2(R) is of the form
−I2 +A where A is an invertible matrix in M2(R) and
I2 is the identity matrix.

Corollary 12 If R is a commutative domain in which 2
is invertible then any Lie regular element in M2(R) can
be expressed as [u1, u2] where u1 and u2 are invertible
matrices in M2(R).

Corollary 13 If K is a field of characteristic different
from 2 then any Lie regular element in M2(K) can be
expressed as [u1, u2] where u1 and u2 are invertible ma-
trices in M2(K).



Remark 7 For any ring R and any λ ∈ R,

Ã
1 λ
0 0

!
,Ã

1 0
λ 0

!
,

Ã
0 0
λ 1

!
, and

Ã
0 λ
0 1

!
are idempotents in

M2(R).

Proposition 14 If R is a commutative ring then any el-
ement in M2(R) of the formÃ

λy x
−y −λy

!
,

Ã
−λy −y
x λy

!
,

Ã
−λy y
−x λy

!
,

Ã
λy −x
y −λy

!

where λ, x, and y belong to R and xy is invertible in R,
is a Lie regular element.

Proof. The proof is clear once we observe thatÃ
λy x
−y −λy

!
=

"Ã
1 λ
0 0

!
,

Ã
0 x
y 0

!#
.

Ã
−λy −y
x λy

!
=

"Ã
0 0
λ 1

!
,

Ã
0 y
x 0

!#
.



Ã
−λy y
−x λy

!
=

"Ã
1 0
λ 0

!
,

Ã
0 y
x 0

!#
.

Ã
λy −x
y −λy

!
=

"Ã
0 λ
0 1

!
,

Ã
0 x
y 0

!#
.

Corollary 15 For any field F , any element in M2(F ) of
the formÃ

λy x
−y −λy

!
,

Ã
−λy −y
x λy

!
,

Ã
−λy y
−x λy

!
,

Ã
λy −x
y −λy

!

where λ, x, and y belong to F , is a Lie regular element.

Corollary 16 Any matrix in M2(F ) with trace 0 is Lie
regular.

Remark 8 In general, the Lie product of Lie regular ele-
ments need to be Lie regular. The elements x = τ + στ

and y = σ + σ2 + στ + σ2τ in Z2[S3] are both Lie
regular. Their Lie product [x, y] = σ + σ2 is, however,
not Lie regular.



Corollary 17 Lie product of any two Lie regular elements
in M2(F ) is again a Lie regular element.

Recall the infinite dihedral group D∞, the group gener-
ated by two elements a and b where a is of infinite order
and b2 = 1, ab = ba−1.

If K is a field of characteristic 2 then KD∞ has no non-
trivial idempotents and hence has no Lie regular elements.

Proposition 18 If K is a field of characteristic different
from 2 then every Lie regular element in KD∞ can be
written as [u1, u2] where u1 and u2 are units in KD∞.

Proof. First observe that any element of KD∞ can be
written as α+ bβ where α and β belong to K hai. Also
observe that for any Lie regular element the idempotent
e in [e, u] must be a nontrivial idempotent.



For any α =
P
αia

i in K hai, let α∗ denote the elementP
αia

−i in K hai. Since ab = ba−1, it follows that
αb = bα∗. We show that for every idempotent e in
KD∞, e+1 is a unit. So let e = α+ bβ be a nontrivial
idempotent in KD∞. Then α2+ββ∗+b(α∗β+βα) =

α+ bβ and hence α2 + ββ∗ = α and α∗β + βα = β.
If β = 0 then α2 = α. Since K hai is a domain, it
follows that α is 0 or 1, a contradiction. Thus β 6=
0. Invoking once again the fact that K hai is a domain
α∗β + βα = β gives α + α∗ = 1. Since α2 + ββ∗ =
α we get ββ∗ = α − α2 = αα∗. But then [(α +

1) + bβ]

"
(α∗ + 1)

2
− b

β

2

#
= 1. It follows that e+ 1 =

(α + 1) + bβ is a unit in KD∞. In other words, every
idempotent in KD∞ can be expressed as u−1 for some
unit u in KD∞.

Remark 9 In general Lie regular elements need not be
of the form [u1, u2] where u1 and u2 are units. Consider
Z2[S3]. The Lie regular element σ + σ2 + στ + σ2τ is
not a Lie product of two units.



