Lie Regular Generators of General Linear Groups

Pramod Kanwar Ohio University-Zanesville and Universite d'Artois

Congress on Noncommutative Rings and their

Applications

Lens, France June 29-July 2, 2009

1 Background and Motivation

Definition 1 An element a of a ring R is said to be unit regular if a = aua for some unit u in R. Equivalently, ais unit regular if and only if a = eu for some idempotent e and some unit u in R.

Definition 2 A ring R is called unit regular if each of its elements is unit regular.

Definition 3 An element $a \in R$ is called clean if a = e + u for some idempotent e and some unit u in R.

Definition 4 A ring R is called clean if each of its elements is clean.

Generalizations

- Strongly Clean,
- Uniquely Clean,
- 2-clean,
- *n*-clean, etc.

2 Definitions and Remarks

Definition 5 An element a of a ring R is said to be Lie regular if a = [e, u] = eu - ue, where e is an idempotent in R and u is a unit of R. Further, a unit in R is said to be a Lie regular unit if it is Lie regular as an element of R.

Example 1 For any field F and $a \in F$, any matrix of the form $\begin{pmatrix} a & a \\ -a & -a \end{pmatrix}$ in $M_2(F)$ is a Lie regular element. For

$$\begin{pmatrix} a & a \\ -a & -a \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} - \begin{pmatrix} 1 & a \\ a & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix}$$

if $a^2 \neq 1$. If $a^2 = 1$ then $a = 1$ or -1 and

$$\pm \left(\begin{array}{rrr} 1 & 1 \\ -1 & -1 \end{array}\right) = \pm \left(\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array}\right) \left(\begin{array}{rrr} 0 & 1 \\ 1 & 0 \end{array}\right) \mp \left(\begin{array}{rrr} 0 & 1 \\ 1 & 0 \end{array}\right) \left(\begin{array}{rrr} 1 & 1 \\ 0 & 0 \end{array}\right)$$

Remark 1 A ring in which all idempotents are central or a ring with no non trivial idempotents has no Lie regular elements. In particular, commutative rings, local rings, and reduced rings have no Lie regular elements.

Remark 2 Every Lie regular unit is unit regular. A Lie regular element need not be unit regular. A unit regular element need not be Lie regular.

Example 2 Let $R = \mathbb{Z}_2[S_3]$. Then $\tau + \sigma \tau$ is a Lie regular element but not a unit regular element.

Nontrivial idempotents of $\mathbb{Z}_2[S_3]$ are

 $\{\alpha + \sigma^i + \sigma^{2j} \mid \alpha \in Z_2, \mathbf{0} \le i, j \le 2, i \ne j\}$

and

$$\{\alpha + \sigma^i + \sigma^j \tau + \sigma^k \tau \mid \alpha \in \mathbb{Z}_2, 0 \le i, j, k \le 2, j \ne k\}.$$

Units in $\mathbb{Z}_2[S_3]$ are

$$\{\sigma^i au^j \mid \mathbf{0} \leq i \leq \mathbf{2}, \mathbf{0} \leq j \leq \mathbf{1}\}$$
 ,

$$\{1+\sigma+\sigma^2+\sigma^i au+\sigma^j au\mid \mathbf{0}\leq i,j\leq 2,i
eq j\}$$
 ,

$$\{1 + \sigma^i + \tau + \sigma \tau + \sigma^2 \tau \mid 0 < i \le 2\},\$$

and

$$\{\sigma + \sigma^2 + \tau + \sigma\tau + \sigma^2\tau\}.$$

The element $\tau + \sigma \tau = [\sigma + \tau + \sigma \tau, \sigma]$ is a Lie regular element. It can be seen that $\tau + \sigma \tau$ is not a unit regular element.

Example 3 If $\alpha \neq 0$ is an element in a field F, $u = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ and $e = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}$ then $a = eu = \begin{pmatrix} \alpha & 0 \\ 0 & 0 \end{pmatrix}$ is a unit regular element in $M_2(F)$ but it is not Lie regular.

Remark 3 The product of two Lie regular elements need not be Lie regular. Note that $u_1 = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}$ and $u_2 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ are both Lie regular units. However, the product $u_1u_2 = \begin{pmatrix} \alpha & 0 \\ 0 & 1 \end{pmatrix}$ is not a Lie regular element if $\alpha \neq -1$. **Remark 4** If ϕ is an isomorphism from a ring R to a ring S and a is a Lie regular element (unit) in R then $\phi(a)$ is a Lie regular element (unit) in S.

Proposition 4 An element $a = (a_1, a_2, a_3, ..., a_n) \in R_1 \times R_2 \times R_3 \times ... \times R_n$ is a Lie regular element (unit) if and only if a_i is a Lie regular element (unit) for each i $(1 \le i \le n)$.

