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Rings

A: commutative ring with identity 1

A local: if it has a unique maximal ideal M.

k := A/M is a field.

Hensel lifting: Factorizations fg of elements h of k[X ] can be
“lifted” to factorizations FG of H in A[X ] in such a way that f , g , h
correspond to F ,G ,H respectively under reduction modulo M.
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Chain Rings

Chain ring: both local and principal.

A local ring is a chain ring
m

maximal ideal has a unique generator t, say: M = (t).

A ⊃ (t) ⊃ (t2) ⊃ · · · ⊃ (td−1) ⊃ (td) = (0).

d : depth of A.
If k has q elements, then A/(t i ) has qi elements, so A has qd

elements.
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Example

1. Finite fields Fq

2. Integer rings Zpr

3. Galois rings GR(pr ,m)

4. Fq[u]/(uk)
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Codes over Rings

Linear code C of length n over A: an A-submodule of An, i.e.,

I x , y ∈ C ⇒ x + y ∈ C ;

I ∀λ ∈ A, x ∈ C ⇒ λx ∈ C ,

T : standard shift operator on An

T (a0, a1, . . . , an−1) = (an−1, a0, . . . , an−2).

C quasi-cyclic of index ` or `-quasi-cyclic: invariant under T `.
Assume: ` divides n
m := n/`: co-index.
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Codes over Rings

Example

I If ` = 2 and first circulant block is identity matrix, code
equivalent to a so-called pure double circulant code.

I Up to equivalence, generator matrix of such a code consists of
m ×m circulant matrices.
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Quasi-Cyclic Codes

m: positive integer.

R := R(A,m) = A[Y ]/(Y m − 1).

C : quasi-cyclic code over A of length `m and index `.

c = (c00, c01, . . . , c0,`−1, c10, . . . , c1,`−1, . . . , cm−1,0, . . . , cm−1,`−1) ∈ C

Define φ : A`m → R` by

φ(c) = (c0(Y ), c1(Y ), . . . , c`−1(Y )) ∈ R`,

where cj(Y ) =
∑m−1

i=0 cijY
i ∈ R.

φ(C ): image of C under φ.

Quasi-Cyclic Codes over Rings
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Quasi-Cyclic Codes

Lemma
φ induces one-to-one correspondence

quasi-cyclic codes over A of index ` and length `m
l

linear codes over R of length `

.
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Proof

C linear ⇒ φ(C ) closed under scalar multiplication by elements of
A.
Since Y m = 1 in R,

Y cj(Y ) =
m−1∑
i=0

cijY
i+1 =

m−1∑
i=0

ci−1,jY
i ,

subscripts taken modulo m.
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Proof continued

(Y c0(Y ),Y c1(Y ), . . . ,Y c`−1(Y )) ∈ R`

corresponds to

(cm−1,0, cm−1,1, . . . , cm−1,`−1, c00, c01, . . . , c0,`−1, . . . ,
cm−2,0, . . . , cm−2,`−1) ∈ A`m,

which is in C since C is quasi-cyclic of index `.
Therefore, φ(C ) closed under multiplication by Y .
Hence φ(C ) is R-submodule of R`.

For converse, reverse above argument.

Quasi-Cyclic Codes over Rings
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Quasi-Cyclic Codes

Conjugation map ¯ on R: identity on the elements of A and sends
Y to Y−1 = Y m−1, and extended linearly.

Euclidean inner product on A`m: for

a = (a00, a01, . . . , a0,`−1, a10, . . . , a1,`−1, . . . , am−1,0, . . . , am−1,`−1)

and

b = (b00, b01, . . . , b0,`−1, b10, . . . , b1,`−1, . . . , bm−1,0, . . . , bm−1,`−1),

define

a · b =
m−1∑
i=0

`−1∑
j=0

aijbij .
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Hermitian inner product on R`: for

x = (x0, . . . , x`−1) and y = (y0, . . . , y`−1),

〈x, y〉 =
`−1∑
j=0

xjyj .

Proposition

a,b ∈ A`m. Then(
T `k(a)

)
· b = 0 for all 0 ≤ k ≤ m − 1

m
〈φ(a), φ(b)〉 = 0.
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Proof

Condition 〈φ(a), φ(b)〉 = 0 equivalent to

0 =
`−1∑
j=0

ajbj =
`−1∑
j=0

(
m−1∑
i=0

aijY
i

)(
m−1∑
k=0

bkjY
−k

)
. (1)

Comparing coefficients of Y h, (1) equivalent to

`−1∑
j=0

m−1∑
i=0

ai+h,jbij = 0, for all 0 ≤ h ≤ m − 1, (2)

subscripts taken modulo m.

