Quasi-Cyclic Codes over Rings

Patrick Solé

I3S, UMR 6070, Université de Nice Sophia antipolis

Conference Non Commutative Rings June 09

References

This talk is based on joint work with San Ling (NTU, Singapore) on quasi cyclic codes. It is important to notice that, even if the alphabet is a field chain rings are necessary to analyse their structure: thus I and II were originally one article forced to split by the will of some IT editor!

- S. Ling & P. Solé, On the algebraic structure of quasi-cyclic codes I: finite fields. IEEE Transactions on Information Theory 47, 2751 2760 (2001)
- S. Ling & P. Solé, On the algebraic structure of quasi-cyclic codes II: chain rings. Designs, Codes and Cryptography 30, 113 130 (2003)
- S. Ling & P. Solé, On the algebraic structure of quasi-cyclic codes III: generator theory. IEEE Transactions on Information Theory 51, 2692 2700 (2005)

Outline

Rings Quasi-Cyclic Codes over Rings Applications 1-Generator Codes

Contents

Rings

Quasi-Cyclic Codes over Rings

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Applications

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

1-Generator Codes

< 1[™] >

글 🕨 🔸 글 🕨

A: commutative ring with identity 1

A local: if it has a unique maximal ideal M.

k := A/M is a field.

A: commutative ring with identity 1

A local: if it has a unique maximal ideal M.

k := A/M is a field.

Hensel lifting: Factorizations fg of elements h of k[X] can be "lifted" to factorizations FG of H in A[X] in such a way that f, g, h correspond to F, G, H respectively under reduction modulo M.

Chain ring: both local and principal.

A local ring is a chain ring \$1\$maximal ideal has a unique generator t, say: M = (t).

Quasi-Cyclic Codes over Rings

Chain Rings

Chain ring: both local and principal.

$$A \supset (t) \supset (t^2) \supset \cdots \supset (t^{d-1}) \supset (t^d) = (0).$$

d: depth of *A*.

If k has q elements, then $A/(t^i)$ has q^i elements, so A has q^d elements.

イロン イヨン イヨン イヨン

Example

- 1. Finite fields \mathbb{F}_q
- 2. Integer rings \mathbb{Z}_{p^r}
- 3. Galois rings $GR(p^r, m)$
- 4. $\mathbb{F}_q[u]/(u^k)$

イロト イヨト イヨト イヨト

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Codes over Rings

Linear code C of length n over A: an A-submodule of A^n , i.e.,

►
$$x, y \in C \Rightarrow x + y \in C$$
;

$$\blacktriangleright \forall \lambda \in A, \ x \in C \Rightarrow \lambda x \in C,$$

イロン イヨン イヨン イヨン

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Codes over Rings

Linear code C of length n over A: an A-submodule of A^n , i.e.,

•
$$x, y \in C \Rightarrow x + y \in C;$$

$$\blacktriangleright \quad \forall \lambda \in A, \ x \in C \Rightarrow \lambda x \in C,$$

T: standard shift operator on A^n

$$T(a_0, a_1, \ldots, a_{n-1}) = (a_{n-1}, a_0, \ldots, a_{n-2}).$$

C quasi-cyclic of index ℓ or ℓ -quasi-cyclic: invariant under T^{ℓ} . Assume: ℓ divides n $m := n/\ell$: co-index.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Codes over Rings

Example

- If ℓ = 2 and first circulant block is identity matrix, code equivalent to a so-called pure **double circulant** code.
- ► Up to equivalence, generator matrix of such a code consists of m × m circulant matrices.

<ロ> (日) (日) (日) (日) (日)

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

m: positive integer.

$$R := R(A, m) = A[Y]/(Y^m - 1).$$

C: quasi-cyclic code over A of length ℓm and index ℓ .

$$\mathbf{c} = (c_{00}, c_{01}, \dots, c_{0,\ell-1}, c_{10}, \dots, c_{1,\ell-1}, \dots, c_{m-1,0}, \dots, c_{m-1,\ell-1}) \in C$$

・ロン ・聞と ・ほと ・ほと

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

m: positive integer.

$$R := R(A, m) = A[Y]/(Y^m - 1).$$

C: quasi-cyclic code over A of length ℓm and index ℓ .

$$\mathbf{c} = (c_{00}, c_{01}, \dots, c_{0,\ell-1}, c_{10}, \dots, c_{1,\ell-1}, \dots, c_{m-1,0}, \dots, c_{m-1,\ell-1}) \in C$$

Define $\phi : A^{\ell m} \to R^{\ell}$ by

$$\phi(\mathbf{c}) = (\mathbf{c}_0(Y), \mathbf{c}_1(Y), \dots, \mathbf{c}_{\ell-1}(Y)) \in R^\ell,$$

where $\mathbf{c}_j(Y) = \sum_{i=0}^{m-1} c_{ij} Y^i \in R$.

 $\phi(C)$: image of C under ϕ .

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

Lemma

.

 ϕ induces one-to-one correspondence

quasi-cyclic codes over A of index ℓ and length ℓ m \uparrow linear codes over R of length ℓ

Quasi-Cyclic Codes over Rings

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof

C linear $\Rightarrow \phi(C)$ closed under scalar multiplication by elements of A. Since $Y^m = 1$ in R,

$$Y\mathbf{c}_{j}(Y) = \sum_{i=0}^{m-1} c_{ij}Y^{i+1} = \sum_{i=0}^{m-1} c_{i-1,j}Y^{i},$$

subscripts taken modulo m.

・ロン ・回 と ・ヨン ・ヨン

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof continued

$$(Y\mathbf{c}_0(Y), Y\mathbf{c}_1(Y), \dots, Y\mathbf{c}_{\ell-1}(Y)) \in R^\ell$$

corresponds to

$$(c_{m-1,0}, c_{m-1,1}, \ldots, c_{m-1,\ell-1}, c_{00}, c_{01}, \ldots, c_{0,\ell-1}, \ldots, c_{m-2,0}, \ldots, c_{m-2,\ell-1}) \in A^{\ell m},$$

which is in *C* since *C* is quasi-cyclic of index ℓ . Therefore, $\phi(C)$ closed under multiplication by *Y*. Hence $\phi(C)$ is *R*-submodule of R^{ℓ} .

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof continued

$$(Y\mathbf{c}_0(Y), Y\mathbf{c}_1(Y), \dots, Y\mathbf{c}_{\ell-1}(Y)) \in R^\ell$$

corresponds to

$$(c_{m-1,0}, c_{m-1,1}, \ldots, c_{m-1,\ell-1}, c_{00}, c_{01}, \ldots, c_{0,\ell-1}, \ldots, c_{m-2,0}, \ldots, c_{m-2,\ell-1}) \in A^{\ell m},$$

which is in *C* since *C* is quasi-cyclic of index ℓ . Therefore, $\phi(C)$ closed under multiplication by *Y*. Hence $\phi(C)$ is *R*-submodule of R^{ℓ} . For converse, reverse above argument.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

Conjugation map $\overline{}$ on R: identity on the elements of A and sends Y to $Y^{-1} = Y^{m-1}$, and extended linearly.

Quasi-Cyclic Codes over Rings

・ロン ・回と ・ヨン ・ヨン

2

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

Conjugation map $\overline{}$ on R: identity on the elements of A and sends Y to $Y^{-1} = Y^{m-1}$, and extended linearly.

