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Shannon Paradigm

In 1948, Claude Sannon (Bell Labs) published ”A mathematical
theory of Communication”, dealing with the problem of digital
communication in presence of natural noise between a source of
messages and a receiver.

1 message m ∈ Fk
2 is

2 encoded as a string ( codeword ) c ∈ Fn
2 with n > k

3 sent on a channel where it is

4 corrupted by an error word e ∈ Fn
2

5 received as y = c + e

6 decoded as m̂

The code is the set of all codewords generated by all possible
messages.
The integer n is called the length of the code and the ratio k/n
its transmission rate .



Channels in practice

There are two kinds

space channel

telephone line
radio

time channels

CD, DVD
mass memories
flash memories



Shannon theorem

Shannon proved that as long as the transmission rate k/n is less
than the capacity of a channel , given ε there are long codes (ie
with n large) such that the probabibility that m 6= m̂ is < ε
The proof is probabilist and non constructive :=((
The aim of algebraic coding theory is to construct effectively
good codes, by assuming some algebraic structure on the code.
One method is to replace bits by elements of a ring ( the alphabet
) and assume the code is a module over that ring.
Another method is to assume some symmetry (cyclicity,
quasicyclicity) that can be expressed by a ideal or module
structure of the code over some auxilliary ring.



Advertisement

The Proceedings of the CIMPA summer school on Codes over
rings ( Ankara 2008) are to be published next Fall by World
Scientific.
A tentative table of contents is
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3 H.Q. Dinh, S.R. Lopez-Permouth, S. Szabo, A survey on
cyclic and negacyclic codes over finite chain rings

4 T. Honold, I. Landgev, Linear Codes over Finite Chain Rings
and Projective Hjelmslev Geometries

5 J. Wood, Foundations of linear codes defined over finite
modules : the extension theorem and the MacWilliams
identities



Linear codes over finite fields

A linear code C of length n over Fq is an Fq vector subspace of Fn
q

The dimension of such a code usually denoted by k is its
dimension as an Fq vector space
The parameters of a code are denoted by [n, k]q.
The code is specified by a basis of the space. A matrix of size k by
n with rows these vectors is called a generator matrix.

C = {uG | u ∈ Fk
q}

The parity check matrix H of a code is any n − k by n matrix
such that C = Ker(H) or in other words

C = {x ∈ Fn
q | HxT = 0}

The row span of H is a code of dimension n − k denoted by C⊥

and called the dual code.



The repetition code Rn

Let q = 2. If G is the row matrix containing only ones we get an
[n, 1] code.
It is a low rate code that can transmit one bit of information
Can correct n/2 errors by majority voting.
Anecdote : Shannon in 1983 (Brighton ISIT) was asked by an

admirer to defined Coding Theory.
”Simple : without coding you say thank you, with coding coding
you say thank you,thank you,thank you,thank you,thank you,thank
you,thank you,thank you,. . .”



The parity check code

It is the dual code of the preceding.
It is a high rate code that can detect one error but correct
none .
Anecdote : It is because Hamming an office mate of Shannon in

the 40’s was tired to have stalled programs over the week end by a
failed parity check that he invented the Hamming codes that can
correct one error.



Distance and Weight

The Hamming weight wH(x) of x ∈ Fn
q is the number of entries

where x 6= 0.
The Hamming distance dH(x , y) of two vectors x , y ∈ Fn

q is
wH(x − y).
The Hamming distance satisfies the triangle inequality namely

dH(x , y) ≤ dH(x , z) + dH(z , y)

The sphere of radius r about x is defined as

Bx(r) = {y ∈ Fn
q | dH(x , x) ≤ r}



Minimum distance and error correction capacity

The Minimum distance dH(C ) of a code C is defined as

dH(C ) = min{dH(x , y) | x 6= y ∈ C}

The error correcting capacity a.k.a packing radius is then

t(C ) := bdH(C )− 1

2
c

The triangle inequality shows that the spheres of radius t about
codewords are pairwise disjoint. Therefore all received words
corrupted by ≤ t errors are at distance at most t of at most one
codeword :
nearest neighbor decoding if at all possible gives a unique result.
The parameters of a code are compactly denoted by [n, k, d ]q.