(2) means
(
T−`h(a)

)
· b = 0.
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Proof

Since T−`h = T `(m−h), it follows that (2), and hence
〈φ(a), φ(b)〉 = 0, is equivalent to

(
T `k(a)

)
· b = 0 for all

0 ≤ k ≤ m − 1.
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Quasi-Cyclic Codes

Corollary

C : quasi-cyclic code over A of length `m and of index `
φ(C ): its image in R` under φ.
Then φ(C )⊥ = φ(C⊥),
where dual in A`m is wrt Euclidean inner product,
while dual in R` is wrt Hermitian inner product.
In particular,

C over A self-dual wrt Euclidean inner product
m

φ(C ) self-dual over R wrt Hermitian inner product.
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The Ring R(A, m)

When m > 1,
R(A,m) = A[Y ]/(Y m − 1) is never a local ring.
But always decomposes into product of local rings.

Characteristic of A: pn (p prime).

Write m = pam′, where (m′, p) = 1.

Y m′ − 1 factors into distinct irreducible factors in k[Y ].

By Hensel lifting, may write

Y m′ − 1 = f1f2 · · · fr ∈ A[Y ],

fj : distinct basic irreducible polynomials.

Quasi-Cyclic Codes over Rings
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The Ring R(A, m)

Product unique:
if Y m′ − 1 = f ′1f ′2 · · · f ′s is another decomposition into basic
irreducible polynomials,
then r = s and,
after suitable renumbering of the f ′j ’s, fj is associate of f ′j , for each
1 ≤ j ≤ r .
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The Ring R(A, m)

f : polynomial
f ∗: its reciprocal polynomial
Note: (f ∗)∗ = f .

Y m′ − 1 = −f ∗1 f ∗2 · · · f ∗r .

f basic irreducible ⇒ so is f ∗.
By uniqueness of decomposition

Y m′ − 1 = δg1 · · · gsh1h∗1 · · · hth∗t ,

δ: unit in A,
g1, . . . , gs : those fj ’s associate to their own reciprocals,
h1, h

∗
1, . . . , ht , h

∗
t : remaining fj ’s grouped in pairs.

Quasi-Cyclic Codes over Rings
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The Ring R(A, m)

Suppose further:
if characteristic of A is pn (n > 1), then a = 0,
i.e., m = m′ relatively prime to p.

When characteristic of A is p (e.g., finite field), m need not be
relatively prime to p.

Then

Y m − 1 = Y pam′ − 1 = (Y m′ − 1)pa

= δp
a
gpa

1 · · · g
pa

s hpa

1 (h∗1)pa · · · hpa

t (h∗t )pa ∈ A[Y ].

Quasi-Cyclic Codes over Rings
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The Ring R(A, m)

Consequently,

R =
A[Y ]

(Y m − 1)
=

(
s⊕

i=1

A[Y ]

(gi )pa

)
⊕

 t⊕
j=1

(
A[Y ]

(hj)pa ⊕
A[Y ]

(h∗j )pa

) ,

(3)
(with coordinatewise addition and multiplication).

Gi := A[Y ]/(gi )
pa

, H ′j := A[Y ]/(hj)
pa

, H
′′
j := A[Y ]/(h∗j )pa

R` =

(
s⊕

i=1

G `
i

)
⊕

 t⊕
j=1

(
H ′j

` ⊕ H
′′
j

`
) .

Quasi-Cyclic Codes over Rings
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The Ring R(A, m)

Every R-linear code C of length ` can be decomposed as

C =

(
s⊕

i=1

Ci

)
⊕

 t⊕
j=1

(
C ′j ⊕ C

′′
j

) ,

Ci : linear code over Gi of length `,
C ′j : linear code over H ′j of length ` and

C
′′
j : linear code over H

′′
j of length `.

Quasi-Cyclic Codes over Rings



Outline
Rings

Quasi-Cyclic Codes over Rings
Applications

1-Generator Codes

Codes over Rings
Quasi-Cyclic Codes
The Ring R(A, m)
Fourier Transform & Trace Formula

The Ring R(A, m)

Every element of R may be written as c(Y ) for some polynomial
c ∈ A[Y ].

