Double Ore Extensions versus Iterated Ore Extensions

Jerzy Matczuk

Lens, June 2009

Notation

• *K* and *K*^{*} stand for a field and its multiplicative group, respectively

Notation

- *K* and *K*^{*} stand for a field and its multiplicative group, respectively
- A denotes a K-algebra

Notation

- *K* and *K*^{*} stand for a field and its multiplicative group, respectively
- A denotes a K-algebra
- $M_{n \times m}(A)$ means the linear space of all $n \times m$ matrices over A.

Ore Extension

We say that an over-ring T of R is an Ore extension of R if:

• There is $x \in T$ such that T is a free left R-module with basis $1, x, x^2, \ldots$

Ore Extension

We say that an over-ring T of R is an Ore extension of R if:

- There is $x \in T$ such that T is a free left R-module with basis $1, x, x^2, \ldots$
- 2 $xR \subseteq Rx + R$ (or equivalently $xR + R \subseteq Rx + R$)

Ore Extension

We say that an over-ring T of R is an Ore extension of R if:

- There is $x \in T$ such that T is a free left R-module with basis $1, x, x^2, \ldots$
- 2 $xR \subseteq Rx + R$ (or equivalently $xR + R \subseteq Rx + R$)

Theorem

Let R be a ring with an endomorphism σ and σ -derivation d. Then multiplication in R and the rule $xa = \sigma(a)x + d(a)$, for $a \in R$, define the structure of an Ore extension on the left free R-module with basis $1, x, x^2, ...$

Proposition

For the Ore extension $T = R[x; \sigma, d]$ the following conditions are equivalent:

• T is a free right R-module with the basis $\{x^i\}_{i=0}^{\infty}$;

Proposition

For the Ore extension $T = R[x; \sigma, d]$ the following conditions are equivalent:

- T is a free right R-module with the basis $\{x^i\}_{i=0}^{\infty}$;
- **2** σ is an automorphism of R;

Proposition

For the Ore extension $T = R[x; \sigma, d]$ the following conditions are equivalent:

- T is a free right R-module with the basis $\{x^i\}_{i=0}^{\infty}$;
- **2** σ is an automorphism of R;
- σ is injective and xR + R = Rx + R;

Proposition

For the Ore extension $T = R[x; \sigma, d]$ the following conditions are equivalent:

- T is a free right R-module with the basis $\{x^i\}_{i=0}^{\infty}$;
- **2** σ is an automorphism of R;
- σ is injective and xR + R = Rx + R;
- xR + R = Rx + R is a free right *R*-module with basis 1, *x*.

Definition of a right double Ore extension

Definition

Let A be a subalgebra of an K-algebra B. Then B is called a right double Ore extension of A if:

1 B is generated by A and two new variables y_1 and y_2 ;

Definition of a right double Ore extension

Definition

Let A be a subalgebra of an K-algebra B. Then B is called a right double Ore extension of A if:

• B is generated by A and two new variables y_1 and y_2 ;

2 y_1 and y_2 satisfy the relation

$$y_2y_1 = p_{12}y_1y_2 + p_{11}y_1^2 + \tau_1y_1 + \tau_2y_2 + \tau_0$$

where $p_{12}, p_{11} \in K$ and $\tau_1, \tau_2, \tau_0 \in A$;

Definition of a right double Ore extension

Definition

Let A be a subalgebra of an K-algebra B. Then B is called a right double Ore extension of A if:

- B is generated by A and two new variables y_1 and y_2 ;
- 2 y_1 and y_2 satisfy the relation

$$y_2y_1 = p_{12}y_1y_2 + p_{11}y_1^2 + \tau_1y_1 + \tau_2y_2 + \tau_0$$

where $p_{12}, p_{11} \in K$ and $\tau_1, \tau_2, \tau_0 \in A$;

3 B is a free left A-module with basis $\{y_1^{n_1}y_2^{n_2}: n_1 \ge 0, n_2 \ge 0\};$

Definition of a right double Ore extension

Definition

Let A be a subalgebra of an K-algebra B. Then B is called a right double Ore extension of A if:

- B is generated by A and two new variables y_1 and y_2 ;
- 2 y_1 and y_2 satisfy the relation

$$y_2y_1 = p_{12}y_1y_2 + p_{11}y_1^2 + \tau_1y_1 + \tau_2y_2 + \tau_0$$

where $p_{12}, p_{11} \in K$ and $\tau_1, \tau_2, \tau_0 \in A$;

