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Original Coding Question

What is the largest number of points in Fn
2 such that any two of

the points are at least d apart, where

d(v,w) = |{i | vi 6= wi}|?

Linear version: What is the largest dimension of a vector space
in Fn

2 such the weight of any non-zero vector is at least d , i.e.
what is the largest k such that a [n, k , d ] binary code exists?
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Modified Coding Question

What is the largest number of points in An, where A is some
algebraic structure, such that the weight of any non-zero vector is
at least d , where the weight is appropriate for the algebraic
structure?



Examples

I A = Z2k and weight is the Euclidean weight,
wt(c) =

∑
min{ci , 2k − ci}2.

I A is any ring and the weight is Hamming weight,
wt(c) = |{i | ci 6= 0}|.

I A is a ring and the weight is the Homegenous weight, that is
a a function w : R → Q such that

I w(0) = 0
I Whenever R×x = R×y then w(x) = w(y).
I There is a constant γ ∈Q such that

1

|R|
∑
y∈Rx

w(y) = γ for all x ∈ R {0}. (1)
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Examples

I A is Z4 or F2[u1, u2, . . . , uk ]/〈u2
i = 0, uiuj = ujui 〉 or

F2[v1, v2, . . . , vk ]/〈v2
i = 0, vivj = vjvi 〉 and weight is Lee

weight, that is the Hamming weight of its image under the
assoicated Gray map.



Gray Maps

Z4 F2 + uF2 F2 + vF2 F2
2

0 0 0 00
1 1 v 01
2 u 1 11
3 1 + u 1 + v 10



Big question 0

What algebraic structures do we allow A to be (modules, groups,
rings etc.)?

We want the MacWilliams Theorems to hold in order to apply the
tools of Coding Theory.
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Some Definitions

Let R be a ring. A linear code C over R of length n is a
submodule of Rn.
L(C ) = {v | [v ,w ] = 0 for all w ∈ C
R(C ) = {v | [w , v ] = 0 for all w ∈ C
If R is commutative then R(C ) = L(C ) = C⊥.

WC (x0, x1, . . . , xa) =
∑
c∈C

n∏
i=1

xci



MacWilliams Theorems 1

Theorem
(MacWilliams 1) (A) If R is a finite Frobenius ring and C is a
linear code, then every hamming isometry C → Rn can be
extended to a monomial transformation.

(B)If a finite commutative ring R satisfies that all of its Hamming
isometries between linear codes allow for monomial extensions,
then R is a Frobenius ring.

By an example of Greferath and Schmidt MacWilliams I does not
extend to quasi-Frobenius rings.
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MacWilliams Theorems 2

Let χ be a generating character associated to the ring R and let
Ta,b = χ(ab), with C⊥ the standard orthogonal.

Theorem
(MacWilliams 2) Let C be a linear code over a finite
commutative Frobenius ring R then

WC⊥(Xa) =
1

|C |
WC (T · Xa)

MacWilliams relations exists for non-commutative rings for the left
and right orthogonal by a slight alteration of the matrix T .

J.A. Wood, Duality for modules over finite rings and applications
to coding theory, American Journal of Mathematics, 121, 1999,
555-575.
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Standard techniques for commutative rings

I Any commutative Frobenius ring is isomorphic via the Chinese
Remainder Theorem to a product of Frobenius local rings.

I Any commutative principal ideal ring is isomorphic via the
Chinese Remainder Theorem to a product of chain rings. For
example, Zk is isomorophic to Zp

e1
1
× · · · × Zpess .

I We describe by CRT this isomorphism so that
C = CRT (C1,C2, . . . ,Cs).



Singleton Bound

Let C be a subset of An where A is any alphabet, and d(C ) is the
minimum Hamming distance between any two distinct vectors then

d(C ) ≤ n − log|A|(C ) + 1.

A code meeting this bound is said to be an MDS (Maximum
Distance Separable Code).
This combinatorial bound is equivalent to a number of interesting
combinatorial questions involving mutually orthogonal Latin
squares (and hypercubes) and arcs of maximal size in projective
geometry.
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MDR and MDS Codes

Theorem
Let C1,C2, . . . ,Ck be codes over Ri , where the Ri are the
component rings via the CRT. If Ci is an MDR code for each i ,
then C = CRT (C1,C2, . . . ,Ck) is an MDR code. If Ci is an MDS
code of the same rank for each i , then C = CRT (C1,C2, . . . ,Ck)
is an MDS code.