Euclidean inner product on $A^{\ell m}$: for

$$\mathbf{a} = (a_{00}, a_{01}, \dots, a_{0,\ell-1}, a_{10}, \dots, a_{1,\ell-1}, \dots, a_{m-1,0}, \dots, a_{m-1,\ell-1})$$

and

$$\mathbf{b} = (b_{00}, b_{01}, \ldots, b_{0,\ell-1}, b_{10}, \ldots, b_{1,\ell-1}, \ldots, b_{m-1,0}, \ldots, b_{m-1,\ell-1}),$$

define

$$\mathbf{a} \cdot \mathbf{b} = \sum_{i=0}^{m-1} \sum_{j=0}^{\ell-1} a_{ij} b_{ij}.$$

イロト イヨト イヨト イヨト

3

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

Hermitian inner product on R^{ℓ} : for

$$\mathbf{x} = (x_0, \dots, x_{\ell-1}) \text{ and } \mathbf{y} = (y_0, \dots, y_{\ell-1}),$$

 $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{j=0}^{\ell-1} x_j \overline{y_j}.$

Quasi-Cyclic Codes over Rings

イロン イヨン イヨン イヨン

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

Hermitian inner product on R^{ℓ} : for

$$\mathbf{x} = (x_0, \dots, x_{\ell-1}) \text{ and } \mathbf{y} = (y_0, \dots, y_{\ell-1}),$$

 $\langle \mathbf{x}, \mathbf{y} \rangle = \sum_{i=0}^{\ell-1} x_i \overline{y_i}.$

Proposition

 $\mathbf{a}, \mathbf{b} \in A^{\ell m}$. Then

$$egin{aligned} ig(\mathcal{T}^{\ell k}(\mathbf{a})ig) \cdot \mathbf{b} &= 0 ext{ for all } 0 \leq k \leq m-1 \ & \& \ & \& \ & & \& \ & & \langle \phi(\mathbf{a}), \phi(\mathbf{b})
angle = 0. \end{aligned}$$

イロン 不同と 不同と 不同と

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof

Condition $\langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle = 0$ equivalent to

$$0 = \sum_{j=0}^{\ell-1} a_j \overline{b_j} = \sum_{j=0}^{\ell-1} \left(\sum_{i=0}^{m-1} a_{ij} Y^i \right) \left(\sum_{k=0}^{m-1} b_{kj} Y^{-k} \right).$$
(1)

・ロン ・回 と ・ヨン ・ヨン

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof

Condition $\langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle = 0$ equivalent to

$$0 = \sum_{j=0}^{\ell-1} a_j \overline{b_j} = \sum_{j=0}^{\ell-1} \left(\sum_{i=0}^{m-1} a_{ij} Y^i \right) \left(\sum_{k=0}^{m-1} b_{kj} Y^{-k} \right).$$
(1)

Comparing coefficients of Y^h , (1) equivalent to

$$\sum_{j=0}^{\ell-1} \sum_{i=0}^{m-1} a_{i+h,j} b_{ij} = 0, \qquad \text{for all } 0 \le h \le m-1, \qquad (2)$$

subscripts taken modulo m.

・ロト ・回ト ・ヨト ・ヨト

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof

Condition $\langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle = 0$ equivalent to

$$0 = \sum_{j=0}^{\ell-1} a_j \overline{b_j} = \sum_{j=0}^{\ell-1} \left(\sum_{i=0}^{m-1} a_{ij} Y^i \right) \left(\sum_{k=0}^{m-1} b_{kj} Y^{-k} \right).$$
(1)

Comparing coefficients of Y^h , (1) equivalent to

$$\sum_{j=0}^{\ell-1} \sum_{i=0}^{m-1} a_{i+h,j} b_{ij} = 0, \qquad \text{ for all } 0 \le h \le m-1, \qquad (2)$$

subscripts taken modulo m.

(2) means
$$(T^{-\ell h}(\mathbf{a})) \cdot \mathbf{b} = 0.$$

・ロト ・回ト ・ヨト ・ヨト

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Proof

Since $T^{-\ell h} = T^{\ell(m-h)}$, it follows that (2), and hence $\langle \phi(\mathbf{a}), \phi(\mathbf{b}) \rangle = 0$, is equivalent to $(T^{\ell k}(\mathbf{a})) \cdot \mathbf{b} = 0$ for all $0 \le k \le m-1$.

Quasi-Cyclic Codes over Rings

・ロン ・回 と ・ ヨ と ・ ヨ と

3

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Quasi-Cyclic Codes

Corollary

C: quasi-cyclic code over *A* of length ℓm and of index $\ell \phi(C)$: its image in R^{ℓ} under ϕ . Then $\phi(C)^{\perp} = \phi(C^{\perp})$, where dual in $A^{\ell m}$ is wrt Euclidean inner product, while dual in R^{ℓ} is wrt Hermitian inner product. In particular,

> *C* over *A* self-dual wrt Euclidean inner product (C) self-dual over *R* wrt Hermitian inner product.

・ロト ・同ト ・ヨト ・ヨト

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

When m > 1, $R(A, m) = A[Y]/(Y^m - 1)$ is never a local ring. But always decomposes into product of local rings.

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

When m > 1, $R(A, m) = A[Y]/(Y^m - 1)$ is never a local ring. But always decomposes into product of local rings.

Characteristic of A: p^n (p prime).

Write $m = p^a m'$, where (m', p) = 1.

 $Y^{m'} - 1$ factors into distinct irreducible factors in k[Y].

・ロン ・回と ・ヨン・

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

When m > 1, $R(A, m) = A[Y]/(Y^m - 1)$ is never a local ring. But always decomposes into product of local rings.

Characteristic of A: p^n (p prime).

Write
$$m = p^a m'$$
, where $(m', p) = 1$.

 $Y^{m'} - 1$ factors into distinct irreducible factors in k[Y].

By Hensel lifting, may write

$$Y^{m'}-1=f_1f_2\cdots f_r\in A[Y],$$

 f_j : distinct basic irreducible polynomials.

・ロト ・回ト ・ヨト ・ヨト

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Product unique:

if $Y^{m'} - 1 = f'_1 f'_2 \cdots f'_s$ is another decomposition into basic irreducible polynomials,

then r = s and,

after suitable renumbering of the f_j' 's, f_j is associate of $f_j',$ for each $1 \leq j \leq r.$

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

f: polynomial f*: its reciprocal polynomial Note: $(f^*)^* = f$.

・ロト ・回ト ・ヨト ・ヨト

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

f: polynomial f*: its reciprocal polynomial Note: $(f^*)^* = f$.

$$Y^{m'} - 1 = -f_1^* f_2^* \cdots f_r^*.$$

f basic irreducible \Rightarrow so is f^* . By uniqueness of decomposition

$$Y^{m'}-1=\delta g_1\cdots g_s h_1 h_1^*\cdots h_t h_t^*,$$

 δ : unit in A, g_1, \ldots, g_s : those f_j 's associate to their own reciprocals, $h_1, h_1^*, \ldots, h_t, h_t^*$: remaining f_j 's grouped in pairs.

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Suppose further: if characteristic of A is p^n (n > 1), then a = 0, i.e., m = m' relatively prime to p.

When characteristic of A is p (e.g., finite field), m need not be relatively prime to p.

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Suppose further:

if characteristic of A is p^n (n > 1), then a = 0,

i.e., m = m' relatively prime to p.

When characteristic of A is p (e.g., finite field), m need not be relatively prime to p.

Then

$$Y^{m} - 1 = Y^{p^{a}m'} - 1 = (Y^{m'} - 1)^{p^{a}} \\ = \delta^{p^{a}} g_{1}^{p^{a}} \cdots g_{5}^{p^{a}} h_{1}^{p^{a}} (h_{1}^{*})^{p^{a}} \cdots h_{t}^{p^{a}} (h_{t}^{*})^{p^{a}} \in A[Y].$$

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Consequently,

$$R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}}\right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h_j^*)^{p^a}}\right)\right),$$
(3)

(with coordinatewise addition and multiplication).

< □ > < □ > < □ > < □ > < □ > .