Corollary 5 If for some i, all idempotents in R_i are central then $R_1 \times R_2 \times R_3 \times ... \times R_n$ has no Lie regular units.

Proposition 6 If R has no Lie regular units then for any group G, the group ring RG has no Lie regular units.

Proposition 7 The inverse of a Lie regular unit in $M_2(F)$ is again Lie regular.

Proof. If
$$\alpha = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$
 is a Lie regular unit in $M_2(F)$
then $\alpha = \begin{pmatrix} a & b \\ c & -a \end{pmatrix} = [e, u]$ and hence $\alpha^{-1} = [e, -\frac{1}{\det(\alpha)}u]$
which is lie regular.

Remark 5 If a = [e, u] is a Lie regular unit then [1 - e, u] is also a Lie regular unit.

Remark 6 If a = [e, u] is a Lie regular unit then $[e, u^{-1}]$ is also a Lie regular unit. Note that $[e, u^{-1}] = -u^{-1}au^{-1}$.

Proposition 8 No nonzero idempotent in a ring is Lie Regular.

Proof. Suppose if possible, e' = [e, u] = eu - ue. Then e'e + ee' = eu - ue = e'. Also ee'e = eue - eue = 0. Thus, $(ee')^2 = 0 = (e'e)^2$. Now

$$e' = e'^2 = (e'e + ee')^2$$

= $(e'e)^2 + (ee')^2 + e'ee' + ee'e$
= $e'ee'$.

Thus, $e' = e'^2 = e'ee'ee' = 0$. ■

Proposition 9 Let F be a finite field of q elements. If a is a Lie regular unit in $M_2(F)$ then $a^{2(q-1)} = I_2$, the 2×2 identity matrix.

Lemma 10 If R is a commutative domain then any nontrivial idempotent in $M_2(R)$ is of the form $\begin{pmatrix} a & b \\ c & 1-a \end{pmatrix}$, a(1-a) = bc.

Corollary 11 If R is a commutative domain in which 2 is invertible then any idempotent in $M_2(R)$ is of the form $-I_2 + A$ where A is an invertible matrix in $M_2(R)$ and I_2 is the identity matrix.

Corollary 12 If R is a commutative domain in which 2 is invertible then any Lie regular element in $M_2(R)$ can be expressed as $[u_1, u_2]$ where u_1 and u_2 are invertible matrices in $M_2(R)$.

Corollary 13 If K is a field of characteristic different from 2 then any Lie regular element in $M_2(K)$ can be expressed as $[u_1, u_2]$ where u_1 and u_2 are invertible matrices in $M_2(K)$. **Remark 7** For any ring R and any $\lambda \in R$, $\begin{pmatrix} 1 & \lambda \\ 0 & 0 \end{pmatrix}$, $\begin{pmatrix} 1 & 0 \\ \lambda & 0 \end{pmatrix}$, $\begin{pmatrix} 0 & 0 \\ \lambda & 1 \end{pmatrix}$, and $\begin{pmatrix} 0 & \lambda \\ 0 & 1 \end{pmatrix}$ are idempotents in $M_2(R)$.

Proposition 14 If R is a commutative ring then any element in $M_2(R)$ of the form

$$\left(\begin{array}{cc}\lambda y & x\\ -y & -\lambda y\end{array}\right), \left(\begin{array}{cc}-\lambda y & -y\\ x & \lambda y\end{array}\right), \left(\begin{array}{cc}-\lambda y & y\\ -x & \lambda y\end{array}\right), \left(\begin{array}{cc}\lambda y & -x\\ y & -\lambda y\end{array}\right)$$

where λ , x, and y belong to R and xy is invertible in R, is a Lie regular element.

Proof. The proof is clear once we observe that

$$\begin{pmatrix} \lambda y & x \\ -y & -\lambda y \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & \lambda \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & x \\ y & 0 \end{bmatrix} \end{bmatrix}.$$
$$\begin{pmatrix} -\lambda y & -y \\ x & \lambda y \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & 0 \\ \lambda & 1 \end{pmatrix}, \begin{pmatrix} 0 & y \\ x & 0 \end{pmatrix} \end{bmatrix}.$$

$$\begin{pmatrix} -\lambda y & y \\ -x & \lambda y \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 1 & 0 \\ \lambda & 0 \end{pmatrix}, \begin{pmatrix} 0 & y \\ x & 0 \end{bmatrix} \end{bmatrix}.$$
$$\begin{pmatrix} \lambda y & -x \\ y & -\lambda y \end{pmatrix} = \begin{bmatrix} \begin{pmatrix} 0 & \lambda \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 0 & x \\ y & 0 \end{pmatrix} \end{bmatrix}.$$

Corollary 15 For any field F, any element in $M_2(F)$ of the form

$$\left(\begin{array}{cc}\lambda y & x\\ -y & -\lambda y\end{array}\right), \left(\begin{array}{cc}-\lambda y & -y\\ x & \lambda y\end{array}\right), \left(\begin{array}{cc}-\lambda y & y\\ -x & \lambda y\end{array}\right), \left(\begin{array}{cc}\lambda y & -x\\ y & -\lambda y\end{array}\right)$$

where λ , x, and y belong to F, is a Lie regular element.

