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Rings

A: commutative ring with identity 1
A local: if it has a unique maximal ideal M.

k:=A/M is a field.

Quasi-Cyclic Codes over Rings



Rings

A: commutative ring with identity 1

A local: if it has a unique maximal ideal M.

k:=A/M is a field.

Hensel lifting: Factorizations fg of elements h of k[X] can be

“lifted” to factorizations FG of H in A[X] in such a way that f, g, h
correspond to F, G, H respectively under reduction modulo M.
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Rings

Chain Rings

Chain ring: both local and principal.
A local ring is a chain ring

)

maximal ideal has a unique generator t, say: M = (t).
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Rings

Chain Rings

Chain ring: both local and principal.

A local ring is a chain ring

)

maximal ideal has a unique generator t, say: M = (t).

AD () D (t) D> 2t hH o (tY) = (0).

d: depth of A.
If k has g elements, then A/(t') has g’ elements, so A has g
elements.
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Rings

Chain Rings

Example

. Finite fields I,

. Integer rings Zpr

. Galois rings GR(p", m)
Fqlul/(u¥)

A w0 NN
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Codes over Rings

Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Codes over Rings

Linear code C of length n over A: an A-submodule of A", i.e.,

» x,yec C=>x+ye(
» VAe A xe C= e (C,
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Codes over Rings

. . . Quasi-Cyclic Codes
Quasi-Cyclic Codes over Rings The Ring R(A, m)

Fourier Transform & Trace Formula

Codes over Rings

Linear code C of length n over A: an A-submodule of A", i.e.,

» x,yec C=>x+ye(
>» VAeEA xe(C= e,

T: standard shift operator on A”

T(a0,a1,---,an-1) = (an—1,a0, .- -,an—2).

C quasi-cyclic of index ¢ or ¢-quasi-cyclic: invariant under T*.
Assume: /¢ divides n
m := n/{: co-index.
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Codes over Rings

Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula
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Codes over Rings

Example

» If £ =2 and first circulant block is identity matrix, code
equivalent to a so-called pure double circulant code.

» Up to equivalence, generator matrix of such a code consists of
m X m circulant matrices.
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Codes over Rings

Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula
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Quasi-Cyclic Codes

m: positive integer.
R := R(A,m)=A[Y]/(Y™ —1).

C: quasi-cyclic code over A of length /m and index /.

€ = (00, €015 -+ €0¢—15CLOs -+ CLe—1s- -3 Cm—1,05---5Cm—1,-1) € C
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula
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Quasi-Cyclic Codes

m: positive integer.
R := R(A,m)=A[Y]/(Y™ —1).

C: quasi-cyclic code over A of length /m and index /.

€ = (€00, 015 -+ 50,615 CLOs - -+ » CLe—1s- -5 Cm=1,05-- -+ Cm—1,4-1) € C
Define ¢ : A“" — R' by

#(c) = (co(Y),c1(Y),...,c_1(Y)) € R,
where ¢;(Y) =7 e Y € R.

¢(C): image of C under ¢.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Quasi-Cyclic Codes

Lemma
¢ induces one-to-one correspondence

quasi-cyclic codes over A of index ¢ and length {m

!

linear codes over R of length ¢

Quasi-Cyclic Codes over Rings



Codes over Rings

. . . Quasi-Cyclic Codes
Quasi-Cyclic Codes over Rings The Ring R(A, m)

Fourier Transform & Trace Formula

C linear = ¢(C) closed under scalar multiplication by elements of

A.
Since Y™ =1 in R,

m—1 m—1
YCJ'(Y) = Z C,'J'Yi+1 = Z Ci—1, Yi,
i=0 i=0

subscripts taken modulo m.
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Codes over Rings

Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Proof continued

(Yeo(Y), Yer(Y), ..., Yer1(Y)) € R

corresponds to

(Cm=—1,00Cm—1,1- - - s Cm—1,6—1, €00, €015 - - - s CO4—15 - - - 5
¢
Cm—2,0,---sCm—20-1) € A",

which is in C since C is quasi-cyclic of index /.
Therefore, ¢(C) closed under multiplication by Y.
Hence ¢(C) is R-submodule of R’.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Proof continued

(Yeo(Y), Yer(Y), ..., Yera(Y)) € R
corresponds to
(Cm—1,0,Cm—1,15+ - Cm—1,6-1, €005 COL, - - + s CO,—15 - - - 5
Cm—2,0;-++sCm—24-1) € A™™,

which is in C since C is quasi-cyclic of index /.
Therefore, ¢(C) closed under multiplication by Y.
Hence ¢(C) is R-submodule of R’.

For converse, reverse above argument.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Quasi-Cyclic Codes

Conjugation map ~on R: identity on the elements of A and sends
Y to Y1 = Y™ 1 and extended linearly.
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Quasi-Cyclic Codes

Conjugation map ~on R: identity on the elements of A and sends
Y to Y1 = Y™ 1 and extended linearly.

