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Diophantine Equations

Diophantine equation⇒ integer solutions to an
indeterminite polynomial equation.
ax + by = c
xn + yn = zn ⇒ Fermat’s Equation
y2 = x3 + ax + b ⇒ Elliptic Curve
Diophantine equations define algebraic curves and
algebraic surfaces.
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Elliptic Curves

Definition
An elliptic curve E is a smooth, projective algebraic curve of
genus one, on which there is a specified point O. The point O
is called point at infinity.

Given by y2 = x3 + ax + b, when a,b are in a field k such
that characteristic of k is not 2,3.
Such as E : y2 = x(x − 1)(x + 1).
No cusp or self-intersection.
Solutions form an abelian group with identity element O.
Field of definition matters. An elliptic curve is a torus over
C, but can be just a bunch of points over Q e.g. there are
only 4 rational solutions to E above.
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Rational Points of Elliptic Curves

Definition

Given a field k and an elliptic curve E : y2 = x3 + ax + b such
that a,b ∈ k , E(k) denotes the set of tuples (x , y) ∈ k × k that
satisfy the equation of E . We call E(k) the set of k -rational
points of E .

Theorem (Mordell-Weil,1928)

Let K be a finite extension of Q. Then E(K ) is a finitely
generated abelian group.

So E(K ) = Zr× torsion part,
What are the possibilities for the torsion part?
What can we say about the rank r?
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Rank

Rank is a complete mystery, even for elliptic curves over Q.

Conjecture: The rank of E(Q) is arbitrarily large.

The biggest exactly known rank is 18 (Elkies).
Elliptic curves of rank at least 28 are known.
One of the Clay’s Millennium Problems the Birch and
Swinnerton-Dyer conjecture is concerned with determining
the rank.
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Mazur’s Theorem

Torsion part is well-studied. For instance:

Theorem (Mazur, 1977)

The torsion subgroup of E(Q) is one of the 15 following groups:
Z/NZ for N = 1,2, ...,10,12 or
Z/2Z× Z/2NZ with N = 1,2,3,4. And examples for every
case are known.

Classical Modular Curve⇒ classifes elliptic curves with torsion
subgroup.
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Maps Between Elliptic Curves

Definition
Let E1, E2 be two elliptic curves, an isogeny φ : E1 → E2 is a
surjective morphism that maps O1 to O2.

Every isogeny induces a homomorphism between
K -rational points of E1 and E2.
Isogenies have finite kernel.
Conversely, for every finite subgroup G of E(K ), there
exists an isogeny φ defined over K such that ker(φ) ∼= G.
Every isogeny φ : E1 → E2 has a dual, φ̂ : E2 → E1.

isogenies⇔ finite subgroups
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Moduli Space

Definition
A moduli space is a geometric space whose points represent
other algebro-geometric objects of a fixed kind.

Definition
Quotient of upper half plane with the action of
Γ0(N) := {M ∈ SL2(Z)|M mod N is upper triangular} is called
classical modular curve, denoted as X0(N).

X0(N) is an algebraic curve, moreover it is a moduli space i.e.
P ∈ X0(N)(Q)⇔ (E ,C) s.t. E is an ell. c. over Q and
C ∼= Z/NZ subgroup of N-torsion points of E , defined over Q.
(elliptic curve + N-cyclic subgroup)⇔(elliptic curve + isogeny)
⇔ point on X0(N)
To study Q-rational torsion subgroups of E , we study X0(N)(Q)
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Twisting

Definition
Given a curve X over Q its twist is another curve over Q that is
isomorphic to X over Q̄.

Remark
Geometrically a curve and its twist are the same.
but arithmetically not... action of Gal(Q̄/Q) differs.
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Twist of X0(N)

Recall that P ∈ X0(N)⇔ (E , φ), E ell. c. and φ : E → E ′ an
isogeny.

Definition

Involution wN on X0(N): (E , φ)⇔ (E ′, φ̂)

Let K := Q(
√

d), Gal(K/Q) =< σ >.
Redefine the action of σ on X0(N) as: Pσ := wN ◦ σ(P).

This is a twist of X0(N)! Denoted by X d (N).
X0(N) and X d (N) are isomorphic over K .
X d (N)(Q) = {P ∈ X0(N)(K )|P = wN(σ(P))}
X d (N) is also a moduli space!
Rational points of X d (N)⇔ "‘Quadratic Q-curves of
degree N"’
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√

d), Gal(K/Q) =< σ >.
Redefine the action of σ on X0(N) as: Pσ := wN ◦ σ(P).

This is a twist of X0(N)! Denoted by X d (N).
X0(N) and X d (N) are isomorphic over K .
X d (N)(Q) = {P ∈ X0(N)(K )|P = wN(σ(P))}
X d (N) is also a moduli space!
Rational points of X d (N)⇔ "‘Quadratic Q-curves of
degree N"’
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Q-curves

Definition
A quadratic Q-curve of degree N is an elliptic curve E defined
over a quadratic field Q(

√
d) such that E and its Galois

conjugate Eσ are isogenous via φ : E → Eσ, kernel of φ is
Z/NZ.