Corollary 16 Any matrix in $M_2(F)$ with trace 0 is Lie regular.

Remark 8 In general, the Lie product of Lie regular elements need to be Lie regular. The elements $x = \tau + \sigma \tau$ and $y = \sigma + \sigma^2 + \sigma \tau + \sigma^2 \tau$ in $\mathbb{Z}_2[S_3]$ are both Lie regular. Their Lie product $[x, y] = \sigma + \sigma^2$ is, however, not Lie regular. **Corollary 17** Lie product of any two Lie regular elements in $M_2(F)$ is again a Lie regular element.

Recall the infinite dihedral group D_{∞} , the group generated by two elements a and b where a is of infinite order and $b^2 = 1$, $ab = ba^{-1}$.

If K is a field of characteristic 2 then KD_{∞} has no nontrivial idempotents and hence has no Lie regular elements.

Proposition 18 If K is a field of characteristic different from 2 then every Lie regular element in KD_{∞} can be written as $[u_1, u_2]$ where u_1 and u_2 are units in KD_{∞} .

Proof. First observe that any element of KD_{∞} can be written as $\alpha + b\beta$ where α and β belong to $K\langle a\rangle$. Also observe that for any Lie regular element the idempotent e in [e, u] must be a nontrivial idempotent.

For any $\alpha = \sum \alpha_i a^i$ in $K \langle a \rangle$, let α^* denote the element $\sum \alpha_i a^{-i}$ in $K \langle a \rangle$. Since $ab = ba^{-1}$, it follows that $\alpha b = b \alpha^*$. We show that for every idempotent e in KD_{∞} , e+1 is a unit. So let $e = \alpha + b\beta$ be a nontrivial idempotent in KD_{∞} . Then $\alpha^2 + \beta\beta^* + b(\alpha^*\beta + \beta\alpha) =$ $\alpha + b\beta$ and hence $\alpha^2 + \beta\beta^* = \alpha$ and $\alpha^*\beta + \beta\alpha = \beta$. If $\beta = 0$ then $\alpha^2 = \alpha$. Since $K \langle a \rangle$ is a domain, it follows that α is 0 or 1, a contradiction. Thus $\beta \neq$ 0. Invoking once again the fact that $K \langle a \rangle$ is a domain $\alpha^*\beta + \beta\alpha = \beta$ gives $\alpha + \alpha^* = 1$. Since $\alpha^2 + \beta\beta^* =$ α we get $\beta\beta^* = \alpha - \alpha^2 = \alpha\alpha^*$. But then [(α + 1) + $b\beta \left[\frac{(\alpha^*+1)}{2} - b\frac{\beta}{2}\right] = 1$. It follows that e+1 = $(\alpha + 1) + b\beta$ is a unit in KD_{∞} . In other words, every idempotent in KD_{∞} can be expressed as u-1 for some unit u in KD_{∞} .

Remark 9 In general Lie regular elements need not be of the form $[u_1, u_2]$ where u_1 and u_2 are units. Consider $\mathbb{Z}_2[S_3]$. The Lie regular element $\sigma + \sigma^2 + \sigma\tau + \sigma^2\tau$ is not a Lie product of two units.

3 Lie Regular Generators of General Linear Groups

Theorem 19 Let F be the finite field with p elements, that is, $F = \mathbb{Z}_p$. The unit group of $M_2(F)$ is generated by Lie regular units a, b, and c where $a = \begin{pmatrix} 0 & 1 \\ \alpha & 0 \end{pmatrix}$, $b = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $c = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, where α is a primitive root modulo p. Indeed, the unit group of $M_2(F)$ is the group

$$\langle a, b, c | c^{2}, (ca)^{p-1}, (ca)^{(p-1)/2} (ca^{p-1})^{3} c, (c(ca^{p-1})^{-1}b)^{p}, (ca)^{-1} (c(ca^{p-1})^{-1}b)(ca) = (c(ca^{p-1})^{-1}b)^{\alpha}, (ca)^{-1} (ca^{p-1}) ca = (ca^{p-1}) (c(ca^{p-1})^{-1}b)^{1/\alpha} (ca^{p-1}) (c(ca^{p-1})^{-1}b)^{\alpha} (ca^{p-1}) (c(ca^{p-1})^{-1}b)^{1/\alpha} (ca^{p-1}), (ca^{p-1})^{2} = (c(ca^{p-1})^{-1}b(ca^{p-1}))^{3} = ((c(ca^{p-1})^{-1}b)^{4} (ca^{p-1}) (c(ca^{p-1})^{-1}b)^{(p+1)/2} (ca^{p-1}))^{2}$$

Proposition 20 For any prime p, the order of the linear group $GL(2, \mathbb{Z}_{p^n})$ is $p^{2n-1}(p+1)(\phi(p^n))^2$.