- **3** B is a free left A-module with basis $\{y_1^{n_1}y_2^{n_2}: n_1 \ge 0, n_2 \ge 0\};$

Definition of double Ore extension

Definition

A right double extension B of A is called a double Ore extension if:

•
$$p_{12} \neq 0$$

Definition of double Ore extension

Definition

A right double extension B of A is called a double Ore extension if:

•
$$p_{12} \neq 0$$

• *B* is a free right *A*-module with basis
$$\{y_2^{n_1}y_1^{n_2}: n_1 \ge 0, n_2 \ge 0\};$$

Definition of double Ore extension

Definition

A right double extension B of A is called a double Ore extension if:

•
$$p_{12} \neq 0$$

• *B* is a free right *A*-module with basis
$$\{y_2^{n_1}y_1^{n_2}: n_1 \ge 0, n_2 \ge 0\};$$

•
$$y_1A + y_2A + A = Ay_1 + Ay_2 + A$$
.

Commutation formulae

$$\left[\begin{array}{c} y_1\\ y_2 \end{array}\right]a=\sigma(a)\left[\begin{array}{c} y_1\\ y_2 \end{array}\right]+\delta(a), \text{ for all } a\in A$$

where

$$\sigma = \begin{bmatrix} \sigma_{11} & \sigma_{12} \\ \sigma_{21} & \sigma_{22} \end{bmatrix} : A \to M_{2 \times 2}(A)$$

and

$$\delta = \left[\begin{array}{c} \delta_1\\ \delta_2 \end{array}\right] : A \to M_{2 \times 1}(A)$$

In the case *B* is a right double extension of *A*, we will write $B = A_P[y_1, y_2; \sigma, \delta, \tau]$, where $P = \{p_{12}, p_{11}\} \subseteq K$ and $\tau = \{\tau_0, \tau_1, \tau_2\} \subseteq A$ and σ, δ are as described above. The set *P* is called a parameter and τ a tail.

Theorem

Given an K-algebra A suppose that σ is a homomorphism from A to $M_{2\times2}(A)$, δ is a σ -derivation from A to $M_{2\times1}(A)$, P is a given set $\{p_{12}, p_{11}\}$ of elements of K and τ is the set $\{\tau_0, \tau_1, \tau_2\}$ of elements of A. Then the associative algebra B generated by A and by y_1, y_2 subject to the relations from the definition of right double extension is a right double if and only if the maps $\sigma_{ij}, \sigma_{i0} = \delta_i$, $i, j \in \{1, 2\}$ satisfy six relations (R3.1)-(R3.6) from [J.J.Zhang, J.Zhang], page 2674.

If $B = K_P[y_1, y_2; \sigma, \delta, \tau]$, then $B = K[x_1][x_2; \sigma_2, d_2]$ is an iterated Ore extension, where σ_2 is a K-linear endomorphism of the polynomial ring $K[x_1]$ defined by $\sigma_2(x_1) = p_{12}x_1 + \tau_2$ and d_2 is a K-linear σ_2 -derivation of $K[x_1]$ given by $d_2(x_1) = p_{11}x_1^2 + \tau_1x_1 + \tau_0$. Moreover B is a double extension of K if and only if $p_{12} \neq 0$.

Let $P = \{p_{12}, p_{11}\} \subseteq K$ and $\tau = \{\tau_0, \tau_1, \tau_2\} \subseteq K$. $\sigma: A \to M_{2 \times 2}(A)$ be a homomorphism and $\delta: A \to M_{2 \times 1}(A)$ a σ -derivation of algebras. Then the following conditions are equivalent:

• the right double extension $A_P[y_1, y_2; \sigma, \delta, \tau]$ exists;

Let $P = \{p_{12}, p_{11}\} \subseteq K$ and $\tau = \{\tau_0, \tau_1, \tau_2\} \subseteq K$. $\sigma: A \to M_{2 \times 2}(A)$ be a homomorphism and $\delta: A \to M_{2 \times 1}(A)$ a σ -derivation of algebras. Then the following conditions are equivalent:

- the right double extension $A_P[y_1, y_2; \sigma, \delta, \tau]$ exists;
- one can extend the multiplication from A and C to the multiplication in the linear space $A \otimes_K C$, where $C = K[x_1][x_2; \sigma_2, \delta_2]$ is as in Proposition above, by requiring that $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix} a = \sigma(a) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} + \delta(a)$, for all $a \in A$.