R =

(
s⊕

i=1

Gi

)
⊕

 t⊕
j=1

(
H ′j ⊕ H

′′
j

) .

Hence,

c(Y ) = (c1(Y ), . . . , cs(Y ), c ′1(Y ), c
′′
1 (Y ), . . . , c ′t(Y ), c

′′
t (Y )), (4)

ci (Y ) ∈ Gi (1 ≤ i ≤ s), c ′j (Y ) ∈ H ′j and c
′′
j (Y ) ∈ H

′′
j (1 ≤ j ≤ t).

Quasi-Cyclic Codes over Rings
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The Ring R(A, m)

Recall “conjugate” map Y 7→ Y−1 in R.

For f ∈ A[Y ] dividing Y m − 1, have isomorphism

A[Y ]

(f )
−→ A[Y ]

(f ∗)
c(Y ) + (f ) 7−→ c(Y−1) + (f ∗).

(5)

(Note: Y−1 = Y m−1.)

When f and f ∗ are associates,
map Y 7→ Y−1 induces automorphism of A[Y ]/(f ).
For r ∈ A[Y ]/(f ), r : image under this map.
When deg(f ) = 1, induced map is identity , so r = r .
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The Ring R(A, m)

Let
r = (r1, . . . , rs , r

′
1, r

′′
1 , . . . , r

′
t , r

′′
t ),

where ri ∈ Gi (1 ≤ i ≤ s), r ′j ∈ H ′j and r
′′
j ∈ H

′′
j (1 ≤ j ≤ t).

Then
r = (r1, . . . , rs , r

′′
1 , r
′
1, . . . , r

′′
t , r
′
t).

When f and f ∗ are associates,
for c = (c1, . . . , c`), c

′ = (c ′1, . . . , c
′
`) ∈ (A[Y ]/(f ))`,

define Hermitian inner product on (A[Y ]/(f ))` as

〈c, c′〉 =
∑̀
i=1

cic ′i . (6)
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The Ring R(A, m)

Remark
When deg(f ) = 1, since r 7→ r is identity,
Hermitian inner product (6) is usual Euclidean inner product · on
A.
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The Ring R(A, m)

Proposition

a = (a0, a1, . . . , a`−1) ∈ R` and b = (b0,b1, . . . ,b`−1) ∈ R`.

ai = (ai1, . . . , ais , a
′
i1, a

′′
i1, . . . , a

′
it , a

′′
it)

bi = (bi1, . . . , bis , b
′
i1, b

′′
i1, . . . , b

′
it , b

′′
it),

aij , bij ∈ Gj , a′ij , b
′
ij , a

′′
ij , b

′′
ij ∈ H ′j (with H ′j ,H

′′
j identified). Then

〈a,b〉 =
∑`−1

i=0 aibi

=
(∑

i ai1bi1, . . . ,
∑

i aisbis ,
∑

i a′i1b
′′

i1,
∑

i a
′′

i1b′i1, . . . ,
∑

i a′itb
′′

it ,
∑

i a
′′

itb′it

)
.

In particular, 〈a,b〉 = 0 ⇔
∑

i aijbij = 0 (1 ≤ j ≤ s) and∑
i a′ikb

′′
ik = 0 =

∑
i a

′′
ikb′ik (1 ≤ k ≤ t).
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The Ring R(A, m)

Theorem
Linear code C over R = A[Y ]/(Y m − 1) of length ` is self-dual wrt
Hermitian inner product if and only if

C =

(
s⊕

i=1

Ci

)
⊕

 t⊕
j=1

(
C ′j ⊕ (C ′j )⊥

) ,

Ci : self-dual code over Gi of length ` (wrt Hermitian inner product)
C ′j : linear code of length ` over H ′j
C ′j
⊥: dual wrt Euclidean inner product.
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Finite Chain Rings

Assume: m and characteristic of A relatively prime

m is a unit in A

A: finite chain ring with maximal ideal (t)
Residue field k = A/(t) = Fq.
Every element x of A can be expressed uniquely as

x = x0 + x1t + · · ·+ xd−1td−1,

where x0, . . . , xd−1 belong to Teichmüller set.
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Galois Extensions

gi , hj , h
∗
j – monic basic irreducible polynomials

Gi ,H
′
j and H

′′
j are Galois extensions of A.

I Galois extensions of local ring are unramified

I Unique maximal ideal in such a Galois extension of A again
generated by t.