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Consequently,

$$R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}}\right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h_j^*)^{p^a}}\right)\right),$$
(3)

(with coordinatewise addition and multiplication).

$$\begin{split} G_i &:= A[Y]/(g_i)^{p^a}, \ H'_j := A[Y]/(h_j)^{p^a}, \ H''_j &:= A[Y]/(h_j^*)^{p^a} \\ R^\ell &= \left(\bigoplus_{i=1}^s G_i^\ell\right) \oplus \left(\bigoplus_{j=1}^t \left(H'^\ell_j \oplus H''^\ell_j\right)\right). \end{split}$$

・ロン ・聞と ・ほと ・ほと
Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Every *R*-linear code *C* of length ℓ can be decomposed as

$$C = \left(\bigoplus_{i=1}^{s} C_{i}\right) \oplus \left(\bigoplus_{j=1}^{t} \left(C_{j}' \oplus C_{j}''\right)\right),$$

 C_i : linear code over G_i of length ℓ ,

- C'_j : linear code over H'_j of length ℓ and
- C_i'' : linear code over H_i'' of length ℓ .

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Every element of R may be written as $\mathbf{c}(Y)$ for some polynomial $\mathbf{c} \in A[Y]$.

$$R = \left(\bigoplus_{i=1}^{s} G_i\right) \oplus \left(\bigoplus_{j=1}^{t} \left(H'_j \oplus H''_j\right)\right).$$

Hence,

$$\mathbf{c}(Y) = (c_1(Y), \dots, c_s(Y), c_1'(Y), c_1''(Y), \dots, c_t'(Y), c_t''(Y)), \quad (4)$$

$$c_i(Y) \in G_i \ (1 \le i \le s), \ c_j'(Y) \in H_j' \text{ and } c_j''(Y) \in H_j'' \ (1 \le j \le t).$$

イロト イヨト イヨト イヨト

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

(5)

The Ring R(A, m)

Recall "conjugate" map $Y \mapsto Y^{-1}$ in R.

For $f \in A[Y]$ dividing $Y^m - 1$, have isomorphism

$$\begin{array}{ccc} \frac{A[Y]}{(f)} & \longrightarrow & \frac{A[Y]}{(f^*)} \\ c(Y) + (f) & \longmapsto & c(Y^{-1}) + (f^*). \end{array}$$

(Note: $Y^{-1} = Y^{m-1}$.)

When f and f^* are associates, map $Y \mapsto Y^{-1}$ induces automorphism of A[Y]/(f). For $r \in A[Y]/(f)$, \overline{r} : image under this map. When $\deg(f) = 1$, induced map is identity, so $\overline{r} = r$.

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Let

$$\mathbf{r} = (r_1, \dots, r_s, r'_1, r''_1, \dots, r'_t, r''_t),$$

where $r_i \in G_i \ (1 \le i \le s), \ r'_j \in H'_j \ \text{and} \ r''_j \in H''_j \ (1 \le j \le t).$

Then

$$\overline{\mathbf{r}} = (\overline{r_1}, \ldots, \overline{r_s}, r_1'', r_1', \ldots, r_t'', r_t').$$

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Let

$$\mathbf{r} = (r_1, \dots, r_s, r'_1, r''_1, \dots, r'_t, r''_t),$$

where $r_i \in G_i \ (1 \le i \le s), \ r'_j \in H'_j \ \text{and} \ r''_j \in H''_j \ (1 \le j \le t)$

Then

$$\overline{\mathbf{r}} = (\overline{r_1}, \ldots, \overline{r_s}, r_1'', r_1', \ldots, r_t'', r_t').$$

When f and f^{*} are associates, for $\mathbf{c} = (c_1, \ldots, c_\ell), \mathbf{c}' = (c'_1, \ldots, c'_\ell) \in (A[Y]/(f))^\ell$, define Hermitian inner product on $(A[Y]/(f))^\ell$ as

$$\langle \mathbf{c}, \mathbf{c}' \rangle = \sum_{i=1}^{\ell} c_i \overline{c'_i}.$$
 (6)

イロト イヨト イヨト イヨト

2

Quasi-Cyclic Codes over Rings

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Remark When $\deg(f) = 1$, since $r \mapsto \overline{r}$ is identity, Hermitian inner product (6) is usual Euclidean inner product \cdot on A.

Quasi-Cyclic Codes over Rings

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Proposition $a = (a_0, a_1, \dots, a_{\ell-1}) \in R^{\ell}$ and $b = (b_0, b_1, \dots, b_{\ell-1}) \in R^{\ell}$. $\mathbf{a}_{i} = (a_{i1}, \dots, a_{is}, a'_{i1}, a''_{i1}, \dots, a'_{it}, a''_{it})$ $\mathbf{b}_{i} = (b_{i1}, \dots, b_{is}, b'_{i1}, b''_{i1}, \dots, b'_{it}, b''_{it}),$ $a_{ii}, b_{ii} \in G_i, a'_{ii}, b'_{ii}, a''_{ii}, b''_{ii} \in H'_i$ (with H'_i, H''_i identified). Then $\langle \mathbf{a}, \mathbf{b} \rangle = \sum_{i=0}^{\ell-1} \mathbf{a}_i \overline{\mathbf{b}_i}$ $= \left(\sum_{i} a_{i1}\overline{b_{i1}}, \ldots, \sum_{i} a_{is}\overline{b_{is}}, \sum_{i} a'_{i1}b''_{i1}, \sum_{i} a''_{i1}b'_{i1}, \ldots, \sum_{i} a'_{it}b''_{it}, \sum_{i} a''_{it}b'_{it}\right).$ In particular, $\langle \mathbf{a}, \mathbf{b} \rangle = 0 \Leftrightarrow \sum_{i} a_{ij} \overline{b_{ij}} = 0 \ (1 \le j \le s)$ and $\sum_{i} a'_{ii} b''_{ii} = 0 = \sum_{i} a''_{ii} b'_{ii} (1 < k < t).$

Codes over Rings Quasi-Cyclic Codes **The Ring** R(A, m)Fourier Transform & Trace Formula

The Ring R(A, m)

Theorem

Linear code C over $R = A[Y]/(Y^m - 1)$ of length ℓ is self-dual wrt Hermitian inner product if and only if

$$C = \left(\bigoplus_{i=1}^{s} C_i \right) \oplus \left(\bigoplus_{j=1}^{t} \left(C'_j \oplus (C'_j)^{\perp} \right) \right)$$

 C_i : self-dual code over G_i of length ℓ (wrt Hermitian inner product) C'_j : linear code of length ℓ over H'_j C'_j^{\perp} : dual wrt Euclidean inner product.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Finite Chain Rings

Assume: m and characteristic of A relatively prime m is a unit in A

・ロト ・回ト ・ヨト ・ヨト

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Finite Chain Rings

Assume: m and characteristic of A relatively prime m is a unit in A

A: finite chain ring with maximal ideal (t) Residue field $k = A/(t) = \mathbf{F}_q$. Every element x of A can be expressed uniquely as

$$x = x_0 + x_1 t + \dots + x_{d-1} t^{d-1},$$

where x_0, \ldots, x_{d-1} belong to Teichmüller set.

・ロン ・回と ・ヨン・

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Galois Extensions

 g_i, h_j, h_j^* – monic basic irreducible polynomials G_i, H_i' and H_i'' are Galois extensions of A.

- Galois extensions of local ring are unramified
- Unique maximal ideal in such a Galois extension of A again generated by t.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Frobenius & Trace

For B/A Galois extension, Frobenius map $F : B \to B$ – map induced by $Y \mapsto Y^q$, acting as identity on A. e: degree of extension B over AThen F^e is identity.

 $x \in B$, trace

$$Tr_{B/A}(x) = x + F(x) + \cdots + F^{e-1}(x).$$

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform

In (3),

$$R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^s \frac{A[Y]}{(g_i)^{p^s}} \right) \oplus \left(\bigoplus_{j=1}^t \left(\frac{A[Y]}{(h_j)^{p^s}} \oplus \frac{A[Y]}{(h_j^*)^{p^s}} \right) \right).$$

Direct factors on RHS correspond to irreducible factors of $Y^m - 1$ in A[Y].

イロン イヨン イヨン イヨン

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

.