Proof. Use order of $GL(2, \mathbb{Z}_p)$ is $p(p+1)(p-1)^2$. and the surjective homomorphism $\sigma : GL(2, \mathbb{Z}_{p^n}) \rightarrow GL(2, \mathbb{Z}_p)$

Corollary 21 For any prime p, the order of $SL(2, \mathbb{Z}_{p^n})$ is $p^{2n-1}(p+1)\phi(p^n)$.

Proposition 22 If p is an odd prime then the order of $GL(2, \mathbb{Z}_{2p})$ is $6p(p+1)\phi(2p)^2$.

Proof. Use $GL(2, \mathbb{Z}_{2p}) \cong GL(2, \mathbb{Z}_2) \times GL(2, \mathbb{Z}_p)$

Corollary 23 If p is an odd prime then the order of $SL(2, \mathbb{Z}_{2p})$ is $6p(p+1)\phi(2p)$.

Theorem 24 Let p be an odd prime and $\alpha \neq 2$ be a primitive element modulo p. Then $GL(2, \mathbb{Z}_{2p})$ is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}$.

Theorem 25 If
$$n > 2$$
 then $GL(2, \mathbb{Z}_{2^n})$ is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $c = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$, and $d = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$.

Theorem 26 If p is an odd prime then $GL(2, \mathbb{Z}_{p^n})$ is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}$ where α is a primitive element modulo p^n . **Theorem 27** If p is an odd prime then $GL(2, \mathbb{Z}_{2p^n})$ is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $c = \begin{pmatrix} 0 & \alpha \\ 1 & 0 \end{pmatrix}$ where $\alpha \neq 2$ is a primitive element modulo p^n .

Theorem 28
$$GL(2, \mathbb{Z}_4) = \langle a, b, c | a^2, b^2, c^4, c^2a = ac^2, c^2b = bc^2, bc = c^{-1}b, (ab)^3, (cba)^4 \rangle$$
, where $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$,
 $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and $c = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$.

Theorem 29 The group $GL(2, \mathbb{Z}_6)$ is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $c = \begin{pmatrix} 0 & 5 \\ 1 & 0 \end{pmatrix}$. The relators on the generators are $a^2, b^2, c^4, c^2b = bc^2, c^2a = ac^2, (ab)^3, (bc)^2, (ac)^{12} = c^2, (ca)^2b(ca)^2 = (ac)^2b(ac)^2$. In other words,

$$GL(2, \mathbb{Z}_6) = \langle a, b, c | a^2, b^2, c^4, c^2b = bc^2, c^2a = ac^2, (ab)^3, (bc)^2, (ac)^{12} = c^2, (ca)^2b(ca)^2 = (ac)^2b(ac)^2 \rangle$$

Theorem 30 The group
$$GL(2, \mathbb{Z}_8)$$
 is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, $c = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$, and $d = \begin{pmatrix} 0 & 7 \\ 1 & 0 \end{pmatrix}$. Indeed,

$$GL(2, \mathbb{Z}_8) = \langle a, b, c, d | a^2, b^2, c^4, d^4, c^2a = ac^2, c^2b = bc^2, c^2d = dc^2, d^2a = ad^2, d^2b = bd^2, d^2c = cd^2, (ab)^3, (bc)^2, (bd)^2, (cd)^2, (ac)^6, c(ad)^2 = ba(ca)^2bc^3a, (ad)^6, (dab)^8 \rangle,$$

Theorem 31 The group $GL(2, \mathbb{Z}_{10})$ is generated by $a = \begin{pmatrix} 1 & 0 \\ -1 & -1 \end{pmatrix}$, $b = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$, and $c = \begin{pmatrix} 0 & 3 \\ 1 & 0 \end{pmatrix}$. Indeed,

$$GL(2, \mathbb{Z}_{10}) = \langle a, b, c | a^2, b^2, c^8, c^2b = bc^2, c^2a = ac^2, (ab)^3, (bc)^4, bca(cb)^2ab = cab(ac)^2 \rangle$$

Thank You