Quasi-Cyclic Codes over Rings



Outline
Rings

Quasi-Cyclic Codes over Rings
Applications

1-Generator Codes

Codes over Rings
Quasi-Cyclic Codes
The Ring R(A, m)
Fourier Transform & Trace Formula

Frobenius & Trace

For B/A Galois extension,
Frobenius map F : B → B – map induced by Y 7→ Y q, acting as
identity on A.
e: degree of extension B over A
Then F e is identity.

x ∈ B, trace

TrB/A(x) = x + F (x) + · · ·+ F e−1(x).
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Fourier Transform

In (3),

R =
A[Y ]

(Y m − 1)
=

(
s⊕

i=1

A[Y ]

(gi )pa

)
⊕

 t⊕
j=1

(
A[Y ]

(hj)pa ⊕
A[Y ]

(h∗j )pa

) .

Direct factors on RHS correspond to irreducible factors of Y m − 1
in A[Y ].

There is one-to-one correspondence between these factors and the
q-cyclotomic cosets of Z/mZ.

Ui (1 ≤ i ≤ s): cyclotomic coset corresponding to gi ,
Vj and Wj (1 ≤ j ≤ t): cyclotomic cosets corresponding to hj and
h∗j , respectively.
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Fourier Transform

For c =
∑

g∈Z/mZ cg Y g ∈ A[Y ]/(Y m − 1),

its Fourier Transform: ĉ =
∑

h∈Z/mZ ĉhY h, where

ĉh =
∑

g∈Z/mZ

cgζ
gh,

ζ: primitive mth root of 1 in some (sufficiently large) Galois
extension of A.

The Fourier Transform gives rise to isomorphism (3).

Inverse transform:

cg = m−1
∑

h∈Z/mZ

ĉhζ
−gh.
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gh,
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Fourier Transform

Well known:

I ĉqh = F (ĉh)

I for h ∈ Ui , ĉh ∈ Gi , while for h ∈ Vj (resp. Wj), ĉh ∈ H ′j
(resp. H

′′
j ).

Backward direction of (3):

Gi , H ′j and H
′′
j : Galois extensions of A corresponding to gi , hj and

h∗j , with corresponding cyclotomic cosets Ui ,Vj and Wj .

For each i , fix some ui ∈ Ui .
For each j , fix some vj ∈ Vj and wj ∈Wj .
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j ).

Backward direction of (3):
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j : Galois extensions of A corresponding to gi , hj and

h∗j , with corresponding cyclotomic cosets Ui ,Vj and Wj .

For each i , fix some ui ∈ Ui .
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Fourier Transform & Trace Formula

Let ĉi ∈ Gi , ĉ ′j ∈ H ′j and ĉ
′′
j ∈ H

′′
j .

To (ĉ1, . . . , ĉs , ĉ
′
1, ĉ

′′
1 , . . . , ĉ

′
t , ĉ

′′
t ),

associate
∑

g∈Z/mZ cg Y g ∈ A[Y ]/(Y m − 1), where

mcg =
s∑

i=1

TrGi/A(ĉiζ
−gui )+

t∑
j=1

(TrH′
j /A

(ĉ ′j ζ
−gvj )+TrH′′

j /A
(ĉ

′′
j ζ
−gwj )),

TrB/A: trace from B to A.

Fourier Transform of vector x: vector whose ith entry is Fourier
Transform of ith entry of x.
Trace of x: vector whose coordinates are traces of coordinates of x.
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Trace Formula

Theorem
m relatively prime to characteristic of A.
Quasi-cyclic codes over A of length `m and of index ` given by
following construction:
Write Y m − 1 = δg1 · · · gsh1h∗1 · · · hth∗t , (δ, gi , hj , h∗j as earlier).

A[Y ]/(gi ) = Gi , A[Y ]/(hj) = H ′j and A[Y ]/(h∗j ) = H
′′
j .

Ui , Vj , Wj : corresponding q-cyclotomic coset of Z/mZ.
ui ∈ Ui , vj ∈ Vj and wj ∈Wj .
Ci , C ′j , C

′′
j : codes of length ` over Gi , H ′j , H

′′
j , resp.
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Trace Formula

Theorem
For xi ∈ Ci , y′j ∈ C ′j , y

′′
j ∈ C

′′
j , and 0 ≤ g ≤ m − 1:

cg =
s∑

i=1

TrGi/A(xiζ
−gui )+

t∑
j=1

(TrH′
j /A

(y′jζ
−gvj )+TrH′′

j /A
(y

′′
j ζ
−gwj )).