Fourier Transform

In (3),

$$R = \frac{A[Y]}{(Y^m - 1)} = \left(\bigoplus_{i=1}^{s} \frac{A[Y]}{(g_i)^{p^a}}\right) \oplus \left(\bigoplus_{j=1}^{t} \left(\frac{A[Y]}{(h_j)^{p^a}} \oplus \frac{A[Y]}{(h_j^*)^{p^a}}\right)\right)$$

Direct factors on RHS correspond to irreducible factors of $Y^m - 1$ in A[Y].

There is one-to-one correspondence between these factors and the *q*-cyclotomic cosets of $\mathbb{Z}/m\mathbb{Z}$.

 U_i $(1 \le i \le s)$: cyclotomic coset corresponding to g_i , V_j and W_j $(1 \le j \le t)$: cyclotomic cosets corresponding to h_j and h_j^* , respectively.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform

For
$$\mathbf{c} = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in \mathcal{A}[Y]/(Y^m - 1)$$
,
its Fourier Transform: $\hat{\mathbf{c}} = \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h Y^h$, where

$$\hat{c}_h = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g \zeta^{gh},$$

 ζ : primitive *m*th root of 1 in some (sufficiently large) Galois extension of *A*.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform

For
$$\mathbf{c} = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in A[Y]/(Y^m - 1)$$
,
its Fourier Transform: $\hat{\mathbf{c}} = \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h Y^h$, where

$$\hat{c}_h = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g \zeta^{gh},$$

 ζ : primitive *m*th root of 1 in some (sufficiently large) Galois extension of *A*.

The Fourier Transform gives rise to isomorphism (3).

・ロン ・回と ・ヨン・

2

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform

For
$$\mathbf{c} = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in \mathcal{A}[Y]/(Y^m - 1)$$
,
its Fourier Transform: $\hat{\mathbf{c}} = \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h Y^h$, where

$$\hat{c}_h = \sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g \zeta^{gh},$$

 ζ : primitive *m*th root of 1 in some (sufficiently large) Galois extension of *A*.

The Fourier Transform gives rise to isomorphism (3).

Inverse transform:

$$c_g = m^{-1} \sum_{h \in \mathbb{Z}/m\mathbb{Z}} \hat{c}_h \zeta^{-gh}.$$

イロン イヨン イヨン イヨン

2

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform

Well known:

- $\blacktriangleright \hat{c}_{qh} = F(\hat{c}_h)$
- ▶ for $h \in U_i$, $\hat{c}_h \in G_i$, while for $h \in V_j$ (resp. W_j), $\hat{c}_h \in H'_j$ (resp. H''_j).

イロト イヨト イヨト イヨト

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform

Well known:

- $\blacktriangleright \hat{c}_{qh} = F(\hat{c}_h)$
- ▶ for $h \in U_i$, $\hat{c}_h \in G_i$, while for $h \in V_j$ (resp. W_j), $\hat{c}_h \in H'_j$ (resp. H''_j).

Backward direction of (3):

 G_i , H'_j and H''_j : Galois extensions of A corresponding to g_i , h_j and h^*_j , with corresponding cyclotomic cosets U_i , V_j and W_j . For each i, fix some $u_i \in U_i$. For each j, fix some $v_j \in V_j$ and $w_j \in W_j$.

イロン イヨン イヨン イヨン

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Fourier Transform & Trace Formula

Let $\hat{c}_i \in G_i$, $\hat{c}'_j \in H'_j$ and $\hat{c}''_j \in H''_j$. To $(\hat{c}_1, \dots, \hat{c}_s, \hat{c}'_1, \hat{c}''_1, \dots, \hat{c}'_t, \hat{c}''_t)$, associate $\sum_{g \in \mathbb{Z}/m\mathbb{Z}} c_g Y^g \in A[Y]/(Y^m - 1)$, where

$$mc_{g} = \sum_{i=1}^{s} Tr_{G_{i}/A}(\hat{c}_{i}\zeta^{-gu_{i}}) + \sum_{j=1}^{t} (Tr_{H_{j}'/A}(\hat{c}_{j}'\zeta^{-gv_{j}}) + Tr_{H_{j}''/A}(\hat{c}_{j}''\zeta^{-gw_{j}})),$$

 $Tr_{B/A}$: trace from B to A.

Fourier Transform of vector **x**: vector whose *i*th entry is Fourier Transform of *i*th entry of **x**.

Trace of x: vector whose coordinates are traces of coordinates of x.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Trace Formula

Theorem

m relatively prime to characteristic of A.

Quasi-cyclic codes over A of length ℓm and of index ℓ given by following construction:

Write $Y^m - 1 = \delta g_1 \cdots g_s h_1 h_1^* \cdots h_t h_t^*$, $(\delta, g_i, h_j, h_j^*$ as earlier). $A[Y]/(g_i) = G_i, A[Y]/(h_j) = H_j'$ and $A[Y]/(h_j^*) = H_j''$. U_i, V_j, W_j : corresponding q-cyclotomic coset of $\mathbb{Z}/m\mathbb{Z}$. $u_i \in U_i, v_j \in V_j$ and $w_j \in W_j$. C_i, C_j', C_j'' : codes of length ℓ over G_i, H_j', H_j'' , resp.

Codes over Rings Quasi-Cyclic Codes The Ring R(A, m)Fourier Transform & Trace Formula

Trace Formula

Theorem

For
$$\mathbf{x}_i \in C_i$$
, $\mathbf{y}_j' \in C_j'$, $\mathbf{y}_j'' \in C_j''$, and $0 \le g \le m-1$:

$$\mathbf{c}_{g} = \sum_{i=1}^{s} Tr_{G_{i}/A}(\mathbf{x}_{i}\zeta^{-gu_{i}}) + \sum_{j=1}^{t} (Tr_{H_{j}'/A}(\mathbf{y}_{j}'\zeta^{-gv_{j}}) + Tr_{H_{j}''/A}(\mathbf{y}_{j}''\zeta^{-gw_{j}})).$$

Then $C = \{ (\mathbf{c}_0, \dots, \mathbf{c}_{m-1}) \mid \mathbf{x}_i \in C_i, \mathbf{y}'_j \in C'_j \text{ and } \mathbf{y}''_j \in C''_j \}$ is quasi-cyclic code over A of length ℓm and of index ℓ . Converse also true.

Moreover, C self-dual \Leftrightarrow C_i self-dual wrt Hermitian inner product and $C''_j = (C'_j)^{\perp}$ for each j wrt Euclidean inner product.

イロン イヨン イヨン イヨン

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Quasi-Cyclic Codes of Index 2

 $\ell=2$

Theorem

m: any positive integer.

Self-dual 2-quasi-cyclic codes over \mathbb{F}_q of length 2m exist \Leftrightarrow exactly one of following satisfied:

- 1. q is a power of 2;
- 2. $q = p^{b}$ (p prime $\equiv 1 \mod 4$); or
- 3. $q = p^{2b}$ (*p* prime \equiv 3 mod 4).

e Quasi-Cyclic Codes of Index 2 s m = 3 & Leech Lattice m = 6 and the Golay code

m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case I: m relatively prime to q

Quasi-Cyclic Codes over Rings

・ロン ・四 と ・ ヨ と ・ モ と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case I: m relatively prime to q

Self-dual codes (wrt Euclidean inner product) of length 2 over \mathbb{F}_q exist if and only -1 is a square in \mathbb{F}_q – true when one of following holds:

- 1. q is a power of 2;
- 2. $q = p^b$ (p prime $\equiv 1 \mod 4$; or
- 3. $q = p^{2b}$ (p prime \equiv 3 mod 4).

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case I: m relatively prime to q

Self-dual codes (wrt Euclidean inner product) of length 2 over \mathbb{F}_q exist if and only -1 is a square in \mathbb{F}_q – true when one of following holds:

- 1. q is a power of 2;
- 2. $q = p^b$ (p prime $\equiv 1 \mod 4$; or
- 3. $q = p^{2b}$ (p prime \equiv 3 mod 4).

If self-dual 2-quasi-cyclic code over \mathbb{F}_q of length 2m exists, then by (3) there is self-dual code of length 2 over $G_1 = \mathbb{F}_q$. Hence conditions in Proposition are necessary.