Euclidean inner product on A‘™: for
a = (200,01 - --+30,6—1,310- -+ 3L 4—1s--++3m—1,05-- > 3dm—1,0—1)
and

b = (boo, bo1, - .-, boe—1,b10,- -, b1 -1, -, bm-10,.-, bm_1,0-1),

define

(\

-1
ajjbj;.

m—1

I
o

i=0 j
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula
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Quasi-Cyclic Codes

Hermitian inner product on R¢: for
X = (X07 oo 7X€—1) and y= (yOa o ,)/Z—l),

-1
xy) = X
j=0
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula
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Quasi-Cyclic Codes

Hermitian inner product on R¢: for
X = (X07 oo 7X€—1) and y= (yOa o ,)/Z—l),
-1
xy) = X
j=0
Proposition

a,be A'™. Then

(T*(@)) -b=0forall0 < k<m-—1

)
(¢(a), #(b)) = 0.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Condition (¢(a), ¢(b)) = 0 equivalent to

/-1 /-1 m—1 m—1
0-Yam -5 (o) (Sev) 0
j=0 j=0 \i=0 k=0
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Condition (¢(a), ¢(b)) = 0 equivalent to

-1 -1 /m-—1 ] m—1
o= a5-5 (Sav) (Sor). o
j=0 j=0 k=0
Comparing coefficients of Y", (1) equivalent to
{—1 m—1
aisnibj =0, forall 0<h<m—1, (2)
j=0 i=0

subscripts taken modulo m.

Quasi-Cyclic Codes over Rings
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Condition (¢(a), ¢(b)) = 0 equivalent to

-1 -1 /m-—1 m—1
0=>) a b:E(ZaU ) (Zbkjv—k>. (1)
j=0 j=0 k=0
Comparing coefficients of Y", (1) equivalent to
{—1 m—1
aisnibj =0, forall 0<h<m—1, (2)
j=0 i=0

subscripts taken modulo m.

(2) means (T~“(a)) - b =0.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Since T~ = TUm=h) it follows that (2), and hence
(¢(a), ¢(b)) = 0, is equivalent to (T**(a)) - b = 0 for all
0<k<m-1.

Quasi-Cyclic Codes over Rings
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Quasi-Cyclic Codes

Corollary

C: quasi-cyclic code over A of length {m and of index £
#(C): its image in R® under ¢.

Then ¢(C)*= = o(CH),

where dual in A'™ is wrt Euclidean inner product,

while dual in R® is wrt Hermitian inner product.

In particular,

C over A self-dual wrt Euclidean inner product

)

¢(C) self-dual over R wrt Hermitian inner product.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

The Ring R(A, m)

When m > 1,
R(A,m) = A[Y]/(Y™ —1)is a local ring.
But always decomposes into
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Quasi-Cyclic Codes

The Ring R(A, m)
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

When m > 1,

R(A,m) = A[Y]/(Y™ —1)is a local ring.
But always decomposes into

Characteristic of A: p" (p prime).

Write m = p?m’, where (m’,p) = 1.

Y™ — 1 factors into distinct irreducible factors in k[Y].
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

The Ring R(A, m)

When m > 1,
R(A,m) = A[Y]/(Y™ —1)is a local ring.
But always decomposes into

Characteristic of A: p" (p prime).
Write m = p?m’, where (m’,p) = 1.
Y™ — 1 factors into distinct irreducible factors in k[Y].
By Hensel lifting, may write
Y™ —1="Hf---f € AlY],
f;: distinct basic irreducible polynomials.
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Codes over Rings

. . . Quasi-Cyclic Codes
Quasi-Cyclic Codes over Rings The Ring R(A, m)

Fourier Transform & Trace Formula

The Ring R(A, m)

Product unique:

if Y™ —1=f/fj---f is another decomposition into basic
irreducible polynomials,

then r = s and,

after suitable renumbering of the Ij-"s, f; is associate of 75-’, for each
1<j<r.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

The Ring R(A, m)

f: polynomial
f*: its reciprocal polynomial
Note: (f*)* =f.
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Quasi-Cyclic Codes

The Ring R(A, m)
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

f: polynomial
f*: its reciprocal polynomial
Note: (f*)* =f.

Ym’ 1= —fl*f2*f*

r

f basic irreducible = so is *.
By uniqueness of decomposition

d: unit in A,
g1,-.-,8s: those f;'s associate to their own reciprocals,
hi, hi, ..., he, hf: remaining f;'s grouped in pairs.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Suppose further:
if characteristic of A is p” (n > 1), then a =0,
i.e., m = m' relatively prime to p.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Suppose further:
if characteristic of A is p” (n > 1), then a =0,
i.e., m = m' relatively prime to p.

