Avenues of research for codes over rings

Steven Dougherty

June 6, 2011
What is the largest number of points in \mathbb{F}_2^n such that any two of the points are at least d apart, where

$$d(v, w) = |\{i \mid v_i \neq w_i\}|?$$
What is the largest number of points in \mathbb{F}_2^n such that any two of the points are at least d apart, where
\[d(v, w) = |\{i \mid v_i \neq w_i\}|? \]

Linear version: What is the largest dimension of a vector space in \mathbb{F}_2^n such the weight of any non-zero vector is at least d, i.e. what is the largest k such that a $[n, k, d]$ binary code exists?
Modified Coding Question

What is the largest number of points in A^n, where A is some algebraic structure, such that the weight of any non-zero vector is at least d, where the weight is appropriate for the algebraic structure?
Examples

- $A = \mathbb{Z}_{2k}$ and weight is the Euclidean weight,
 $wt(c) = \sum min\{c_i, 2k - c_i\}^2$.
Examples

- $A = \mathbb{Z}_{2k}$ and weight is the Euclidean weight, $wt(c) = \sum \min\{c_i, 2k - c_i\}^2$.
- A is any ring and the weight is Hamming weight, $wt(c) = |\{i \mid c_i \neq 0\}|$.
Examples

- \(A = \mathbb{Z}_{2k} \) and weight is the Euclidean weight,
 \[wt(c) = \sum \min\{c_i, 2k - c_i\}^2. \]
- \(A \) is any ring and the weight is Hamming weight,
 \[wt(c) = |\{i \mid c_i \neq 0\}|. \]
- \(A \) is a ring and the weight is the Homegenous weight, that is a function \(w : R \to \mathbb{Q} \) such that
 - \(w(0) = 0 \)
 - Whenever \(R^\times x = R^\times y \) then \(w(x) = w(y) \).
 - There is a constant \(\gamma \in \mathbb{Q} \) such that
 \[\frac{1}{|R|} \sum_{y \in Rx} w(y) = \gamma \text{ for all } x \in R \setminus \{0\}. \] (1)
Examples

- A is \mathbb{Z}_4 or $\mathbb{F}_2[u_1, u_2, \ldots, u_k]/\langle u_i^2 = 0, u_i u_j = u_j u_i \rangle$ or $\mathbb{F}_2[v_1, v_2, \ldots, v_k]/\langle v_i^2 = 0, v_i v_j = v_j v_i \rangle$ and weight is Lee weight, that is the Hamming weight of its image under the associated Gray map.
Gray Maps

<table>
<thead>
<tr>
<th>\mathbb{Z}_4</th>
<th>$F_2 + uF_2$</th>
<th>$F_2 + vF_2$</th>
<th>F^2_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>0</td>
<td>00</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>v</td>
<td>01</td>
</tr>
<tr>
<td>2</td>
<td>u</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>3</td>
<td>$1 + u$</td>
<td>$1 + v$</td>
<td>10</td>
</tr>
</tbody>
</table>
Big question 0

What algebraic structures do we allow A to be (modules, groups, rings etc.)?
Big question 0

What algebraic structures do we allow A to be (modules, groups, rings etc.)? We want the MacWilliams Theorems to hold in order to apply the tools of Coding Theory.
Let R be a ring. A linear code C over R of length n is a submodule of R^n.

$L(C) = \{v \mid [v, w] = 0 \text{ for all } w \in C\}$

$R(C) = \{v \mid [w, v] = 0 \text{ for all } w \in C\}$

If R is commutative then $R(C) = L(C) = C^\perp$.

$$W_C(x_0, x_1, \ldots, x_a) = \sum_{c \in C} \prod_{i=1}^{n} x_{c_i}$$
Theorem

(MacWilliams 1) (A) If R is a finite Frobenius ring and C is a linear code, then every Hamming isometry $C \to R^n$ can be extended to a monomial transformation.
MacWilliams Theorems 1

Theorem
(MacWilliams 1) (A) If \(R \) is a finite Frobenius ring and \(C \) is a linear code, then every hamming isometry \(C \to R^n \) can be extended to a monomial transformation.

(B) If a finite commutative ring \(R \) satisfies that all of its Hamming isometries between linear codes allow for monomial extensions, then \(R \) is a Frobenius ring.
Theorem

(MacWilliams 1) (A) If R is a finite Frobenius ring and C is a linear code, then every Hamming isometry $C \rightarrow R^n$ can be extended to a monomial transformation.

(B) If a finite commutative ring R satisfies that all of its Hamming isometries between linear codes allow for monomial extensions, then R is a Frobenius ring.

By an example of Greferath and Schmidt MacWilliams I does not extend to quasi-Frobenius rings.
MacWilliams Theorems 2

Let χ be a generating character associated to the ring R and let $T_{a,b} = \chi(ab)$, with C^\perp the standard orthogonal.