3 Lie Regular Generators of Gen-

eral Linear Groups

Theorem 19 Let F be the finite field with p elements,
that is, F = Zp. The unit group of M2(F ) is generated

by Lie regular units a, b, and c where a =

Ã
0 1
α 0

!
,

b =

Ã
1 0
−1 −1

!
, c =

Ã
0 1
1 0

!
, where α is a primitive

root modulo p. Indeed, the unit group of M2(F ) is the
group

ha, b, c | c2, (ca)p−1, (ca)(p−1)/2(cap−1)3c, (c(cap−1)−1b)p,
(ca)−1(c(cap−1)−1b)(ca) = (c(cap−1)−1b)α,

(ca)−1(cap−1)ca = (cap−1)(c(cap−1)−1b)1/α

(cap−1)(c(cap−1)−1b)α(cap−1)(c(cap−1)−1b)1/α

(cap−1), (cap−1)2 = (c(cap−1)−1b(cap−1))3 =

((c(cap−1)−1b)4(cap−1)(c(cap−1)−1b)(p+1)/2(cap−1))
2
i



Proposition 20 For any prime p, the order of the linear
group GL(2,Zpn) is p2n−1(p+ 1)(φ(pn))2.

Proof. Use order of GL(2,Zp) is p(p + 1)(p − 1)2.
and the surjective homomorphism σ : GL(2,Zpn) →
GL(2,Zp)

Corollary 21 For any prime p, the order of SL(2,Zpn)
is p2n−1(p+ 1)φ(pn).

Proposition 22 If p is an odd prime then the order of
GL(2,Z2p) is 6p(p+ 1)φ(2p)2.

Proof. Use GL(2,Z2p) ∼= GL(2,Z2)×GL(2,Zp)

Corollary 23 If p is an odd prime then the order of
SL(2,Z2p) is 6p(p+ 1)φ(2p).



Theorem 24 Let p be an odd prime and α 6= 2 be a
primitive element modulo p. Then GL(2,Z2p) is gen-

erated by a =

Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
and c =Ã

0 α
1 0

!
.

Theorem 25 If n > 2 then GL(2,Z2n) is generated by

a =

Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
, c =

Ã
0 3
1 0

!
, and

d =

Ã
0 −1
1 0

!
.

Theorem 26 If p is an odd prime then GL(2,Zpn) is

generated by a =

Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
, and

c =

Ã
0 α
1 0

!
where α is a primitive element modulo

pn.



Theorem 27 If p is an odd prime then GL(2,Z2pn) is

generated by a =

Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
, and c =Ã

0 α
1 0

!
where α 6= 2 is a primitive element modulo pn.



Theorem 28 GL(2,Z4) = ha, b, c |a2, b2, c4, c2a = ac2, c2b =

bc2, bc = c−1b, (ab)3, (cba)4i, where a =
Ã
1 0
−1 −1

!
,

b =

Ã
0 1
1 0

!
and c =

Ã
0 3
1 0

!
.

Theorem 29 The group GL(2,Z6) is generated by a =Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
, and c =

Ã
0 5
1 0

!
. The

relators on the generators are a2, b2, c4, c2b = bc2, c2a =

ac2, (ab)3, (bc)2, (ac)12 = c2, (ca)2b(ca)2 = (ac)2b(ac)2.
In other words,

GL(2,Z6) = ha, b, c |a2, b2, c4, c2b = bc2, c2a = ac2,
(ab)3, (bc)2, (ac)12 = c2,
(ca)2b(ca)2 = (ac)2b(ac)2i

.



Theorem 30 The group GL(2,Z8) is generated by a =Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
, c =

Ã
0 3
1 0

!
, and d =Ã

0 7
1 0

!
. Indeed,

GL(2,Z8) = ha, b, c, d |a2, b2, c4, d4, c2a = ac2,
c2b = bc2, c2d = dc2, d2a = ad2, d2b = bd2,
d2c = cd2, (ab)3, (bc)2, (bd)2, (cd)2, (ac)6,
c(ad)2 = ba(ca)2bc3a, (ad)6, (dab)8i,

.

Theorem 31 The groupGL(2,Z10) is generated by a =Ã
1 0
−1 −1

!
, b =

Ã
0 1
1 0

!
, and c =

Ã
0 3
1 0

!
. In-

deed,

GL(2,Z10) = ha, b, c |a2, b2, c8, c2b = bc2, c2a = ac2,
(ab)3, (bc)4, bca(cb)2ab = cab(ac)2i .



Thank You