Then

YT 1=yPm 1= (Y 1)

= o7gl g hY (h])P" - HE ()P € ALY
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Quasi-Cyclic Codes

The Ring R(A, m)
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Consequently,

_ A[Y] L AlY] ALY
- (@57) (@ (6 i)
(3)

(with coordinatewise addition and multiplication).
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Quasi-Cyclic Codes

The Ring R(A, m)
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Consequently,

- A (A ALY
ot (©6) (@67 67))
(3)

(with coordinatewise addition and multiplication).

G = AY)/(g)"", Hj == ALY]/(h)”", H] = ALY/(B})""
- (Be)o (D (ran)
i=1 j=1
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Quasi-Cyclic Codes

The Ring R(A, m)
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Every R-linear code C of length ¢ can be decomposed as
S t
= (@c)e(D(geq)).
i=1 j=1

C;: linear code over G; of length ¢,
C/: linear code over H; of length ¢ and

Cj": linear code over H; of length £.
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Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Every element of R may be written as c(Y') for some polynomial
ce AlY].

Hence,
(V) = (a(Y), -, es(Y) (V) (), s cl(Y), e (Y), (4)

c(Y)e G (1<i<ys), ch(Y) € HJ’ and cjf’(Y) € HJ{/ (1<j<t).
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The Ring R(A, m)
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Recall “conjugate” map Y — Y~ !in R.
For f € A[Y] dividing Y™ — 1, have isomorphism

AlY] AlY]

(R (5)
c(Y)+(F) — (Y1) +(F).

(Note: Y~1=ym-1)

When f and f* are associates,

map Y — Y1 induces automorphism of A[Y]/(f).
For r € A[Y]/(f), T: image under this map.

When deg(f) = 1, induced map is identity , so 7 = r.
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Let

/ " / 1
rl?'"arsarl’rla"wrt?rt)v

(
Wherer,-EG,-(lgigs),rJfEHJfanerf/Eij/ (1<j<t).

Then

"

— S I / /!
F=(F,...,Tsy iy Fyeensly

/

).
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The Ring R(A, m)

Let

- / " / "
F=(r,. .., Fs, My syl e ),

Wherer,-EG,-(lgigs),rJfEHJfanerf/Eij/ (1<j<t).

Then

/

_ - oy, ’ ’
F= (P, Tyl Flyeeeslyshi)

When f and f* are associates,
forc = (c1,...,¢),¢ =(cf,...,¢) € (A[Y]/(F)%
define Hermitian inner product on (A[Y]/(f))¢ as

4
<C7 C/> = Z CI'CT{' (6)
i=1
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Quasi-Cyclic Codes over Rings The Ring R(A, m)

Fourier Transform & Trace Formula

The Ring R(A, m)

Remark

When deg(f) = 1, since r — T is identity,

Hermitian inner product (6) is usual Euclidean inner product - on
A.
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Quasi-Cyclic Codes over Rings

The Ring R(A, m)

Proposition
a=(ag,a1,...,ap_1) € R andb = (bg,by,...,by_1) € R

. 4 // f ”

a; = (a,-l,.. ,djs,d i1 117"‘ a,t,alt)
. i ’ 7

bi_ (bflaﬂ bISJ ,]_7b,]_)" b,t7b' ))

aj, by € Gj, aj;, bU,aU, b € H; (with H], ij/ identified). Then

(a,b) = 37/ aib;
—_ —_— 1 1"
= <Zz anbit, ..., Zi aisbjs, Zi 3;1b;17 Zi ailbll‘lv ) Z a:t it Z a/tb:,t) :

In particular, (a,b) =0 < 37 ajb;j =0 (1<j<s)and
2 dyby =0=22aby (1 <k<t)
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The Ring R(A, m)

Theorem

Linear code C over R = A[Y]/(Y™ — 1) of length { is self-dual wrt
Hermitian inner product if and only if

t

C:(é&)@ P (Gopt)].
i=1

Jj=1

Ci: self-dual code over G; of length ¢ (wrt Hermitian inner product)
C;: linear code of length ¢ over H;

CJfL: dual wrt Euclidean inner product.
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Quasi-Cyclic Codes over Rings

Finite Chain Rings

Assume: m and characteristic of A relatively prime

mis a unit in A
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Quasi-Cyclic Codes over Rings

Finite Chain Rings

Assume: m and characteristic of A relatively prime

mis a unit in A

A: finite chain ring with maximal ideal (t)
Residue field k = A/(t) = F,.
Every element x of A can be expressed uniquely as
_ d—1
X=xp+x1t+ -+ Xg_1t" 7,

where X, ..., xqy_1 belong to Teichmuller set.
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Galois Extensions

g, hj, hf — monic basic irreducible polynomials
1! . .
G;, HJ’ and HJ are Galois extensions of A.
» Galois extensions of local ring are unramified