Theorem

(MacWilliams 2) Let C be a linear code over a finite commutative Frobenius ring R then

$$W_{C^\perp}(X_a) = \frac{1}{|C|} W_C(T \cdot X_a)$$
MacWilliams Theorems 2

Let χ be a generating character associated to the ring R and let $T_{a,b} = \chi(ab)$, with C^\perp the standard orthogonal.

Theorem (MacWilliams 2) Let C be a linear code over a finite commutative Frobenius ring R then

$$W_{C^\perp}(X_a) = \frac{1}{|C|} W_C(T \cdot X_a)$$

MacWilliams relations exists for non-commutative rings for the left and right orthogonal by a slight alteration of the matrix T.

Any commutative Frobenius ring is isomorphic via the Chinese Remainder Theorem to a product of Frobenius local rings.

Any commutative principal ideal ring is isomorphic via the Chinese Remainder Theorem to a product of chain rings. For example, \(\mathbb{Z}_k \) is isomorphic to \(\mathbb{Z}_{p_1^{e_1}} \times \cdots \times \mathbb{Z}_{p_s^{e_s}} \).

We describe by CRT this isomorphism so that \(C = CRT(C_1, C_2, \ldots, C_s) \).
Singleton Bound

Let C be a subset of A^n where A is any alphabet, and $d(C)$ is the minimum Hamming distance between any two distinct vectors then

$$d(C) \leq n - \log_{|A|}(C) + 1.$$
Singleton Bound

Let C be a subset of A^n where A is any alphabet, and $d(C)$ is the minimum Hamming distance between any two distinct vectors then

$$d(C) \leq n - \log_{|A|}(C) + 1.$$

A code meeting this bound is said to be an MDS (Maximum Distance Separable Code).
Singleton Bound

Let C be a subset of A^n where A is any alphabet, and $d(C)$ is the minimum Hamming distance between any two distinct vectors then

$$d(C) \leq n - \log_{|A|}(C) + 1.$$

A code meeting this bound is said to be an MDS (Maximum Distance Separable Code).

This combinatorial bound is equivalent to a number of interesting combinatorial questions involving mutually orthogonal Latin squares (and hypercubes) and arcs of maximal size in projective geometry.
Let C be a linear code over a PIR, then

$$d(C) \leq n - k + 1$$

where k is the rank of the code.
Let C be a linear code over a PIR, then

$$d(C) \leq n - k + 1$$

where k is the rank of the code.
A code meeting this bound is said to be MDR (Maximum Distance with respect to Rank).
MDR Codes

Let C be a linear code over a PIR, then

$$d(C) \leq n - k + 1$$

where k is the rank of the code.
A code meeting this bound is said to be MDR (Maximum Distance with respect to Rank).
MDR and MDS Codes

Theorem
Let C_1, C_2, \ldots, C_k be codes over R_i, where the R_i are the component rings via the CRT. If C_i is an MDR code for each i, then $C = \text{CRT}(C_1, C_2, \ldots, C_k)$ is an MDR code. If C_i is an MDS code of the same rank for each i, then $C = \text{CRT}(C_1, C_2, \ldots, C_k)$ is an MDS code.

Theorem

Let R be a finite principal ideal ring all of whose residue fields satisfy $|R/m_i| > \left(\frac{n-1}{n-k-1}\right)$ for some integers n, k with $n - k - 1 > 0$. Then there exists an MDS $[n, k, n - k + 1]$ code over R.

Big Question 1

Construct and classify MDR codes over rings (commutative and non-commutative).
That is, determine precisely when they exist.
Self-Dual Codes

A code is self-dual if $C = C^\perp$.

Self-dual codes are related to unimodular lattices and combinatorial objects.
Self-Dual Codes

A code is self-dual if $C = C^\perp$.

Self-dual codes are related to unimodular lattices and combinatorial objects.

Self-dual codes are interesting algebraic objects in that their weight enumerators are held invariant by the MacWilliams relations.
Self-Dual Codes

Theorem
Let R be a finite Frobenius ring whose residue fields (with respect to the maximal ideals) are F_1, \ldots, F_k. Then

1. If F_i has characteristic $1 \pmod{4}$ for all i then there exist free self-dual codes of all even lengths.
2. If for each i, F_i has characteristic 1 or $3 \pmod{4}$, then there exist free self-dual codes of all lengths congruent to $0 \pmod{4}$.