・ロン ・回と ・ヨン ・ヨン

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Conversely, if any condition in Proposition satisfied, then there exists $i \in \mathbb{F}_q$ such that $i^2 + 1 = 0$.

Quasi-Cyclic Codes over Rings

イロト イヨト イヨト イヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Conversely, if any condition in Proposition satisfied, then there exists $i \in \mathbb{F}_q$ such that $i^2 + 1 = 0$.

Hence every finite extension of \mathbb{F}_q also contains such an *i*.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Conversely, if any condition in Proposition satisfied, then there exists $i \in \mathbb{F}_q$ such that $i^2 + 1 = 0$.

Hence every finite extension of \mathbb{F}_q also contains such an *i*.

Code generated by (1, i) over any extension of \mathbb{F}_q is self-dual (wrt Euclidean and Hermitian inner products) of length 2. Hence existence of self-dual 2-quasi-cyclic code of length 2m over \mathbb{F}_q .

Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case II: m not relatively prime to q

Quasi-Cyclic Codes over Rings

<ロ> <同> <同> < 同> < 同> < 同> :

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case II: m not relatively prime to q

 $q = p^b$ and $m = p^a m'$, where a > 0. By (3), G_i are finite chain rings of depth p^a .

イロン イヨン イヨン イヨン

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case II: m not relatively prime to q

 $q = p^b$ and $m = p^a m'$, where a > 0. By (3), G_i are finite chain rings of depth p^a .

Self-dual 2-quasi-cyclic code over \mathbb{F}_q of length 2m exists \Leftrightarrow for each *i*, there exists self-dual linear code of length 2 over G_i .

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Case II: m not relatively prime to q

 $q = p^b$ and $m = p^a m'$, where a > 0. By (3), G_i are finite chain rings of depth p^a .

Self-dual 2-quasi-cyclic code over \mathbb{F}_q of length 2m exists \Leftrightarrow for each *i*, there exists self-dual linear code of length 2 over G_i .

Simplify notation

G: finite chain ring of depth $d = p^a$, with maximal ideal (*t*) and residue field \mathbb{F}_{q^e} . (So *G* has q^{de} elements.)

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2+1=0$ has solution in $G/(t)=\mathbb{F}_{q^e}.$

Quasi-Cyclic Codes over Rings

イロン 不同と 不同と 不同と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$. Such a solution lifts to one in $G/(t^c)$, for any $1 \le c \le d$.

Quasi-Cyclic Codes over Rings

イロン イヨン イヨン イヨン

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$. Such a solution lifts to one in $G/(t^c)$, for any $1 \le c \le d$. Hence, there exists $i \in G$ such that $i^2 + 1 = 0$.

Quasi-Cyclic Codes over Rings
Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Sufficiency:

If any condition in Theorem satisfied, then $X^2 + 1 = 0$ has solution in $G/(t) = \mathbb{F}_{q^e}$. Such a solution lifts to one in $G/(t^c)$, for any $1 \le c \le d$. Hence, there exists $i \in G$ such that $i^2 + 1 = 0$.

Clear: free code with generator matrix (1, i) self-dual of length 2.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction

Codes over \mathbb{Z}_{2k}

Proof

Necessity:

Assume q odd (case q even trivially true)

Quasi-Cyclic Codes over Rings

・ロト ・日本 ・ヨト ・ヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Necessity:

Assume q odd (case q even trivially true)

Let $G = G_1$ corresponding to Y - 1 in (3). Depth d odd. In fact, $G = \mathbb{F}_q[t]/(t)^{p^a}$ and $Y \mapsto Y^{-1}$ induces identity on G. (Hermitian and Euclidean inner products coincide.)

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Necessity:

Assume q odd (case q even trivially true)

Let $G = G_1$ corresponding to Y - 1 in (3). Depth d odd. In fact, $G = \mathbb{F}_q[t]/(t)^{p^a}$ and $Y \mapsto Y^{-1}$ induces identity on G. (Hermitian and Euclidean inner products coincide.)

Any nonzero element of $G: t^{\lambda}a$ (a unit in G). Nonzero codeword of length 2 of one of: (i) $(0, t^{\mu}b)$, (ii) $(t^{\lambda}a, 0)$ or (iii) $(t^{\lambda}a, t^{\mu}b)$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Nonzero codeword of length 2 of one of: (i) $(0, t^{\mu}b)$, (ii) $(t^{\lambda}a, 0)$ or (iii) $(t^{\lambda}a, t^{\mu}b)$.

Quasi-Cyclic Codes over Rings

イロン イヨン イヨン イヨン

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Nonzero codeword of length 2 of one of: (i) $(0, t^{\mu}b)$, (ii) $(t^{\lambda}a, 0)$ or (iii) $(t^{\lambda}a, t^{\mu}b)$. For word of form (i) to be self-orthogonal, must have $\mu \geq \frac{d+1}{2}$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Nonzero codeword of length 2 of one of: (i) $(0, t^{\mu}b)$, (ii) $(t^{\lambda}a, 0)$ or (iii) $(t^{\lambda}a, t^{\mu}b)$. For word of form (i) to be self-orthogonal, must have $\mu \geq \frac{d+1}{2}$. For word of type (ii) to be self-orthogonal, need $\lambda \geq \frac{d+1}{2}$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermode Construction Codes over \mathbb{Z}_{2k}

Proof

Nonzero codeword of length 2 of one of: (i) $(0, t^{\mu}b)$, (ii) $(t^{\lambda}a, 0)$ or (iii) $(t^{\lambda}a, t^{\mu}b)$. For word of form (i) to be self-orthogonal, must have $\mu \geq \frac{d+1}{2}$. For word of type (ii) to be self-orthogonal, need $\lambda \geq \frac{d+1}{2}$. For word of type (iii) to be self-orthogonal, need

$$t^{2\lambda}a^2 + t^{2\mu}b^2 = 0.$$
 (7)

Quasi-Cyclic Codes over Rings

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Nonzero codeword of length 2 of one of: (i) $(0, t^{\mu}b)$, (ii) $(t^{\lambda}a, 0)$ or (iii) $(t^{\lambda}a, t^{\mu}b)$. For word of form (i) to be self-orthogonal, must have $\mu \geq \frac{d+1}{2}$. For word of type (ii) to be self-orthogonal, need $\lambda \geq \frac{d+1}{2}$. For word of type (iii) to be self-orthogonal, need

$$t^{2\lambda}a^2 + t^{2\mu}b^2 = 0.$$
 (7)

If both $\lambda, \mu \geq \frac{d+1}{2}$, then (7) automatically satisfied.

Quasi-Cyclic Codes of Index 2

m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

If at least one of them is at most $\frac{d-1}{2}$:

Quasi-Cyclic Codes over Rings

< □ > < □ > < □ > < □ > < □ > .

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

If at least one of them is at most $\frac{d-1}{2}$:

If $\lambda \neq \mu$, then (7) never satisfied.

Hence, need $\lambda = \mu$.

Quasi-Cyclic Codes over Rings

・ロン ・聞と ・ほと ・ほと

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

If at least one of them is at most $\frac{d-1}{2}$:

If $\lambda \neq \mu$, then (7) never satisfied.

Hence, need $\lambda = \mu$. Then (7) implies

 $a^2 + b^2 \in (t^{d-2\lambda}). \tag{8}$

<ロ> (日) (日) (日) (日) (日)

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

If at least one of them is at most $\frac{d-1}{2}$:

If $\lambda \neq \mu$, then (7) never satisfied.

Hence, need $\lambda = \mu$. Then (7) implies

$$a^2 + b^2 \in (t^{d-2\lambda}). \tag{8}$$

Hence, $a^2 + b^2 \in (t)$, so -1 is a square in \mathbb{F}_q .

イロン 不同と 不同と 不同と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

If at least one of them is at most $\frac{d-1}{2}$.

If $\lambda \neq \mu$, then (7) never satisfied.