» Unique maximal ideal in such a Galois extension of A again
generated by t.
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Frobenius & Trace

For B/A Galois extension,

Frobenius map F : B — B — map induced by Y — Y9, acting as
identity on A.

e: degree of extension B over A

Then F€ is identity.

x € B, trace

Trg/a(x) = x+ F(x) + -+ Fe=l(x).
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Fourier Transform

A (A ALY (A ALY]
ATy (G;(g,-)pa)@ @((h-)f@(h;)f)

i=1 j=1 J

Direct factors on RHS correspond to irreducible factors of Y™ — 1
in A[Y].
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Quasi-Cyclic Codes over Rings

Fourier Transform

AlY] ™ AlY] N (AY] ALY
R=——71—"+= > | D 7 D s
(Ym—1) (G_? (&) G_? () ()P
Direct factors on RHS correspond to irreducible factors of Y™ — 1
in A[Y].
There is one-to-one correspondence between these factors and the

g-cyclotomic cosets of Z/mZ.

Ui (1 <i<s): cyclotomic coset corresponding to gj,
Vi and W; (1 <j < t): cyclotomic cosets corresponding to h; and
hj’-‘, respectively.
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Fourier Transform & Trace Formula

Fourier Transform

Fore=3 cz/mceY® € A[Y]/(Y™ 1),
its Fourier Transform: € = ZheZ/mZ enY"h, where

~ § : h
Ch = Cgcg )
gEL/mL

¢: primitive mth root of 1 in some (sufficiently large) Galois
extension of A.
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Fourier Transform & Trace Formula

Fourier Transform

Fore=3 cz/mceY® € A[Y]/(Y™ 1),
its Fourier Transform: € = ZheZ/mZ enY"h, where

~ § : h
Ch = Cgcg )
gEL/mL

¢: primitive mth root of 1 in some (sufficiently large) Galois
extension of A.

The Fourier Transform gives rise to isomorphism (3).
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Fourier Transform & Trace Formula

Fourier Transform

Fore=3 cz/mceY® € A[Y]/(Y™ 1),
its Fourier Transform: € = ZheZ/mZ enY"h, where

~ § : h
Ch = Cgcg )
gEL/mL

¢: primitive mth root of 1 in some (sufficiently large) Galois
extension of A.

The Fourier Transform gives rise to isomorphism (3).

Inverse transform:

~1 A ~—gh
Cg=m Z epCe".

heZ/mZ
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Quasi-Cyclic Codes over Rings

Fourier Transform

Well known:
> a-q,, = F(&h)
» for h € U;, &, € G;, while for h € V; (resp. W;), &, € HJ’
(resp. HJ”)
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Fourier Transform

Well known:
> a-q,, = F(&h)
» for h € U;, &, € G;, while for h € V; (resp. W;), &, € HJ’
(resp. HJ”)
Backward direction of (3):
G;, HJ’ and HJ{/: Galois extensions of A corresponding to g;, h; and
h?, with corresponding cyclotomic cosets U;, Vj and W;.
For each /, fix some u; € U;.
For each j, fix some v; € V; and w; € W;.
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Quasi-Cyclic Codes over Rings

Fourier Transform & Trace Formula

A N N 1"
Llet &, € G, ¢le H and & € H. .
j J jo=
Al A ~

To (?:1,...,(’Es,cl,cf,...,&;,ct),
associate >, e /mz Cg Y& € A[Y]/(Y™ — 1), where

t

s
meg =Y Tr a(&C )+ _(Try (G #)+ Tryyr 28 C7E)),
i=1 =1

Trga: trace from B to A.

Fourier Transform of vector x: vector whose ith entry is Fourier
Transform of ith entry of x.
Trace of x: vector whose coordinates are traces of coordinates of x.
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Codes over Rings

Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Trace Formula

Theorem

m relatively prime to characteristic of A.

Quasi-cyclic codes over A of length fm and of index £ given by
following construction:

Write Y™ — 1 = dgy---gshihy -+ h:hi, (0, gi, h;, hJ’-‘ as earlier).
A1/ (&) = Gi, ALY]/(hy) = H; and A[Y]/(K}) = H] .

Ui, V;, W;: corresponding q-cyclotomic coset of 7/ mZ.
ui € Ui, vj € Vj and wj € W;.

G, ij, CJ/ codes of length ¢ over G;, HJ’ ij', resp.
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Codes over Rings

Quasi-Cyclic Codes

The Ring R(A, m)

Fourier Transform & Trace Formula

Quasi-Cyclic Codes over Rings

Trace Formula

Theorem
Forx; € G, y; € Cj, yjl-' € ij’, and0<g<m-1:

> t
Ce = > Tra/a(xiC 5 )+ D _(Triy a(yiC )+ Tryyer a9 C5)).
i=1 =1

Then C = {(co,...,cm-1) | xi € G, yJ’- S Cf and yJ/-' € CJ”} is
quasi-cyclic code over A of length {m and of index {.