Then C = {(c0, . . . , cm−1) | xi ∈ Ci , y′j ∈ C ′j and y
′′
j ∈ C

′′
j } is

quasi-cyclic code over A of length `m and of index `.
Converse also true.
Moreover, C self-dual ⇔ Ci self-dual wrt Hermitian inner product
and C

′′
j = (C ′j )⊥ for each j wrt Euclidean inner product.
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Quasi-Cyclic Codes of Index 2

` = 2

Theorem
m: any positive integer.
Self-dual 2-quasi-cyclic codes over Fq of length 2m exist ⇔ exactly
one of following satisfied:

1. q is a power of 2;

2. q = pb (p prime ≡ 1 mod 4); or

3. q = p2b (p prime ≡ 3 mod 4).
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Proof

Case I: m relatively prime to q

Self-dual codes (wrt Euclidean inner product) of length 2 over Fq

exist if and only −1 is a square in Fq – true when one of following
holds:

1. q is a power of 2;

2. q = pb (p prime ≡ 1 mod 4; or

3. q = p2b (p prime ≡ 3 mod 4).

If self-dual 2-quasi-cyclic code over Fq of length 2m exists,
then by (3) there is self-dual code of length 2 over G1 = Fq.
Hence conditions in Proposition are necessary.
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Proof

Conversely, if any condition in Proposition satisfied,
then there exists i ∈ Fq such that i2 + 1 = 0.

Hence every finite extension of Fq also contains such an i .

Code generated by (1, i) over any extension of Fq is self-dual (wrt
Euclidean and Hermitian inner products) of length 2.
Hence existence of self-dual 2-quasi-cyclic code of length 2m over
Fq.
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Proof

Case II: m not relatively prime to q

q = pb and m = pam′, where a > 0.
By (3), Gi are finite chain rings of depth pa.

Self-dual 2-quasi-cyclic code over Fq of length 2m exists ⇔ for
each i , there exists self-dual linear code of length 2 over Gi .

Simplify notation

G : finite chain ring of depth d = pa, with maximal ideal (t) and
residue field Fqe .
(So G has qde elements.)
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Proof

Sufficiency:

If any condition in Theorem satisfied, then X 2 + 1 = 0 has solution
in G/(t) = Fqe .

Such a solution lifts to one in G/(tc), for any 1 ≤ c ≤ d .
Hence, there exists i ∈ G such that i2 + 1 = 0.

Clear: free code with generator matrix (1, i) self-dual of length 2.
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Proof

Necessity:

Assume q odd (case q even trivially true)

Let G = G1 corresponding to Y − 1 in (3).
Depth d odd.
In fact, G = Fq[t]/(t)pa

and Y 7→ Y−1 induces identity on G .
(Hermitian and Euclidean inner products coincide.)

Any nonzero element of G : tλa (a unit in G ).
Nonzero codeword of length 2 of one of:
(i) (0, tµb), (ii) (tλa, 0) or (iii) (tλa, tµb).
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Proof

Nonzero codeword of length 2 of one of:
(i) (0, tµb), (ii) (tλa, 0) or (iii) (tλa, tµb).

For word of form (i) to be self-orthogonal,
must have µ ≥ d+1

2 .
For word of type (ii) to be self-orthogonal,
need λ ≥ d+1

2 .
For word of type (iii) to be self-orthogonal,
need

t2λa2 + t2µb2 = 0. (7)

If both λ, µ ≥ d+1
2 ,

then (7) automatically satisfied.
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Proof

If at least one of them is at most d−1
2 :

If λ 6= µ,
then (7) never satisfied.

Hence, need λ = µ.
Then (7) implies

a2 + b2 ∈ (td−2λ). (8)

Hence, a2 + b2 ∈ (t), so −1 is a square in Fq.
Self-dual code of length 2 over G certainly contains at least a
codeword of type (iii) (not enough words of other types).
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1-Generator Codes

Quasi-Cyclic Codes of Index 2
m = 3 & Leech Lattice
m = 6 and the Golay code
Vandermonde Construction
Codes over Z2k

m = 3 & Leech Lattice

m = 3
A = Z4

GR(4, 2): unique Galois extension of Z4 of degree 2.