Hence, need $\lambda = \mu$. Then (7) implies

$$a^2 + b^2 \in (t^{d-2\lambda}). \tag{8}$$

Hence, $a^2 + b^2 \in (t)$, so -1 is a square in \mathbb{F}_q . Self-dual code of length 2 over *G* certainly contains at least a codeword of type (iii) (not enough words of other types).

・ロン ・回 と ・ ヨ と ・ ヨ と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

m = 3 $A = \mathbb{Z}_4$ GR(4, 2): unique Galois extension of \mathbb{Z}_4 of degree 2.

Quasi-Cyclic Codes over Rings

・ロト ・日本 ・ヨト ・ヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

m = 3 $A = \mathbb{Z}_4$

GR(4,2): unique Galois extension of \mathbb{Z}_4 of degree 2.

 $R = \mathbb{Z}_4 \oplus GR(4,2)$

<ロ> (日) (日) (日) (日) (日)

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

m = 3

 $A = \mathbb{Z}_4$

GR(4,2): unique Galois extension of \mathbb{Z}_4 of degree 2.

 $R = \mathbb{Z}_4 \oplus GR(4,2)$

 ℓ -quasi-cyclic code *C* over \mathbb{Z}_4 of length $3\ell - (C_1, C_2)$,

 C_1 : code over \mathbb{Z}_4 of length ℓ

 C_2 : code over GR(4,2) of length ℓ .

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

m = 3

 $A = \mathbb{Z}_4$

GR(4,2): unique Galois extension of \mathbb{Z}_4 of degree 2.

 $R = \mathbb{Z}_4 \oplus GR(4,2)$

 ℓ -quasi-cyclic code *C* over \mathbb{Z}_4 of length $3\ell - (C_1, C_2)$, *C*₁: code over \mathbb{Z}_4 of length ℓ

 C_2 : code over GR(4,2) of length ℓ .

 $C = \{ (\mathbf{x} + 2\mathbf{a}' - \mathbf{b}' | \mathbf{x} - \mathbf{a}' + 2\mathbf{b}' | \mathbf{x} - \mathbf{a}' - \mathbf{b}') \mid \mathbf{x} \in C_1, \ \mathbf{a}' + \zeta \mathbf{b}' \in C_2 \},\$

$$\zeta \in GR(4,2)$$
 satisfies $\zeta^2 + \zeta + 1 = 0$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

 C'_2 : linear code of length ℓ over \mathbb{Z}_4 $C_2 := C'_2 + C'_2 \zeta$: linear code over GR(4, 2).

Quasi-Cyclic Codes over Rings

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

 $\begin{array}{l} C_2': \text{ linear code of length } \ell \text{ over } \mathbb{Z}_4 \\ C_2:=C_2'+C_2'\zeta: \text{ linear code over } GR(4,2). \\ \text{Consider: } \mathbf{a}=-2\mathbf{a}'+\mathbf{b}' \text{ and } \mathbf{b}=-\mathbf{a}'+2\mathbf{b}' \\ \text{Construction equivalent to } (\mathbf{x}-\mathbf{a}|\mathbf{x}+\mathbf{b}|\mathbf{x}+\mathbf{a}-\mathbf{b}) \text{ construction,} \\ \text{with } \mathbf{x}\in C_1 \text{ and } \mathbf{a}, \mathbf{b}\in C_2'. \end{array}$

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

 $\begin{array}{l} C_2': \text{ linear code of length } \ell \text{ over } \mathbb{Z}_4 \\ C_2:=C_2'+C_2'\zeta: \text{ linear code over } GR(4,2). \\ \text{Consider: } \mathbf{a}=-2\mathbf{a}'+\mathbf{b}' \text{ and } \mathbf{b}=-\mathbf{a}'+2\mathbf{b}' \\ \text{Construction equivalent to } (\mathbf{x}-\mathbf{a}|\mathbf{x}+\mathbf{b}|\mathbf{x}+\mathbf{a}-\mathbf{b}) \text{ construction,} \\ \text{with } \mathbf{x}\in C_1 \text{ and } \mathbf{a}, \mathbf{b}\in C_2'. \end{array}$

 C'_{2} : Klemm-like code κ_{8} (over \mathbb{Z}_{4}) C_{1} : self-dual \mathbb{Z}_{4} -code O'_{8} , obtained from octacode O_{8} by negating a single coordinate.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

 $\begin{array}{l} C_2': \text{ linear code of length } \ell \text{ over } \mathbb{Z}_4 \\ C_2:=C_2'+C_2'\zeta; \text{ linear code over } GR(4,2). \\ \text{Consider: } \mathbf{a}=-2\mathbf{a}'+\mathbf{b}' \text{ and } \mathbf{b}=-\mathbf{a}'+2\mathbf{b}' \\ \text{Construction equivalent to } (\mathbf{x}-\mathbf{a}|\mathbf{x}+\mathbf{b}|\mathbf{x}+\mathbf{a}-\mathbf{b}) \text{ construction,} \\ \text{with } \mathbf{x}\in C_1 \text{ and } \mathbf{a}, \mathbf{b}\in C_2'. \end{array}$

 C'_{2} : Klemm-like code κ_{8} (over \mathbb{Z}_{4}) C_{1} : self-dual \mathbb{Z}_{4} -code O'_{8} , obtained from octacode O_{8} by negating a single coordinate.

 $\kappa_8 \Delta O'_8 := \{ (\mathbf{x} - \mathbf{a} | \mathbf{x} + \mathbf{b} | \mathbf{x} + \mathbf{a} - \mathbf{b}) \mid \mathbf{x} \in O'_8, \ \mathbf{a}, \mathbf{b} \in \kappa_8 \}.$

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

C: \mathbb{Z}_4 -linear code of length *n* Quaternary lattice

 $\Lambda(C) = \{ \mathbf{z} \in \mathbb{Z}^n \mid \mathbf{z} \equiv \mathbf{c} \text{ mod } 4 \text{ for some } \mathbf{c} \in C \}.$

Quasi-Cyclic Codes over Rings

イロン 不同と 不同と 不同と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 3 & Leech Lattice

C: \mathbb{Z}_4 -linear code of length *n* Quaternary lattice

 $\Lambda(C) = \{ \mathbf{z} \in \mathbb{Z}^n \mid \mathbf{z} \equiv \mathbf{c} \text{ mod } 4 \text{ for some } \mathbf{c} \in C \}.$

Theorem $\Lambda(\kappa_8 \Delta O'_8)/2$ is the Leech lattice Λ_{24} .

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

From the $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ construction, Clear: $\kappa_8 \Delta O'_8$ is self-dual.

◆□→ ◆□→ ◆三→ ◆三→

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

From the $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ construction, Clear: $\kappa_8 \Delta O'_8$ is self-dual.

Code generated by (-a, 0, a), (0, b, -b) and (x, x, x), $a, b \in \kappa_8$ and $x \in O'_8$.

イロン 不同と 不同と 不同と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

From the $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ construction, Clear: $\kappa_8 \Delta O'_8$ is self-dual.

Code generated by (-a, 0, a), (0, b, -b) and (x, x, x), $a, b \in \kappa_8$ and $x \in O'_8$.

All have Euclidean weights $\equiv 0 \mod 8$. Hence all words in code have weights divisible by 8.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

From the $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ construction, Clear: $\kappa_8 \Delta O'_8$ is self-dual.

Code generated by (-a, 0, a), (0, b, -b) and (x, x, x), $a, b \in \kappa_8$ and $x \in O'_8$.

All have Euclidean weights $\equiv 0 \mod 8$. Hence all words in code have weights divisible by 8.

Hence, $\Lambda(\kappa_8 \Delta O'_8)$ is even unimodular lattice.