Converse also true.

Moreover, C self-dual < C; self-dual wrt Hermitian inner product
and Cj” = (ij)l for each j wrt Euclidean inner product.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Quasi-Cyclic Codes of Index 2

=2

Theorem

m: any positive integer.

Self-dual 2-quasi-cyclic codes over Fq of length 2m exist < exactly
one of following satisfied:

1. q is a power of 2;
2. q=p® (p prime =1 mod 4); or
3. g = p?" (p prime = 3 mod 4).
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i-Cyclic Codes of Index 2
3 & Leech Lattice
m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Z
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Self-dual codes (wrt Euclidean inner product) of length 2 over I,
exist if and only —1 is a square in [F; — true when one of following
holds:

1. g is a power of 2;
2. g = p® (p prime = 1 mod 4; or
3. g = p?" (p prime = 3 mod 4).
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clic Codes of Index 2
Leech Lattice
5 and the Golay code
Applications Vandermonde Construction
Codes over Zy

Self-dual codes (wrt Euclidean inner product) of length 2 over I,

exist if and only —1 is a square in [F; — true when one of following
holds:

1. g is a power of 2;
2. g = p® (p prime = 1 mod 4; or
3. g = p?" (p prime = 3 mod 4).
If self-dual 2-quasi-cyclic code over Fg of length 2m exists,

then by (3) there is self-dual code of length 2 over G; = F,.
Hence conditions in Proposition are necessary.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Conversely, if any condition in Proposition satisfied,
then there exists i € g such that i?+1=0.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Conversely, if any condition in Proposition satisfied,
then there exists i € g such that i?+1=0.

-~

Hence every finite extension of [F; also contains such an
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Quasi-Cyclic Codes of Index 2
m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Zy

Conversely, if any condition in Proposition satisfied,
then there exists i € g such that i?+1=0.

Hence every finite extension of IF; also contains such an /.

Code generated by (1, /) over any extension of F is self-dual (wrt
Euclidean and Hermitian inner products) of length 2.

Hence existence of self-dual 2-quasi-cyclic code of length 2m over
Fy.
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i-Cyclic Codes of Index 2
3 & Leech Lattice
m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Z
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yclic Codes of Index 2
Leech Lattice
m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Zy

g = p? and m = p?m’, where a > 0.
By (3), G; are finite chain rings of depth p?.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

g = p? and m = p?m’, where a > 0.
By (3), G; are finite chain rings of depth p?.

Self-dual 2-quasi-cyclic code over F of length 2m exists < for
each /, there exists self-dual linear code of length 2 over G;.
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clic Codes of Index 2
Leech Lattice
5 and the Golay code
Applications Vandermonde Construction

Codes over Zy

g = p? and m = p?m’, where a > 0.
By (3), G; are finite chain rings of depth p?.

Self-dual 2-quasi-cyclic code over F of length 2m exists < for
each /, there exists self-dual linear code of length 2 over G;.

Simplify notation

G: finite chain ring of depth d = p?, with maximal ideal (t) and
residue field Fge.
(So G has g% elements.)
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If any condition in Theorem satisfied, then X2 + 1 = 0 has solution
in G/(t) = Fge.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If any condition in Theorem satisfied, then X2 + 1 = 0 has solution
in G/(t) = Fge.
Such a solution lifts to one in G/(t), for any 1 < ¢ < d.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If any condition in Theorem satisfied, then X2 + 1 = 0 has solution
in G/(t) = Fge.

Such a solution lifts to one in G/(t), for any 1 < ¢ < d.

Hence, there exists i € G such that 2 +1 = 0.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If any condition in Theorem satisfied, then X2 + 1 = 0 has solution
in G/(t) = Fge.

Such a solution lifts to one in G/(t), for any 1 < ¢ < d.

Hence, there exists i € G such that 2 +1 = 0.

. free code with generator matrix (1, ) self-dual of length 2.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Assume g odd (case g even trivially true)
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Assume g odd (case g even trivially true)

Let G = G corresponding to Y — 1 in (3).

Depth d odd.

In fact, G = Fg[t]/(t)P" and Y — Y1 induces identity on G.
(Hermitian and Euclidean inner products coincide.)
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Assume g odd (case g even trivially true)

Let G = G corresponding to Y — 1 in (3).

Depth d odd.

In fact, G = Fg[t]/(t)P" and Y — Y1 induces identity on G.
(Hermitian and Euclidean inner products coincide.)