Why do we care???

Fermat’s Last Theoem

xn + yn = zn ⇔ elliptic curves over Q.
twisted Fermat, xn + ym = zk ⇔ Q-curves.
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Theorem (Wiles,1995)
There are no three positive integers a,b, and c can satisfy the
equation an + bn = cn for any integer value of n greater than
two.

Say (a,b, c) is a solution for exponent n > 2, then the
corresponding elliptic curve
y2 = x(x − an)(x + bn) would have very unusual properties.
(Frey, 1984)
Similarly, say (A,B,C) are coprime positive integers such that
A4 + B2 = Cp then the Q-curve
EA,B,C : y2 = x3 + 2(1 + i)Ax2 + (B + iA2)x would have very
unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A,B, and C which satisfy
the equation A4 + B2 = Cp for any value of p greater than 211.
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Field of Definition

Given C, a quadratic Q-curve of degree N: Which quadratic

field it is defined over? if over Q(
√

d) then C corresponds to a

P ∈ X d (N)(Q).

For which (d ,N), X d (N)(Q) 6= ∅?

Quick answer: Not for all d and N.
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Local Points

Checking all the local points is the first thing to do.

If X d (N)(Q) is non-empty then X d (Qp) is non-empty for all p as
well.
Question: Given (N,d ,p) what can be said about X d (N)(Qp)?

Theorem (O,2009)

Given (N,d ,p)⇒ necessary and sufficient conditions for
X d (N)(Qp) to be non-empty.
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Violations of the Hasse Principle

Given a curve C, if P ∈ C(Q) then P ∈ C(Qp). What about the
reverse?

Definition
If a curve C has real and Qp-points for every prime p but no
Q-points then we say that C violates the Hasse Principle.

A conic never violates the Hasse Principle but for higher genus
curves there are many examples of the violation.
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Example
Let N = 23,d = 17 then the genus 2 twisted modular curve
X d (N) violates the Hasse Principle.

Theorem (Ozman,2010)

Given N, the number of the twists X d (N) which violate the
Hasse Principle is given by an explicit asymptotic. In particular
they have positive density.
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Brauer-Manin Obstruction

What is the reason for the violation of the Hasse Principle?
Conjecture: For curves, Brauer-Manin Obstruction explains

the violation of the Hasse Principle.

Given a curve C, we consider a subset CBr of
∏

p C(Qp)
which contains C(Q).
If CBr is empty then C(Q) is empty.
If C violates the Hasse Principle and CBr is empty then we
say that Brauer-Manin obstruction explains the violation of
the Hasse Principle.

Remark: The violation of the twisted curve X d (N) with
N = 23,d = 17 mentioned before is explained by Brauer-Manin
obstruction.
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Period-Index Problems

To check BM obstruction explains the violation of the Hasse
Principle we need a rational degree one divisor.

Definition
A divisor of a curve is formal sum of its points. Given a divisor
D =

∑
niPi where ni ∈ Z, the degree of D is sum of ni ’s. The

group of divisors of degree one on a curve C is denoted as
Pic1(C).

Question: Given curve C, Pic1(C)(Q) is empty or not?

Example

Let E be the elliptic curve y2 + y = x3 defined over Q(
√
−3).

Then P1 = (−1,1/2(
√
−3− 1)), P2 = (−1,1/2(−

√
−3− 1))

are points on E and D = P1 + P2 is a divisor on E . Moreover
degree of D is 2 and D is defined over Q, since P1,P2 are
Galois conjugate.
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Galois conjugate.
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Period-Index Problems

To check BM obstruction explains the violation of the Hasse
Principle we need a rational degree one divisor.

Definition
A divisor of a curve is formal sum of its points. Given a divisor
D =

∑
niPi where ni ∈ Z, the degree of D is sum of ni ’s. The

group of divisors of degree one on a curve C is denoted as
Pic1(C).

Question: Given curve C, Pic1(C)(Q) is empty or not?

Example

Let E be the elliptic curve y2 + y = x3 defined over Q(
√
−3).

Then P1 = (−1,1/2(
√
−3− 1)), P2 = (−1,1/2(−

√
−3− 1))

are points on E and D = P1 + P2 is a divisor on E . Moreover
degree of D is 2 and D is defined over Q, since P1,P2 are
Galois conjugate.
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Period-Index Results

Theorem (Ozman,2010)

Let X d (N)(Qp) 6= ∅ for all p and N be a prime number with
numerator of N−1

12 is odd. Then there is a rational degree one
divisor on X d (N).

Theorem (Ozman,2010)
Let N > 3 be a prime that is inert in the quadratic number field
K . Then Pic1(X d (N))(QN) is empty if and only if numerator of
N−1
12 is even.
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Let X d (N)(Qp) 6= ∅ for all p and N be a prime number with
numerator of N−1

12 is odd. Then there is a rational degree one
divisor on X d (N).

Theorem (Ozman,2010)
Let N > 3 be a prime that is inert in the quadratic number field
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12 is even.
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Thank you!
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