R = Z4 ⊕ GR(4, 2)

`-quasi-cyclic code C over Z4 of length 3` – (C1,C2),
C1: code over Z4 of length `
C2: code over GR(4, 2) of length `.

C = {(x+ 2a′−b′|x−a′+ 2b′|x−a′−b′) | x ∈ C1, a′+ ζb′ ∈ C2},

ζ ∈ GR(4, 2) satisfies ζ2 + ζ + 1 = 0.
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m = 3 & Leech Lattice

C ′2: linear code of length ` over Z4

C2 := C ′2 + C ′2ζ: linear code over GR(4, 2).

Consider: a = −2a′ + b′ and b = −a′ + 2b′

Construction equivalent to (x− a|x + b|x + a− b) construction,
with x ∈ C1 and a,b ∈ C ′2.

C ′2: Klemm-like code κ8 (over Z4)
C1: self-dual Z4-code O ′8, obtained from octacode O8 by negating
a single coordinate.

κ8∆O ′8 := {(x− a|x + b|x + a− b) | x ∈ O ′8, a,b ∈ κ8}.
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1-Generator Codes
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Vandermonde Construction
Codes over Z2k

m = 3 & Leech Lattice

C : Z4-linear code of length n
Quaternary lattice

Λ(C ) = {z ∈ Zn | z ≡ c mod 4 for some c ∈ C}.

Theorem
Λ(κ8∆O ′8)/2 is the Leech lattice Λ24.
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1-Generator Codes

Quasi-Cyclic Codes of Index 2
m = 3 & Leech Lattice
m = 6 and the Golay code
Vandermonde Construction
Codes over Z2k

Proof

From the (x− a|x + b|x + a− b) construction,
Clear: κ8∆O ′8 is self-dual.

Code generated by (−a, 0, a), (0,b,−b) and (x, x, x),
a,b ∈ κ8 and x ∈ O ′8.

All have Euclidean weights ≡ 0 mod 8.
Hence all words in code have weights divisible by 8.

Hence, Λ(κ8∆O ′8) is even unimodular lattice.
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Quasi-Cyclic Codes of Index 2
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m = 6 and the Golay code
Vandermonde Construction
Codes over Z2k

Proof

Known: κ8 ∩ O ′8 = 2O ′8.
Remains to show: min Euclidean weight in lattice ≥ 16

Suppose Euclidean weight of (x− a|x + b|x + a− b) is 8, for some
a,b ∈ κ8 and x ∈ O ′8.

x ≡ 0 mod 2 and
a ≡ b ≡ 0 mod 2.

Then (x− a|x + b|x + a− b) = (x + a|x + b|x + a + b),
so has Euclidean weight at least 16.
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Quasi-Cyclic Codes of Index 2
m = 3 & Leech Lattice
m = 6 and the Golay code
Vandermonde Construction
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m = 6 & Golay Code

m = 6
A = F2

R = (F2 + uF2)⊕ (F4 + uF4),

F2 + uF2 = F2[Y ]/(Y − 1)2 and F4 + uF4 = F2[Y ]/(Y 2 + Y + 1)2,
so u2 = 0 in both F2 + uF2 and F4 + uF4.
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Quasi-Cyclic Codes of Index 2
m = 3 & Leech Lattice
m = 6 and the Golay code
Vandermonde Construction
Codes over Z2k

m = 6 & Golay Code

C1: unique F2 + uF2-code of length 4 whose Gray image is binary
extended Hamming code with coordinates in reverse order
C2: F4 + uF4-code C ′2 + C ′2ζ,
C ′2: unique F2 + uF2-code of length 4 whose Gray image is binary
extended Hamming code.

Both C1, C2 self-dual:

Proposition

Binary extended Golay code is 4-quasi-cyclic.
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Vandermonde Construction
Codes over Z2k

Vandermonde Construction

A: finite chain ring
m: integer, unit in A
Suppose: A contains unit ζ of order m.

Y m − 1 = (Y − 1)(Y − ζ) · · · (Y − ζm−1).
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Vandermonde Construction

(By Fourier Transform)
If f = f0 + f1Y + · · ·+ fm−1Y m−1 ∈ A[Y ]/(Y m − 1),
where fi ∈ A for 0 ≤ i ≤ m − 1, then

f0

f1
...

fm−1

 = V−1


f̂0

f̂1
...

f̂m−1

 ,

f̂i : Fourier coefficients
V =

(
ζ ij
)

0≤i ,j≤m−1
: m ×m Vandermonde matrix.
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Vandermonde Construction

a0, . . . , am−1 ∈ A`: vectors.