Suppose $A_P[y_1, y_2; \sigma, \delta, \tau]$ is given. Then σ is invertible iff $Ay_1 + Ay_2 + A = y_1A + y_2A + A$ and is free as right and left A-module with basis $1, y_1, y_2$.

Suppose $A_P[y_1, y_2; \sigma, \delta, \tau]$ is given. Then σ is invertible iff $Ay_1 + Ay_2 + A = y_1A + y_2A + A$ and is free as right and left A-module with basis $1, y_1, y_2$.

Question

Is $A_P[y_1, y_2; \sigma, \delta, \tau]$ a double extension if σ is invertible and $p_{12} \neq 0$?

Theorem

Let A, B be K-algebras such that B is an extension of A and $P = \{p_{12}, p_{11}\} \subseteq K, \tau = \{\tau_0, \tau_1, \tau_2\} \subseteq A, \sigma$ is an algebra homomorphism from A to $M_{2\times 2}(A)$ and δ is a σ -derivation from A to $M_{2\times 1}(A)$. The following conditions are equivalent:

B = A_P[y₁, y₂; σ, δ, τ] is a right double extension of A which can be presented as an iterated Ore extension A[y₁; σ₁, d₁][y₂; σ₂, d₂];

Theorem

Let A, B be K-algebras such that B is an extension of A and $P = \{p_{12}, p_{11}\} \subseteq K, \tau = \{\tau_0, \tau_1, \tau_2\} \subseteq A, \sigma$ is an algebra homomorphism from A to $M_{2\times 2}(A)$ and δ is a σ -derivation from A to $M_{2\times 1}(A)$. The following conditions are equivalent:

- B = A_P[y₁, y₂; σ, δ, τ] is a right double extension of A which can be presented as an iterated Ore extension A[y₁; σ₁, d₁][y₂; σ₂, d₂];
- $B = A_P[y_1, y_2; \sigma, \delta, \tau]$ is a right double extension with $\sigma_{12} = 0$;

Theorem

Let A, B be K-algebras such that B is an extension of A and $P = \{p_{12}, p_{11}\} \subseteq K, \tau = \{\tau_0, \tau_1, \tau_2\} \subseteq A, \sigma$ is an algebra homomorphism from A to $M_{2\times 2}(A)$ and δ is a σ -derivation from A to $M_{2\times 1}(A)$. The following conditions are equivalent:

- B = A_P[y₁, y₂; σ, δ, τ] is a right double extension of A which can be presented as an iterated Ore extension A[y₁; σ₁, d₁][y₂; σ₂, d₂];
- $B = A_P[y_1, y_2; \sigma, \delta, \tau]$ is a right double extension with $\sigma_{12} = 0$;
- $B = A[y_1; \sigma_1, d_1][y_2; \sigma_2, d_2]$ such that

$$\sigma_2(A) \subseteq A, \quad \sigma_2(y_1) = p_{12}y_1 + \tau_2, \\ \delta_2(A) \subseteq Ay_1 + A, \quad \delta_2(y_1) = p_{11}y_1^2 + \tau_1y_1 + \tau_0$$

where $p_{ij} \in K$ and $\tau_i \in A$.

• The maps
$$\sigma = \begin{bmatrix} \sigma_{11} & 0 \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$
, $\delta = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$, and σ_i , δ_i , $i = 1, 2$ are such that:

• The maps
$$\sigma = \begin{bmatrix} \sigma_{11} & 0 \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$
, $\delta = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$, and σ_i , δ_i , $i = 1, 2$
are such that: $\sigma = \begin{bmatrix} \sigma_1 & 0 \\ \sigma_{21} & \sigma_2 |_A \end{bmatrix}$,

• The maps
$$\sigma = \begin{bmatrix} \sigma_{11} & 0 \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$
, $\delta = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$, and σ_i , δ_i , $i = 1, 2$
are such that: $\sigma = \begin{bmatrix} \sigma_1 & 0 \\ \sigma_{21} & \sigma_2|_A \end{bmatrix}$,
 $\delta(a) = \begin{bmatrix} d_1(a) \\ d_2(a) - \sigma_{21}(a)y_1 \end{bmatrix}$, for any $a \in A$;