Fundamental Problem

Let Bq(n, d) denote the largest size of an [n, k , d ]q code.
Given n, d one would like this function to be as large as possible to
send as many messages as possible.
Given n and k one would like to d to be as large as possible to
correct as many errors as possible.
There is a trade-off between these two conflicting requirements.
Determining Bq(n, d) is the so called fundamental problem of
coding theory.
The repetition and parity check codes are two optimal codes at
each end of the spectrum, showing that, respectively
B2(n, 2) = n − 1 and Bq(n, n) = q.
See www.codetables.de for a table of record holders !



Sphere packing and sphere covering bounds

The notion of packing radius shows by enumeration that

Bq(n, d) ≤ qn

#B0(t)
=

qn∑t
j=0

(n
j

)
(q − 1)j

.

The notion of covering radius shows that ( Gilbert bound ) there
are codes as good as

Bq(n, d) ≥ qn

#B0(d − 1)
=

qn∑d−1
j=0

(n
j

)
(q − 1)j



Cyclic codes over fields

Let T denote the shift operator over Fn
q.

T ((c0, . . . , cn−1)) := (cn−1, c0, . . . , cn−2)

A code C is said to be cyclic if it linear and wholly invariant
under the shift T (C ) ⊆ C .
The polynomial representation of cyclic codes is the generating
function approach as defined by

c(x) := c0 + c1x + · · ·+ cn−1

It is immediate to see that a code is cyclic iff its polynomial
representation is an ideal of the ring

Rn(q) := Fq[x ]/(xn − 1).



Algebraic structure of cyclic codes

The ring Rn(q) is principal .
If C is cyclic then there exists a unique monic polynomial of lowest
degree g such that C = 〈g〉.
It can be shown that g divides xn − 1 and that
dim(C ) = n − deg(g).
The dual of a cyclic code is also cyclic, with generator the
(normalized) reciprocal of (xn − 1)/g .
Conclusions

To understand the structure of cyclic codes we need to
understand the structure of the ring Rn(q)

To generate all cyclic codes of length n we need to factorize
xn − 1

This philosophy will remain when replacing Fq by a more complex
ring !



Factorizing xn − 1

If (n, q) = 1 all the roots of xn − 1 over Fq are simple.
The roots of xn − 1 are powers of α where α is a primitive root of
unity of order n in a large enough extension of Fq.
To be precise Fqt where t is the order of q modulo n
Define the q−cyclotomic classes as the orbits of Zn under the
permutation x 7→ qx
There is a one to one correspondence between such orbits and
irreducible factors of xn − 1,

C ↔
∏
i∈C

(x − αi )

Example : Take n = 7 and q = 2. The classes are

{0}, {1, 2, 4}, {3, 5, 6},

corresponding to factors (x + 1), (x3 + x + 1), (x3 + x2 + 1)



Roots and minimum distance

There are many bounds on the minimum distance of C as a
function of the roots of g .
The so called BCH bound states that if the exponents of the roots
contain s consecutive residues modulo n, then d ≥ s + 1. The
proof is based on the evaluation of the van der Monde determinant.
Example : Take n = 7 and q = 2. The generator

(x + 1)(x3 + x2 + 1) contains roots corresponding to 5, 6, 0. And
yes the distance is 4 (even part of the Hamming code).



Hamming code

Let q = 2 and n = 2m − 1. Choose g to be an irreductible
primitive polynomial. Its roots contain {α, α2}. Hence d ≥ 3, by
the BCH bound. It can be shown that d = 3.
In fact n − k = m and therefore 2n−k = 2m = n + 1, showing that
the code meets the Hamming bound with equality.
Such a code is called perfect .
The parameters of linear perfect codes over finite fields were
classified in the 70’s

repetition codes [2m + 1, 1,m]2
Hamming codes [qm−1

q−1 , n −m, 3]q
binary Golay code [23, 12, 7]2
ternary Golay code [11, 6, 5]3

The last two are cyclic.
The classification of codes is open for non necessary linear codes.
The classification of parameters is totally open for non prime
powers alphabets.