V−1


a0
...
ai
...

 ∈ R`.

– Vandermonde product
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Vandermonde Construction

Theorem
A,m as above.
C0, . . . ,Cm−1: linear codes of length ` over A.
Then the Vandermonde product of C0, . . . ,Cm−1 is a quasi-cyclic
code over A of length `m and of index `.
Moreover, every `-quasi-cyclic code of length `m over A is
obtained via the Vandermonde construction.
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Codes over Z2k

Note: Z2k is not local.

Self-dual code over Z2k is Type II if and only if Euclidean weight of
every codeword multiple of 4k .

Let 2k = pe1
1 · · · per

r (p1, . . . , pr distinct primes).
For f ∈ Z2k [Y ],

Z2k [Y ]

(f )
=

Zp
e1
1

[Y ]

(f )
× · · · ×

Zper
r

[Y ]

(f )
. (9)
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Codes over Z2k

Y 2 + Y + 1 irreducible modulo 2,
so Y 2 + Y + 1 irreducible modulo 2k for all k .

Suppose k relatively prime to 3.
Then 3 is unit in Zp

ei
i

for every 1 ≤ i ≤ r .

Y − 1, Y 2 + Y + 1 relatively prime in Zp
ei
i

[Y ], as

1 = 3−1(Y 2 + Y + 1) + 3−1(Y + 2)(Y − 1),

so,
Zp

ei
i

[Y ]

(Y 3 − 1)
= Zp

ei
i
⊕

Zp
ei
i

[Y ]

(Y 2 + Y + 1)
, (10)

for every 1 ≤ i ≤ r .
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Codes over Z2k

Therefore,
Z2k [Y ]

(Y 3 − 1)
= Z2k ⊕

Z2k [Y ]

(Y 2 + Y + 1)
.

(k relatively prime to 3)

`-quasi-cyclic code of length 3` over Z2k ↔ (C1,C2),
C1: code of length ` over Z2k

C2: code of length ` over Z2k [Y ]/(Y 2 + Y + 1).
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.
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Codes over Z2k

Proposition

k: integer coprime with 3
C : self-dual code over Z2k .
Then C Type II `-quasi-cyclic code of length 3` if and only if its
Z2k component C1 of Type II.
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Proof

Necessity:

C contains (x, x, x), where x ranges over C1, and, by hypothesis,
(4k , 3) = 1.

Sufficiency:

A spanning set of codewords of Euclidean weights ≡ 0 mod 4k is

(x, x, x), (−a,b, a− b),

with x running over C1, and a + ζb running over C2.
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Proof

Note: self-duality of C2 entails (a + ζb)(a + ζb) = 0.

Since
ζ + ζ = −1 & ζζ = 1,

have
a · a + b · b− a · b ≡ 0 mod 2k .

By bilinearity of ( , ):

(a− b, a− b) = a · a + b · b− 2a · b,

Norm of (−a,b, a− b):

a · a + b · b + (a− b) · (a− b) = 2(a · a + b · b− a · b),

multiple of 4k .
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1-Generator Codes

Back to local rings.

Quasi-cyclic code C is 1-generator if and only if its generator
matrix over R contains only one row:

[a0(Y ), a1(Y ), · · · , a`−1(Y )].

generator polynomial:

g(Y ) := GCD(a0(Y ), a1(Y ), · · · , a`−1(Y ),Y m − 1),

parity-check polynomial: h(Y ) := (Y m − 1)/g(Y )
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Theorem
m relatively prime to characteristic of A.
C : 1-generator `-QC code over A of length n = m` with generator

g(Y ) = (g(Y )f0(Y ), g(Y )f1(Y ), . . . , g(Y )f`−1(Y )),

g(Y )|Y m − 1,
g(Y ), fi (Y ) ∈ A[Y ]/(Y m − 1),
(fi (Y ), h(Y )) = 1, where h(Y ) = (Y m − 1)/g(Y ).
Then: C free A-module of rank m − deg g.
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Proof

R = A[Y ]/(Y m − 1)
Consider Πi : R` → R defined by:

Π(a0(Y ), a1(Y ), . . . , a`−1(Y )) = ai (Y ).

Then: Πi (C ) is cyclic code generated by g(Y )fi (Y ).
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