Any nonzero element of G: t*a (a unit in G).
Nonzero codeword of length 2 of one of:

(i) (0, t#b), (ii) (t*a,0) or (iii) (t*a, t*b).
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Nonzero codeword of length 2 of one of:
(i) (0, t*b), (i) (t1a,0) or (iii) (t*a, t*b).
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Nonzero codeword of length 2 of one of:
(i) (0, t*b), (i) (t1a,0) or (iii) (t*a, t*b).

For word of form (i) to be self-orthogonal,
must have y > %.

Quasi-Cyclic Codes over Rings



Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Nonzero codeword of length 2 of one of:
(i) (0, t*b), (i) (t1a,0) or (iii) (t*a, t*b).

For word of form (i) to be self-orthogonal,
must have y > %.

For word of type (ii) to be self-orthogonal,
need \ > %.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Nonzero codeword of length 2 of one of:
(i) (0, t*b), (i) (t1a,0) or (iii) (t*a, t*b).

For word of form (i) to be self-orthogonal,
must have y > %.
For word of type (ii) to be self-orthogonal,
need \ > %.
For word of type (iii) to be self-orthogonal,
need
t22a% 4+ t24p2 = 0. (7)
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Nonzero codeword of length 2 of one of:
(i) (0, t*b), (i) (t1a,0) or (iii) (t*a, t*b).

For word of form (i) to be self-orthogonal,
must have y > %.
For word of type (ii) to be self-orthogonal,
need \ > %.
For word of type (iii) to be self-orthogonal,
need
t22a% 4+ t24p2 = 0. (7)

If both :
then (7) automatically satisfied.
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i-Cyclic Codes of Index 2
3 & Leech Lattice
m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Z
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If ,
then (7) never satisfied.

Hence, need \ = L.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If ,
then (7) never satisfied.

Hence, need \ = L.
Then (7) implies
a® + b% € (t972). (8)
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If ,
then (7) never satisfied.

Hence, need \ = L.
Then (7) implies
a® + b% € (t972). (8)

Hence, a® + b? € (t), so —1 is a square in Fy.
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clic Codes of Index 2
Leech Lattice
5 and the Golay code
Applications Vandermonde Construction

Codes over Zy

If ,
then (7) never satisfied.

Hence, need \ = L.
Then (7) implies
a® + b% € (t972). (8)

Hence, a® + b? € (t), so —1 is a square in Fy.
Self-dual code of length 2 over G certainly contains at least a
codeword of type (iii) (not enough words of other types).
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

m=3
A=17Za
GR(4,2): unique Galois extension of Z4 of degree 2.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

m=3
A=17Za
GR(4,2): unique Galois extension of Z4 of degree 2.

R = Z4 & GR(4,2)
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

m=3
A=17Za
GR(4,2): unique Galois extension of Z4 of degree 2.

R = Z4 & GR(4,2)

(-quasi-cyclic code C over Zy of length 3¢ — (G, &),
C1: code over Zy of length ¢
C>: code over GR(4,2) of length /.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

m=3
A=17Za
GR(4,2): unique Galois extension of Z4 of degree 2.

R = Z4 & GR(4,2)

(-quasi-cyclic code C over Zy of length 3¢ — (G, &),
C1: code over Zy of length ¢
C>: code over GR(4,2) of length /.

C={(x+2a" —b'|x—a'+2b'|[x—a'—b') | x e G, a’ +(b’ € G},

¢ € GR(4,2) satisfies (> 4+ (¢ +1=0.



Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

G, linear code of length ¢ over Za
G := Gy + CJC: linear code over GR(4,2).
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

G, linear code of length ¢ over Za
G := Gy + CJC: linear code over GR(4,2).

Consider: a= —2a’ +b’ and b = —a’ +2b’
Construction equivalent to (x — a|x + b|x + a — b) construction,
with x € C; and a,b € ).

Quasi-Cyclic Codes over Rings



Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

C5: linear code of length ¢ over Zy

G := Gy + CJC: linear code over GR(4,2).

Consider: a= —2a’+ b’ and b = —a’ + 2b’

Construction equivalent to (x — a|x + b|x + a — b) construction,
with x € C; and a,b € ).

G Klemm-like code kg (over Za)

Ci: self-dual Zs-code Of, obtained from octacode Og by negating
a single coordinate.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

G, linear code of length ¢ over Za
G := Gy + CJC: linear code over GR(4,2).

Consider: a= —2a’ +b’ and b = —a’ +2b’
Construction equivalent to (x — a|x + b|x + a — b) construction,
with x € C; and a,b € ).

G Klemm-like code kg (over Za)
Ci: self-dual Zs-code Of, obtained from octacode Og by negating

a single coordinate.

kgAO§ := {(x —alx +bjx +a—b) | x € Of, a,b € rg}.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

C: Z4-linear code of length n
Quaternary lattice

ANC)={z€Z" | z=cmod 4 for some c € C}.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m = 3 & Leech Lattice

C: Z4-linear code of length n
Quaternary lattice

ANC)={z€Z" | z=cmod 4 for some c € C}.