<ロ> (日) (日) (日) (日) (日)

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Known: $\kappa_8 \cap O'_8 = 2O'_8$. Remains to show: min Euclidean weight in lattice ≥ 16

Quasi-Cyclic Codes over Rings

・ロン ・聞と ・ほと ・ほと

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Known: $\kappa_8 \cap O'_8 = 2O'_8$. Remains to show: min Euclidean weight in lattice ≥ 16 Suppose Euclidean weight of $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ is 8, for some $\mathbf{a}, \mathbf{b} \in \kappa_8$ and $\mathbf{x} \in O'_8$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Known: $\kappa_8 \cap O'_8 = 2O'_8$. Remains to show: min Euclidean weight in lattice ≥ 16 Suppose Euclidean weight of $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ is 8, for some $\mathbf{a}, \mathbf{b} \in \kappa_8$ and $\mathbf{x} \in O'_8$. $\mathbf{x} \equiv \mathbf{0} \mod 2$ and

 $\mathbf{a} \equiv \mathbf{b} \equiv \mathbf{0} \mod 2.$

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Known: $\kappa_8 \cap O'_8 = 2O'_8$. Remains to show: min Euclidean weight in lattice ≥ 16 Suppose Euclidean weight of $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b})$ is 8, for some $\mathbf{a}, \mathbf{b} \in \kappa_8$ and $\mathbf{x} \in O'_8$.

 $\mathbf{x} \equiv \mathbf{0} \mod 2$ and $\mathbf{a} \equiv \mathbf{b} \equiv \mathbf{0} \mod 2$.

Then $(\mathbf{x} - \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} - \mathbf{b}) = (\mathbf{x} + \mathbf{a}|\mathbf{x} + \mathbf{b}|\mathbf{x} + \mathbf{a} + \mathbf{b})$, so has Euclidean weight at least 16.

Quasi-Cyclic Codes over Rings

・ロン ・回 と ・ ヨ と ・ ヨ と

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 6 & Golay Code

m = 6 $A = \mathbb{F}_2$

$R = (\mathbb{F}_2 + u\mathbb{F}_2) \oplus (\mathbb{F}_4 + u\mathbb{F}_4),$

 $\mathbb{F}_2 + u\mathbb{F}_2 = \mathbb{F}_2[Y]/(Y-1)^2$ and $\mathbb{F}_4 + u\mathbb{F}_4 = \mathbb{F}_2[Y]/(Y^2+Y+1)^2$, so $u^2 = 0$ in both $\mathbb{F}_2 + u\mathbb{F}_2$ and $\mathbb{F}_4 + u\mathbb{F}_4$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 6 & Golay Code

 C_1 : unique $\mathbb{F}_2 + u\mathbb{F}_2$ -code of length 4 whose Gray image is binary extended Hamming code with coordinates in reverse order C_2 : $\mathbb{F}_4 + u\mathbb{F}_4$ -code $C'_2 + C'_2\zeta$, C'_2 : unique $\mathbb{F}_2 + u\mathbb{F}_2$ -code of length 4 whose Gray image is binary extended Hamming code.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

m = 6 & Golay Code

 C_1 : unique $\mathbb{F}_2 + u\mathbb{F}_2$ -code of length 4 whose Gray image is binary extended Hamming code with coordinates in reverse order C_2 : $\mathbb{F}_4 + u\mathbb{F}_4$ -code $C'_2 + C'_2\zeta$, C'_2 : unique $\mathbb{F}_2 + u\mathbb{F}_2$ -code of length 4 whose Gray image is binary extended Hamming code.

Both C_1 , C_2 self-dual:

Proposition

Binary extended Golay code is 4-quasi-cyclic.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Vandermonde Construction

A: finite chain ring m: integer, unit in A Suppose: A contains unit ζ of order m.

$$Y^m - 1 = (Y - 1)(Y - \zeta) \cdots (Y - \zeta^{m-1}).$$

Quasi-Cyclic Codes over Rings
Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Vandermonde Construction

(By Fourier Transform) If $f = f_0 + f_1Y + \cdots + f_{m-1}Y^{m-1} \in A[Y]/(Y^m - 1)$, where $f_i \in A$ for $0 \le i \le m - 1$, then

$$\begin{pmatrix} f_0 \\ f_1 \\ \vdots \\ f_{m-1} \end{pmatrix} = V^{-1} \begin{pmatrix} \hat{f}_0 \\ \hat{f}_1 \\ \vdots \\ \hat{f}_{m-1} \end{pmatrix},$$

 \widehat{f}_i : Fourier coefficients $V = \left(\zeta^{ij}
ight)_{0 \leq i,j \leq m-1}$: m imes m Vandermonde matrix.

イロン イヨン イヨン イヨン

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Vandermonde Construction

$$\mathbf{a}_0, \dots, \mathbf{a}_{m-1} \in \mathcal{A}^{\ell}$$
: vectors.
 $V^{-1} \begin{pmatrix} \mathbf{a}_0 \\ \vdots \\ \mathbf{a}_i \\ \vdots \end{pmatrix} \in \mathcal{R}^{\ell}.$
– Vandermonde product

<ロ> <同> <同> < 同> < 同> < 同> :

 $\begin{array}{l} \mbox{Quasi-Cyclic Codes of Index 2} \\ m=3 \mbox{\& Leech Lattice} \\ m=6 \mbox{ and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over } \mathbb{Z}_{2k} \end{array}$

Vandermonde Construction

Theorem

A, m as above. C_0, \ldots, C_{m-1} : linear codes of length ℓ over A. Then the Vandermonde product of C_0, \ldots, C_{m-1} is a quasi-cyclic code over A of length ℓm and of index ℓ . Moreover, every ℓ -quasi-cyclic code of length ℓm over A is obtained via the Vandermonde construction.

イロト イヨト イヨト イヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Note: \mathbb{Z}_{2k} is not local.

Quasi-Cyclic Codes over Rings

・ロト ・回 ト ・ヨト ・ヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Note: \mathbb{Z}_{2k} is not local.

Self-dual code over \mathbb{Z}_{2k} is Type II if and only if Euclidean weight of every codeword multiple of 4k.

Quasi-Cyclic Codes over Rings

イロト イヨト イヨト イヨト

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Rings} \\ \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{Quasi-Cyclic Codes over Rings} \\ \mbox{Applications} \\ \mbox{1-Generator Codes} \end{array} \qquad \begin{array}{c} \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{m = 3 \& Leech Lattice} \\ \mbox{m = 6 and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over } \mathbb{Z}_{2k} \end{array}$

Note: \mathbb{Z}_{2k} is not local.

Self-dual code over \mathbb{Z}_{2k} is Type II if and only if Euclidean weight of every codeword multiple of 4k.

Let $2k = p_1^{e_1} \cdots p_r^{e_r}$ $(p_1, \dots, p_r \text{ distinct primes})$. For $f \in \mathbb{Z}_{2k}[Y]$,

$$\frac{\mathbb{Z}_{2k}[Y]}{(f)} = \frac{\mathbb{Z}_{p_1^{e_1}}[Y]}{(f)} \times \dots \times \frac{\mathbb{Z}_{p_r^{e_r}}[Y]}{(f)}.$$
(9)

イロト イヨト イヨト イヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Codes over \mathbb{Z}_{2k}

 $Y^2 + Y + 1$ irreducible modulo 2, so $Y^2 + Y + 1$ irreducible modulo 2k for all k.

Quasi-Cyclic Codes over Rings

< □ > < □ > < □ > < □ > < □ > .

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Rings} \\ \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{Quasi-Cyclic Codes over Rings} \\ \mbox{Applications} \\ \mbox{1-Generator Codes} \end{array} \qquad \begin{array}{c} \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{$m=3$ \& Leech Lattice} \\ \mbox{$m=6$ and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over \mathbb{Z}_{2k}} \end{array}$

Codes over \mathbb{Z}_{2k}

 $Y^2 + Y + 1$ irreducible modulo 2, so $Y^2 + Y + 1$ irreducible modulo 2k for all k.

Suppose *k* relatively prime to 3. Then 3 is unit in $\mathbb{Z}_{p^{e_i}}$ for every $1 \le i \le r$.