S.T. Dougherty, Jon-Lark Kim and Hamid Kulosman, MDS codes
over finite principal ideal rings , Designs, Codes and Cryptography,
Volume 50, 77-92, 2009.



MDS

Theorem
Let R be a finite principal ideal ring all of whose residue fields
satisfy |R/mi | >

( n−1
n−k−1

)
for some integers n, k with n− k − 1 > 0.

Then there exists an MDS [n, k, n − k + 1] code over R.

S.T. Dougherty, Jon-Lark Kim and Hamid Kulosman, MDS codes
over finite principal ideal rings , Designs, Codes and Cryptography,
Volume 50, 77-92, 2009.



Big Question 1

Construct and classify MDR codes over rings (commutative and
non-commutative).
That is, determine precisely when they exist.



Self-Dual Codes

A code is self-dual if C = C⊥.

Self-dual codes are related to unimodular lattices and
combinatorial objects.

Self-dual codes are interesting algebraic objects in that their weight
enumerators are held invariant by the MacWilliams relations.
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Self-Dual Codes

Theorem
Let R be a finite Frobenius ring whose residue fields (with respect
to the maximal ideals) are F1, . . . ,Fk . Then
(1) If Fi has characteristic 1 (mod 4) for all i then there exist free
self-dual codes of all even lengths.
(2) If for each i , Fi has characteristic 1 or 3 (mod 4), then there
exist free self-dual codes of all lengths congruent to 0 (mod 4).

Self-Dual codes over Frobenius Rings, with J.L. Kim, H. Kulosman
and Hongwei Liu, Finite Fields and their Applications, Volume 16,
January 2010, 14-26.



Big Question 2

I Determine when self-dual codes exist over non-commutative
rings.

I Find interesting algebraic and number theoretic connections
for self-dual codes over non-commutative rings.

I Give constructions of self-dual codes over non-commutative
rings.
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Big Question 3

Does there exist a binary [72, 36, 16] Type II self-dual code (Type II
means all the weights are 0 (mod 4))?

This question has been open for over 40 years, in reality close to
50 years. It is related to a number of combinatorial conjectures.
Every coding theory trick in the book has been tried – some new
technique is necessary to solve it.
Monetary prizes and a complete description can be found at:
http://academic.scranton.edu/faculty/DOUGHERTYS1/72.htm
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Cyclic Codes

Cyclic codes are an extremely important class of codes.

A code C is cyclic if
(a0, a1, . . . , an−1) ∈ C =⇒ (a1, a2, . . . , an−1, a0) ∈ C .

(a0, a1, . . . , an−1)↔ a0 + a1x + a2x2 . . . an−1xn−1

A cyclic code is an ideal in R[x ]/〈xn − 1〉.
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Cyclic Codes

Cyclic codes are classified by finding all ideals in R[x ]/〈xn − 1〉.

Generally easy for codes over fields, namely find the divisors of
xn − 1. Much harder for codes over rings, for example, cyclic codes
over Z4 of even length (i.e. length not relatively prime to
characteristic of the ring) is quite complicated.

S.T. Dougherty and San Ling, Cyclic codes over Z4 of even length,
Designs, Codes and Cryptography, May 2006, 127-153.



Big Question 4

There is a wealth of open problems here for the talented ring
theorist. That is, determine the ideals in R[x ]/〈xn − 1〉.

A lot has been done in the commutative case, but very little for
the non-commutative case. Even for the commutative case it has
only been done for a handful of rings.
More generally, determine the ideals in R[x ]/〈xn − a〉, where a is
some constant. This is classifying constacyclic codes.
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Big Question 4

In complete generality, study the group ring. For example, the the
cyclic group gives cyclic codes. This is only started to be studied in
the commutative case.



Non-Hamming Metric

Example: Rosenbloom-Tsfasman Metric
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0

Distance to 0 is 3 + 4 + 1 + 2 = 9.



Rosenbllom-Tsfasman

MDS codes with respect to this metric are related to uniform
distributions and (T ,M,S)-nets.

This notion has been generalized to using a poset to determine the
metric.
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Big Question 5

Find corresponding coding theoretic results for non-Hamming
metrics. As usual most results are for a commutative alphabet.



Infinite rings

Codes have also been defined over the p-adics. The benefit here is
that they can then be projected down to codes over the finite ring
Zpe .

This notion has been further generalized to other infinite rings
where there is a natural projection to a family of finite rings.
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Big Question 6

Find interesting infinite rings with canonical projections to finite
rings and develop coding theory over these rings.



Questions