Big Question 2

- Determine when self-dual codes exist over non-commutative rings.
Big Question 2

- Determine when self-dual codes exist over non-commutative rings.
- Find interesting algebraic and number theoretic connections for self-dual codes over non-commutative rings.
Big Question 2

- Determine when self-dual codes exist over non-commutative rings.
- Find interesting algebraic and number theoretic connections for self-dual codes over non-commutative rings.
- Give constructions of self-dual codes over non-commutative rings.
Big Question 3

Does there exist a binary $[72, 36, 16]$ Type II self-dual code (Type II means all the weights are 0 (mod 4))?
Big Question 3

Does there exist a binary $[72, 36, 16]$ Type II self-dual code (Type II means all the weights are 0 (mod 4))? This question has been open for over 40 years, in reality close to 50 years. It is related to a number of combinatorial conjectures. Every coding theory trick in the book has been tried – some new technique is necessary to solve it.
Big Question 3

Does there exist a binary $[72, 36, 16]$ Type II self-dual code (Type II means all the weights are 0 (mod 4))? This question has been open for over 40 years, in reality close to 50 years. It is related to a number of combinatorial conjectures. Every coding theory trick in the book has been tried – some new technique is necessary to solve it.

Monetary prizes and a complete description can be found at: http://academic.scranton.edu/faculty/DOUGHERTYSS1/72.htm
Cyclic Codes

Cyclic codes are an extremely important class of codes.

A code C is cyclic if

$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_1, a_2, \ldots, a_{n-1}, a_0) \in C.$$
Cyclic codes are an extremely important class of codes.

A code C is cyclic if

$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_1, a_2, \ldots, a_{n-1}, a_0) \in C.$$

$$(a_0, a_1, \ldots, a_{n-1}) \leftrightarrow a_0 + a_1 x + a_2 x^2 \ldots a_{n-1} x^{n-1}$$
Cyclic codes are an extremely important class of codes.

A code C is cyclic if

$$(a_0, a_1, \ldots, a_{n-1}) \in C \implies (a_1, a_2, \ldots, a_{n-1}, a_0) \in C.$$

$$(a_0, a_1, \ldots, a_{n-1}) \leftrightarrow a_0 + a_1 x + a_2 x^2 \ldots a_{n-1} x^{n-1}$$

A cyclic code is an ideal in $R[x]/\langle x^n - 1 \rangle$.
Cyclic Codes

Cyclic codes are classified by finding all ideals in $R[x]/\langle x^n - 1 \rangle$.

Generally easy for codes over fields, namely find the divisors of $x^n - 1$. Much harder for codes over rings, for example, cyclic codes over \mathbb{Z}_4 of even length (i.e. length not relatively prime to characteristic of the ring) is quite complicated.

S.T. Dougherty and San Ling, Cyclic codes over \mathbb{Z}_4 of even length, Designs, Codes and Cryptography, May 2006, 127-153.
Big Question 4

There is a wealth of open problems here for the talented ring theorist. That is, determine the ideals in $R[x]/\langle x^n - 1 \rangle$. A lot has been done in the commutative case, but very little for the non-commutative case. Even for the commutative case it has only been done for a handful of rings. More generally, determine the ideals in $R[x]/\langle x^n - a \rangle$, where a is some constant. This is classifying constacyclic codes.
Big Question 4

There is a wealth of open problems here for the talented ring theorist. That is, determine the ideals in $R[x]/\langle x^n - 1 \rangle$. A lot has been done in the commutative case, but very little for the non-commutative case. Even for the commutative case it has only been done for a handful of rings.
Big Question 4

There is a wealth of open problems here for the talented ring theorist. That is, determine the ideals in $R[x]/\langle x^n - 1 \rangle$. A lot has been done in the commutative case, but very little for the non-commutative case. Even for the commutative case it has only been done for a handful of rings. More generally, determine the ideals in $R[x]/\langle x^n - a \rangle$, where a is some constant. This is classifying constacyclic codes.
In complete generality, study the group ring. For example, the cyclic group gives cyclic codes. This is only started to be studied in the commutative case.
Non-Hamming Metric

Example: Rosenbloom-Tsfasman Metric
1 0 1 0
0 1 0 1
1 0 0 0
0 1 0 0
0 1 0 0

Distance to 0 is $3 + 4 + 1 + 2 = 9$.
MDS codes with respect to this metric are related to uniform distributions and \((T, M, S)\)-nets.
MDS codes with respect to this metric are related to uniform distributions and \((T, M, S)\)-nets. This notion has been generalized to using a poset to determine the metric.
Big Question 5

Find corresponding coding theoretic results for non-Hamming metrics. As usual most results are for a commutative alphabet.
Codes have also been defined over the p-adics. The benefit here is that they can then be projected down to codes over the finite ring \mathbb{Z}_p^e.

Infinite rings
Infinite rings

Codes have also been defined over the p-adics. The benefit here is that they can then be projected down to codes over the finite ring \mathbb{Z}_p. This notion has been further generalized to other infinite rings where there is a natural projection to a family of finite rings.
Big Question 6

Find interesting infinite rings with canonical projections to finite rings and develop coding theory over these rings.
Questions