Reed Solomon code

Let n = q − 1, so that, by Fermat little Theorem, xn − 1 factors
completely over Fq[x ].
Take

g =
s∏

i=1

(x − αi ),

a polynomial with coefficients in Fq

By the BCH bound d ≥ s + 1 = n − k + 1.
But looking at the rank of a parity check matrix we see that
d ≤ n − k + 1.( Singleton bound )
So d = n − k + 1.
Such a code is called MDS for maximum distance separable.



Convolutional codes vs block codes

Block codes are used in groups of n symbols comprising k
information symbols.
This requires synchronization between source and receiver
Think of a convolutional encoder as a linear transform that turns
k streams of information symbols into n streams of encoded
symbols.
There are universal graph theoretic algorithms to decode
convolutional codes.
In some cases these algorithms allow self synchronization.



Convolutional Codes : algebraic structure

A convolutional code of rate k/n over a field F is a block code of
length n and k generators over a ring R of generating functions
with coefficients in F and indeterminate D, say
This is the D−transform representation of a linear system over F
with k inputs and n outputs. In the past various schools have used
various conventions :

R = F (D) (rational functions for Massey)

R = F [[D]] (formal power series for van Lint)

R = F [D] (polynomials for Rosenthal and behaviorists)

In this talk we shall adopt R = F [D] and F = F2



Convolutional Codes : metric structure

The Hamming weight w over F is extended additively to
polynomials
If f = f0 + · · ·+ fdDd then w(f ) := w(f0) + · · ·+ w(fd)
and componentwise to vectors in polynomials
The free distance df (C ) of a convolutional code C is the minimum
Hamming weight of a nonzero codeword
Fundamental problem : Given n, k what is the largest df of an
[n, k] convolutional code ?



Codes, Invariants, Modular forms : Motivation

In 1972 Broué and Enguehard derived an algebra isomorphism
between
The ring M4∗(PSL(2,Z)) of modular forms of weight multiple of 4

and

The ring of invariants that contain the weight enumerators
of Type II codes



Recent results

In the 90’s there has been a renaissance of that kind of problem for
two reasons
New alphabets for the codes : codes over rings
New weight enumerators : Lee weight, multiple weight, split weight
As a result connections with more types of modular forms appear :
Hilbert, Siegel, Jacobi, half integral weight
in the work of many authors :
Bannai, Choie, Chua, Duke, Ebeling, Hirzebruch, Nebe, Runge, S.,
Ozeki, Vardi, etc
In the current talk I cannot develop the MF aspect but I will
review the classical material for codes over fields



Type II codes

A binary code of length n and dimension k is a k−dimensional
F2− subspace of Fn

2.
The dual of a code is wrt the standard Euclidean product

∑
i xiyi .

C⊥ = {y ∈ Fn
2, ∀x ∈ C , x .y = 0}.

A code is self-dual if equal to its dual.
It is Type II iff it is self-dual and each of its vectors contains w
ones with w a multiple of 4.
Example : R2 := {00, 11}. is self dual but not Type II.
Property : Type II codes only exist in lengths multiple of 8.



Weight Enumerators

If z is a binary vector denote by z0 (resp. z1) the number of zeroes
(resp. number of ones) in its entries.
The (Hamming) Weight Enumerator of a code C is the
homogeneous polynomial in two variables of total degree n

WC (x , y) =
∑
c∈C

xc0y c1 .

Example : W00,11(x , y) = x2 + y2.



A finite group of order 192

Let GII denote the matrix group 〈M,N〉, where

M =
1√
2

[
1 1
1 −1

]
, N =

[
1 0
0 i

]
.

Key fact If C is a type II code, its weight enumerator is invariant
under GII by linear action
M invariance expresses self-duality (fixed point of MacWilliams
transform)
N invariance expresses Type II property
Example : WC (x , y) = x2 + y2, is M−invariant but not
N−invariant



Gleason Theorem (ICM 1970)

Define

ψ8(x , y) = x8 + y8 + 14x4y4, ν24 = x4y4(x4 − y4)4

The weight enumerator of a Type II code of weight 8n is a
polynomial in ψ8 and ν24.