• The maps
$$\sigma = \begin{bmatrix} \sigma_{11} & 0 \\ \sigma_{21} & \sigma_{22} \end{bmatrix}$$
, $\delta = \begin{bmatrix} \delta_1 \\ \delta_2 \end{bmatrix}$, and σ_i , δ_i , $i = 1, 2$
are such that: $\sigma = \begin{bmatrix} \sigma_1 & 0 \\ \sigma_{21} & \sigma_2|_A \end{bmatrix}$,
 $\delta(a) = \begin{bmatrix} d_1(a) \\ d_2(a) - \sigma_{21}(a)y_1 \end{bmatrix}$, for any $a \in A$;
• *B* is a double Ore extension if and only if $\sigma_1 = \sigma_{11}$ and
 $\sigma_2|_A = \sigma_{22}$ are an automorphisms of *A* and $p_{12} \neq 0$.

Theorem

Let $B = A_P[y_1, y_2; \sigma, \delta, \tau]$ be a right double extension of the K-algebra A, where $P = \{p_{12}, p_{11}\} \subseteq K, \tau = \{\tau_0, \tau_1, \tau_2\} \subseteq A, \sigma: A \rightarrow M_{2\times 2}(A)$ is an algebra homomorphism and $\delta: A \rightarrow M_{2\times 1}(A)$ is a σ -derivation. Then, B can be presented as an iterated Ore extension $A[y_2; \sigma'_2, d'_2][y_1; \sigma'_1, d'_1]$ if and only if $\sigma_{21} = 0, p_{12} \neq 0$ and $p_{11} = 0$. In this case, B is a double extension if and only if $\sigma'_2 = \sigma_{22}$ and $\sigma'_1|_A = \sigma_{11}$ are automorphisms of A.

Lemma

Let $B = A_P[y_1, y_2; \sigma, \delta, \tau]$ be a right double extension, $k, l \in K$ and $0 \neq z = ky_1 + ly_2 \in B$. Then:

 $zA \subseteq Az + A$ iff $k \sigma_{11} + l^2 \sigma_{21} = k \sigma_{22} + k^2 \sigma_{12}$.

Example

Let $a, b, c \in K$ with $b \neq 0$, A = K[x] and $\sigma: A \longrightarrow M_{2\times 2}(A)$ the *K*-homomorphism given by $\sigma(x) = \begin{bmatrix} 0 & b^{-1}x \\ bx & 0 \end{bmatrix}$. Let $\delta: A \to M_{2\times 1}(A)$ denote the σ -derivation determined by the condition $\delta(x) = \begin{bmatrix} cx^2 \\ -bcx^2 \end{bmatrix}$. Then the double extension $B^2(a, b, c) = A_{\{-1,0\}}[y_1, y_2; \sigma, \delta, \{0, 0, ax^2\}]$ exists and it is a *K*-algebra generated by x, y_1, y_2 subject to the relations: $y_2y_1 = -y_1y_2 + ax^2$, $y_1x = b^{-1}xy_2 + cx^2$, $y_2x = bxy_1 + (-bc)x^2$

The algebra $B^2 = B^2(a, b, c)$ has the following properties:

Suppose that char(K) = 2. Then B² can be presented as iterated Ore extension over K[x]. In fact B² = K[x, z][y₂; σ₂, d], where σ₂ is an automorphism of the polynomial ring K[x, z] defined by σ₂(x) = -x, σ₂(z) = -z and d is a σ₂-derivation of K[x, z] determined by d(x) = xz - bcx² and d(z) = bax².

The algebra $B^2 = B^2(a, b, c)$ has the following properties:

Suppose that char(K) = 2. Then B² can be presented as iterated Ore extension over K[x]. In fact B² = K[x, z][y₂; σ₂, d], where σ₂ is an automorphism of the polynomial ring K[x, z] defined by σ₂(x) = -x, σ₂(z) = -z and d is a σ₂-derivation of K[x, z] determined by d(x) = xz - bcx² and d(z) = bax².

B² is a noetherian domain.

Question

Let B be a double Ore extension of an algebra A

• Suppose A is noetherian. Is B is noetherian?

Question

Let B be a double Ore extension of an algebra A

- Suppose A is noetherian. Is B is noetherian?
- Suppose A is a domain. Is also B a domain?

Question

Let B be a double Ore extension of an algebra A

- Suppose A is noetherian. Is B is noetherian?
- Suppose A is a domain. Is also B a domain?
- Suppose *R* is prime (semiprime noetherian). Is *B* is also such?

Thanks for your attention