Theorem
N(rkgAO§)/2 is the Leech lattice Nog.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

From the (x — a|x + b|x + a — b) construction,
Clear: kgAOj is self-dual.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

From the (x — a|x + b|x + a — b) construction,
Clear: kgAOj is self-dual.

Code generated by (—a,0,a),(0,b,—b) and (x, x, x),
a,b € rg and x € 0.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

From the (x — a|x + b|x + a — b) construction,
Clear: kgAOj is self-dual.

Code generated by (—a,0,a),(0,b,—b) and (x, x, x),
a,b € rg and x € 0.

All have Euclidean weights = 0 mod 8.
Hence all words in code have weights divisible by 8.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

From the (x — a|x + b|x + a — b) construction,
Clear: kgAOj is self-dual.

Code generated by (—a,0,a),(0,b,—b) and (x, x, x),
a,b € rg and x € 0.

All have Euclidean weights = 0 mod 8.
Hence all words in code have weights divisible by 8.

Hence, A(kgAO}) is even unimodular lattice.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Known: kg N O = 20;.
Remains to show: min Euclidean weight in lattice > 16
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Known: kg N O = 20;.
Remains to show: min Euclidean weight in lattice > 16

Suppose Euclidean weight of (x — a|x + b|x +a — b) is 8, for some
a,b € kg and x € Of.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Known: kg N O = 20;.
Remains to show: min Euclidean weight in lattice > 16

Suppose Euclidean weight of (x — a|x + b|x +a — b) is 8, for some
a,b € kg and x € Of.

x =0 mod 2 and
a=b=0mod?2.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Known: kg N O = 20;.
Remains to show: min Euclidean weight in lattice > 16

Suppose Euclidean weight of (x — a|x + b|x +a — b) is 8, for some
a,b € kg and x € Of.

x =0 mod 2 and
a=b=0mod?2.

Then (x —ajx + bjx+a—b) = (x+a|x+ b|x+a+b),
so has Euclidean weight at least 16.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m =6 & Golay Code

m =

A=TF,

R = (FQ + UFQ) (5] (F4 + UF4),

Fa+ uFy = Fa[Y]/(Y —1)2 and Fq + uFq = Fo[Y]/(Y?+ Y +1)?,
so u? =0 in both Fy 4+ uF, and Fs + uFa.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

m =6 & Golay Code

C1: unique Fy 4 ulFa-code of length 4 whose Gray image is binary
extended Hamming code with coordinates in reverse order

Co: Fy + uF4-code C} + CiC,

C}: unique Fy + ulFp-code of length 4 whose Gray image is binary
extended Hamming code.
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i-Cyclic Codes of Index 2
3 & Leech Lattice
6 and the Golay code
Applications Vandermonde Construction
Codes over Zy

m =6 & Golay Code

C1: unique Fy 4 ulFa-code of length 4 whose Gray image is binary
extended Hamming code with coordinates in reverse order

Co: Fy + uF4-code C} + CiC,

C}: unique Fy + ulFp-code of length 4 whose Gray image is binary
extended Hamming code.

Both (i, G self-dual:

Proposition
Binary extended Golay code is 4-quasi-cyclic.
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i-Cyclic Codes of Index 2
3 & Leech Lattice
6 and the Golay code
Applications Vandermonde Construction
Codes over Zy

Vandermonde Construction

A: finite chain ring
m: integer, unit in A
Suppose: A contains unit ¢ of order m.

Y™ 1= (Y = 1)(Y =)o (Y —¢™).
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Vandermonde Construction

(By Fourier Transform)
ff=fh+ Y+ -+ Y™ L e A[Y]/(Y™ - 1),
where f; € Afor 0 << m—1, then

fo fo
f oyt h
fm—l lf\—m_l

f;: Fourier coefficients
— (i , :
V=_(C )OSi,jSmfl' m x m Vandermonde matrix.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Vandermonde Construction

ag,...,am_1 € AL vectors.
ao

— Vandermonde product
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Vandermonde Construction

Theorem

A, m as above.

Co,...,Cn_1: linear codes of length £ over A.

Then the Vandermonde product of Cy, ..., Cym_1 is a quasi-cyclic

code over A of length £m and of index (.
Moreover, every {-quasi-cyclic code of length {m over A is
obtained via the Vandermonde construction.
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si-Cyclic Codes of Index 2
m = 3 & Leech Lattice
m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Zyj

Codes over Zyy

Note: Zoy is not local.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zyj

Codes over Zyy

Note: Zoy is not local.

Self-dual code over Zy is Type Il if and only if Euclidean weight of
every codeword multiple of 4k.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zyj

Codes over Zyy

Note: Zoy is not local.