WC =

bn/3c∑
j=0

ajψ
n−3j
8 ν j

24,

for some (unique) scalars aj .
In other words, the algebra of invariants of GII is generated by
ψ8, ν24.

C[x , y ]GII = C[ψ8, ν24].



Lattices

Let (v1, . . . , vn) be a basis of Rn

A Lattice Λ is defined as

Λ := {
n∑

i=1

λivi λi ∈ Z}

Its main measurements are
fundamental parallelotope, fundamental volume, packing radius ρ,
covering radius R.
The dual Λ∗ of a lattice Λ is

Λ∗ := {y ∈ Rn ∀x ∈ Λ x .y ∈ Z}

A lattice is unimodular if it is equal to its dual.



Lattices and Modular forms

Define the theta series of the lattice L by

θL(q) =
∑
v∈L

qv .v ,

where q = exp(π
√
−1τ), and =(τ) > 0. Recall the generators S ,T

of PSL(2,Z)
S : τ 7→ −1/τ, T : τ 7→ τ + 1.

key fact : If L ⊆ Rn is unimodular even its theta series is a modular
form of weight n/2 and principal character



Hecke Theorem

Define the Eisenstein series of weight 4 and the cusp form of
weight 12

E4 = 1 + 240
∞∑

m=1

σ3(m)qm, ∆ = q2
∞∏

m=1

(1− q2m)24.

The weight enumerator of a unimodular even lattice of dimension
8n is a polynomial in E4 and ∆.

WC =

n/3c∑
j=0

ajE
n−3j
4 ∆j ,

for some (unique) scalars aj . In other words

M4∗(PSL(2,Z)) = C[E4,∆]



Dictionary

Lattices Codes

Rn Fn
2

Euclid Hamming

unimodular self-dual

unimodular even Type II

theta series weight enumerator

PSL(2,Z) = 〈S ,T 〉 〈M,N〉
Hecke theorem Gleason theorem

modular forms invariant theory

E4 ψ8

∆ ν24



Construction A

Given an additive code C of length n over Zm construction A
builds a lattice A(C ) by the rule

√
mA(C ) = C + mZn

√
mA(C ) is the inverse image of reduction mod m in Zn

The fundamental volume is mn/2/C
The packing radius is determined by the minimum Hamming
distance (m = 2)
or the minimum Euclidean distance (m = 4)
A(C ) is unimodular iff C is self-dual
A(C ) is even iff the euclidean weights of C are multiples of 2m



Partial explanation of the dictionary

Define two Jacobi theta null werte

θ3 =
∑
n∈Z

qn2

θ2 =
∑
n∈Z

q(n+1/2)2

Then the theta series of the lattice A(C ) is

WC (θ3, θ2).

Example : if C is the unique Type II code of length 8 then A(C ) is
the unique unimodular even lattice of dimension 8, the root lattice
E8.

E4 = θE8 = ψ8(θ3, θ2),

with ψ8(x , y) = x8 + y8 + 14x4y4.



Broué- Enguehard map

The map BE : f 7→ f (θ3, θ2) is an algebra isomorphism from the
invariant ring of GII onto the ring of modular forms of weight
multiple of four M4∗(PSL(2,Z)),
which maps ψ8 on E4 and ν24 on ∆.

That BE (f ) is a modular form comes from the transformation law
of Jacobi thetas combined with the group laws

The map is one to one because both algebras are free on two
generators

Of course many invariants of GII are not weight enumerators : an
example is ∆.



Ozeki extension

The map BE : f 7→ f (θ3, θ2) is an algebra isomorphism from a
ring of relative invariants of GII onto the ring of modular forms of
even weight M2∗(PSL(2,Z)),
which maps ψ8 on E4 and k12 on E6.

Here k12 = x12 − 33(x8y4 + x4y8) + y12, is an invariant occurring
in Felix Klein’s work on the icosahedron

The ring of relative invariants is free on two generators ψ8 and k12



Conclusion : codes and rings

There are many aspects in coding theory : combinatorial,
probabilistic, algebraic
Algebra is mostly useful in explicit constructions
Ring theory in particular occurs in relation with cyclic codes
It can also be used to determine the structure of certain ring of
polynomial invariants containing weight enumerators