<ロ> (日) (日) (日) (日) (日)

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Rings} \\ \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{Quasi-Cyclic Codes over Rings} \\ \mbox{Applications} \\ \mbox{1-Generator Codes} \end{array} \qquad \begin{array}{c} \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{$m=3$ \& Leech Lattice} \\ \mbox{$m=6$ and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over \mathbb{Z}_{2k}} \end{array}$

Codes over \mathbb{Z}_{2k}

 $Y^2 + Y + 1$ irreducible modulo 2, so $Y^2 + Y + 1$ irreducible modulo 2k for all k.

Suppose *k* relatively prime to 3. Then 3 is unit in $\mathbb{Z}_{p^{e_i}}$ for every $1 \le i \le r$.

Y-1, Y^2+Y+1 relatively prime in $\mathbb{Z}_{p_i^{e_i}}[Y]$, as

 $1 = 3^{-1}(Y^2 + Y + 1) + 3^{-1}(Y + 2)(Y - 1),$

so,

$$\frac{\mathbb{Z}_{p_i^{e_i}}[Y]}{(Y^3-1)} = \mathbb{Z}_{p_i^{e_i}} \oplus \frac{\mathbb{Z}_{p_i^{e_i}}[Y]}{(Y^2+Y+1)},$$
(10)

for every $1 \leq i \leq r$.

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Therefore,

$$\frac{\mathbb{Z}_{2k}[Y]}{(Y^3-1)} = \mathbb{Z}_{2k} \oplus \frac{\mathbb{Z}_{2k}[Y]}{(Y^2+Y+1)}.$$

(k relatively prime to 3)

・ロト ・回ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Rings} \\ \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{Quasi-Cyclic Codes over Rings} \\ \mbox{Applications} \\ \mbox{1-Generator Codes} \\ \end{array} \qquad \begin{array}{c} \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{m = 3 \& Leech Lattice} \\ \mbox{m = 6 and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over } \mathbb{Z}_{2k} \\ \end{array}$

Therefore,

$$\frac{\mathbb{Z}_{2k}[Y]}{(Y^3-1)} = \mathbb{Z}_{2k} \oplus \frac{\mathbb{Z}_{2k}[Y]}{(Y^2+Y+1)}$$

(k relatively prime to 3)

 ℓ -quasi-cyclic code of length 3ℓ over $\mathbb{Z}_{2k} \leftrightarrow (C_1, C_2)$, C_1 : code of length ℓ over \mathbb{Z}_{2k} C_2 : code of length ℓ over $\mathbb{Z}_{2k}[Y]/(Y^2 + Y + 1)$.

イロト イヨト イヨト イヨト

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proposition

k: integer coprime with 3

C: self-dual code over \mathbb{Z}_{2k} .

Then C Type II ℓ -quasi-cyclic code of length 3ℓ if and only if its \mathbb{Z}_{2k} component C_1 of Type II.

・ロト ・回ト ・ヨト

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Rings} \\ \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{Quasi-Cyclic Codes over Rings} \\ \mbox{Applications} \\ \mbox{1-Generator Codes} \end{array} \qquad \begin{array}{c} \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{$m=3$ \& Leech Lattice} \\ \mbox{$m=6$ and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over \mathbb{Z}_{2k}} \end{array}$

Proof

Necessity:

C contains $(\mathbf{x}, \mathbf{x}, \mathbf{x})$, where \mathbf{x} ranges over C_1 , and, by hypothesis, (4k, 3) = 1.

・ロト ・回ト ・ヨト ・ヨト

 $\begin{array}{c} \mbox{Outline} \\ \mbox{Rings} \\ \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{Quasi-Cyclic Codes over Rings} \\ \mbox{Applications} \\ \mbox{1-Generator Codes} \end{array} \begin{array}{c} \mbox{Quasi-Cyclic Codes of Index 2} \\ \mbox{m = 3 \& Leech Lattice} \\ \mbox{m = 6 and the Golay code} \\ \mbox{Vandermonde Construction} \\ \mbox{Codes over } \mathbb{Z}_{2k} \end{array}$

Proof

Necessity:

C contains $(\mathbf{x}, \mathbf{x}, \mathbf{x})$, where \mathbf{x} ranges over C_1 , and, by hypothesis, (4k, 3) = 1.

Sufficiency:

A spanning set of codewords of Euclidean weights $\equiv 0 \mod 4k$ is

 $(\mathbf{x}, \mathbf{x}, \mathbf{x}), (-\mathbf{a}, \mathbf{b}, \mathbf{a} - \mathbf{b}),$

with **x** running over C_1 , and $\mathbf{a} + \zeta \mathbf{b}$ running over C_2 .

・ロン ・回と ・ヨン・

Quasi-Cyclic Codes of Index 2 m = 3 & Leech Lattice m = 6 and the Golay code Vandermonde Construction Codes over \mathbb{Z}_{2k}

Proof

Note: self-duality of C_2 entails $(\mathbf{a} + \zeta \mathbf{b})(\mathbf{a} + \overline{\zeta} \mathbf{b}) = 0$.

Quasi-Cyclic Codes over Rings

・ロト ・回 ト ・ヨト ・ヨト

 $\begin{array}{ccc} & & & \\ & & &$

Proof

Note: self-duality of C_2 entails $(\mathbf{a} + \zeta \mathbf{b})(\mathbf{a} + \overline{\zeta} \mathbf{b}) = 0$. Since

$$\zeta + \overline{\zeta} = -1 \& \zeta \overline{\zeta} = 1,$$

have

$$\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} \equiv 0 \mod 2k$$
.

◆□→ ◆□→ ◆三→ ◆三→

 $\begin{array}{ccc} & & & \\ & & &$

Proof

Note: self-duality of C_2 entails $(\mathbf{a} + \zeta \mathbf{b})(\mathbf{a} + \overline{\zeta} \mathbf{b}) = 0$. Since

$$\zeta + \overline{\zeta} = -1 \& \zeta \overline{\zeta} = 1,$$

have

 $\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} \equiv 0 \mod 2k.$

By bilinearity of (,): $(\mathbf{a} - \mathbf{b}, \mathbf{a} - \mathbf{b}) = \mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} - 2\mathbf{a} \cdot \mathbf{b},$ Norm of $(-\mathbf{a}, \mathbf{b}, \mathbf{a} - \mathbf{b})$: $\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} + (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) = 2(\mathbf{a} \cdot \mathbf{a} + \mathbf{b} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b}),$ multiple of 4k.

1-Generator Codes

Back to local rings.

< □ > < □ > < □ > < □ > < □ > .

1-Generator Codes

Back to local rings.

Quasi-cyclic code C is 1-generator if and only if its generator matrix over R contains only one row:

 $[a_0(Y), a_1(Y), \cdots, a_{\ell-1}(Y)].$

generator polynomial:

 $g(Y) := GCD(a_0(Y), a_1(Y), \cdots, a_{\ell-1}(Y), Y^m - 1),$

parity-check polynomial: $h(Y) := (Y^m - 1)/g(Y)$

- 4 同 ト - 4 三 ト

1-Generator Codes

Theorem

m relatively prime to characteristic of A.

C: 1-generator ℓ -QC code over A of length $n = m\ell$ with generator

 $\mathbf{g}(Y) = (g(Y)f_0(Y), g(Y)f_1(Y), \dots, g(Y)f_{\ell-1}(Y)),$

$$g(Y)|Y^m - 1,$$

 $g(Y), f_i(Y) \in A[Y]/(Y^m - 1),$
 $(f_i(Y), h(Y)) = 1, \text{ where } h(Y) = (Y^m - 1)/g(Y).$
Then: C free A-module of rank $m - \deg g$.

イロン イヨン イヨン イヨン

Proof

$$R = A[Y]/(Y^m - 1)$$

Consider $\Pi_i : R^\ell \to R$ defined by:

$$\Pi(a_0(Y), a_1(Y), \dots, a_{\ell-1}(Y)) = a_i(Y).$$

Then: $\Pi_i(C)$ is cyclic code generated by $g(Y)f_i(Y)$.

Quasi-Cyclic Codes over Rings

< □ > < □ > < □ > < □ > < □ > .