Self-dual code over Zy is Type Il if and only if Euclidean weight of
every codeword multiple of 4k.

Let 2k = pi* -+ p& (p1, ..., pr distinct primes).
For f € sz[Y],
ZoY] _ ZparlY] o DY
(f) (f) (f)
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Q Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zyj

Codes over Zyy

Y2 + Y + 1 irreducible modulo 2,
so Y2+ Y + 1 irreducible modulo 2k for all k.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zyj

Codes over Zyy

Y2 + Y + 1 irreducible modulo 2,
so Y2+ Y + 1 irreducible modulo 2k for all k.

Suppose )
Then 3 is unit in Zpe,- forevery 1 <i<r.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

Codes over Zyy

Y2 + Y + 1 irreducible modulo 2,
so Y2+ Y + 1 irreducible modulo 2k for all k.

Suppose
Then 3 is unit in Z e for every 1 <i<Zr.

Y -1, Y2+Y+1 relatlvely prime in Z «[Y], as
1=3YY2 4+ Y+1)+37 (Y +2)(Y -1),

so,
Ze g e (10)
(Y3-1) P T (Y2+Y+1)

forevery 1 < i <r.
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Codes over Zyj

Codes over Z

Therefore, vl
ZoklY
L R B 4
(Y3 —1) 2k D

Zok|Y]
(Y2+Y+1)

(k relatively prime to 3)
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Codes over Zyj

Codes over Zyy

Therefore,
Zok|Y]

(Y2 -1)

Zok|Y]

=7 -
2k@(Y2+Y+1)

(k relatively prime to 3)

(-quasi-cyclic code of length 3¢ over Zyy < (C1, G2),
C1: code of length ¢ over Zyy
Cp: code of length £ over Zok[Y]/(Y?+ Y +1).
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i-Cyclic Codes of Index 2
3 & Leech Lattice
6 and the Golay code
Applications Vandermonde Construction
Codes over Zyj

Codes over Zyy

Proposition
k: integer coprime with 3
C: self-dual code over Zyy.

Then C Type Il £-quasi-cyclic code of length 3¢ if and only if its
Zoy component C1 of Type Il.
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m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zyj

C contains (x,x, x), where x ranges over (i, and, by hypothesis,
(4k,3) = 1.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zy

C contains (x,x, x), where x ranges over (i, and, by hypothesis,
(4k,3) = 1.

A spanning set of codewords of Euclidean weights = 0 mod 4k is
(x,x,x), (—a,b,a —b),

with x running over (i, and a + (b running over G,.
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yclic Codes of Index 2
Leech Lattice
m = 6 and the Golay code
Applications Vandermonde Construction
Codes over Zyj

Note: self-duality of G, entails (a + ¢(b)(a + (b) = 0.
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Applications Vandermonde Construction

Codes over Zyj

Note: self-duality of G, entails (a + ¢(b)(a + (b) = 0.
Since B B
(+T=-1&C=1
have
a-a+b-b—a-b=0mod2k.
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Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice

m = 6 and the Golay code
Applications Vandermonde Construction

Codes over Zyj

Note: self-duality of G, entails (a + ¢(b)(a + (b) = 0.
Since B B
(+T=-1&C=1
have
a-a+b-b—a-b=0mod2k.

By bilinearity of (, ):
(a—b,a—b)=a-a+b-b—2a-b,
Norm of (—a,b,a — b):
a-at+b-b+(a—b)-(a—b)=2(a-a+b-b—a-b),

multiple of 4k.
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1-Generator Codes

Back to local rings.
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1-Generator Codes

1-Generator Codes

Back to local rings.

Quasi-cyclic code C is 1-generator if and only if its generator
matrix over R contains only one row:

[a0(Y), a1(Y), -+, a1 (V)]

generator polynomial:

g(Y) = GCD(ao(Y), al(Y), s ,ag,l(Y), Ym — 1),

parity-check polynomial: h(Y) := (Y™ —1)/g(Y)



1-Generator Codes

1-Generator Codes

Theorem
m relatively prime to characteristic of A.
C: 1l-generator (-QC code over A of length n = m{ with generator

g(Y) = (g(M)(Y),&(Y)A(Y),...,a(YV)fir(Y)),

g(Y)Iym—1,

g(Y),£(Y) € AIY]/(Y™ — 1),

(fi(Y), h(Y)) = 1, where h(Y) = (Y™ —1)/g(Y).
Then: C free A-module of rank m — deg g.

Quasi-Cyclic Codes over Rings



1-Generator Codes

R=A[Y]/(Y™-1)
Consider IM; : RY — R defined by:

M(ao(Y),a1(Y), ..., a-1(Y)) = ai(Y).

Then: M;(C) is cyclic code generated by g(Y)fi(Y).

Quasi-Cyclic Codes over Rings
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