Modular Curves, Divisors and Twists

Ekin Ozman

Max Planck Institute for Mathematics-Bonn

June 15, 2011

Ekin Ozman Points on $X^d(N)$

포 > 포

- Diophantine equation ⇒ integer solutions to an indeterminite polynomial equation.
- ax + by = c
- $x^n + y^n = z^n \Rightarrow$ Fermat's Equation
- $y^2 = x^3 + ax + b \Rightarrow$ Elliptic Curve
- Diophantine equations define algebraic curves and algebraic surfaces.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

•
$$ax + by = c$$

- $x^n + y^n = z^n \Rightarrow$ Fermat's Equation
- $y^2 = x^3 + ax + b \Rightarrow$ Elliptic Curve
- Diophantine equations define algebraic curves and algebraic surfaces.

<ロ> <問> <問> < 回> < 回> < □> < □> <

•
$$ax + by = c$$

•
$$x^n + y^n = z^n \Rightarrow$$
 Fermat's Equation

•
$$y^2 = x^3 + ax + b \Rightarrow$$
 Elliptic Curve

• Diophantine equations define algebraic curves and algebraic surfaces.

ヘロト ヘアト ヘヨト ヘ

프 🕨 🗆 프

•
$$ax + by = c$$

•
$$x^n + y^n = z^n \Rightarrow$$
 Fermat's Equation

•
$$y^2 = x^3 + ax + b \Rightarrow$$
 Elliptic Curve

• Diophantine equations define algebraic curves and algebraic surfaces.

ヘロト ヘアト ヘヨト ヘ

프 🕨 🗆 프

•
$$ax + by = c$$

•
$$x^n + y^n = z^n \Rightarrow$$
 Fermat's Equation

•
$$y^2 = x^3 + ax + b \Rightarrow$$
 Elliptic Curve

• Diophantine equations define algebraic curves and algebraic surfaces.

ヘロト ヘアト ヘヨト ヘ

프 🕨 🗆 프

•
$$ax + by = c$$

•
$$x^n + y^n = z^n \Rightarrow$$
 Fermat's Equation

•
$$y^2 = x^3 + ax + b \Rightarrow$$
 Elliptic Curve

• Diophantine equations define algebraic curves and algebraic surfaces.

ヘロト ヘヨト ヘヨト

≣ ▶

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element *O*.
- Field of definition matters. An elliptic curve is a torus over C, but can be just a bunch of points over Q e.g. there are only 4 rational solutions to E above.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element *O*.
- Field of definition matters. An elliptic curve is a torus over C, but can be just a bunch of points over Q e.g. there are only 4 rational solutions to E above.

イロン 不良 とくほう 不良 とうほ

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element *O*.
- Field of definition matters. An elliptic curve is a torus over C, but can be just a bunch of points over Q e.g. there are only 4 rational solutions to E above.

イロン 不良 とくほう 不良 とうほ

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element *O*.
- Field of definition matters. An elliptic curve is a torus over C, but can be just a bunch of points over Q e.g. there are only 4 rational solutions to E above.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element O.
- Field of definition matters. An elliptic curve is a torus over C, but can be just a bunch of points over Q e.g. there are only 4 rational solutions to E above.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element *O*.
- Field of definition matters. An elliptic curve is a torus over C, but can be just a bunch of points over Q e.g. there are only 4 rational solutions to E above.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

An elliptic curve E is a smooth, projective algebraic curve of genus one, on which there is a specified point O. The point O is called point at infinity.

- Given by $y^2 = x^3 + ax + b$, when *a*, *b* are in a field *k* such that characteristic of *k* is not 2, 3.
- Such as $E: y^2 = x(x-1)(x+1)$.
- No cusp or self-intersection.
- Solutions form an abelian group with identity element *O*.
- Field of definition matters. An elliptic curve is a torus over ℂ, but can be just a bunch of points over ℚ e.g. there are only 4 rational solutions to *E* above.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Given a field *k* and an elliptic curve $E : y^2 = x^3 + ax + b$ such that $a, b \in k$, E(k) denotes the set of tuples $(x, y) \in k \times k$ that satisfy the equation of *E*. We call E(k) the set of *k*-rational points of *E*.

Theorem (Mordell-Weil,1928)

Let K be a finite extension of \mathbb{Q} . Then E(K) is a finitely generated abelian group.

So $E(K) = \mathbb{Z}^r \times$ torsion part,

- What are the possibilities for the torsion part?
- What can we say about the rank r?

くロト (過) (目) (日)

Given a field *k* and an elliptic curve $E : y^2 = x^3 + ax + b$ such that $a, b \in k$, E(k) denotes the set of tuples $(x, y) \in k \times k$ that satisfy the equation of *E*. We call E(k) the set of *k*-rational points of *E*.

Theorem (Mordell-Weil, 1928)

Let K be a finite extension of \mathbb{Q} . Then E(K) is a finitely generated abelian group.

So $E(K) = \mathbb{Z}^r \times$ torsion part,

- What are the possibilities for the torsion part?
- What can we say about the rank r?

ヘロト ヘアト ヘヨト

Given a field *k* and an elliptic curve $E : y^2 = x^3 + ax + b$ such that $a, b \in k$, E(k) denotes the set of tuples $(x, y) \in k \times k$ that satisfy the equation of *E*. We call E(k) the set of *k*-rational points of *E*.

Theorem (Mordell-Weil, 1928)

Let K be a finite extension of \mathbb{Q} . Then E(K) is a finitely generated abelian group.

So $E(K) = \mathbb{Z}^r \times$ torsion part,

- What are the possibilities for the torsion part?
- What can we say about the rank r?

ヘロト ヘアト ヘヨト

Given a field *k* and an elliptic curve $E : y^2 = x^3 + ax + b$ such that $a, b \in k$, E(k) denotes the set of tuples $(x, y) \in k \times k$ that satisfy the equation of *E*. We call E(k) the set of *k*-rational points of *E*.

Theorem (Mordell-Weil, 1928)

Let K be a finite extension of \mathbb{Q} . Then E(K) is a finitely generated abelian group.

So $E(K) = \mathbb{Z}^r \times$ torsion part,

• What are the possibilities for the torsion part?

• What can we say about the rank r?

・ロト ・ 『 ト ・ ヨ ト

Given a field *k* and an elliptic curve $E : y^2 = x^3 + ax + b$ such that $a, b \in k$, E(k) denotes the set of tuples $(x, y) \in k \times k$ that satisfy the equation of *E*. We call E(k) the set of *k*-rational points of *E*.

Theorem (Mordell-Weil, 1928)

Let K be a finite extension of \mathbb{Q} . Then E(K) is a finitely generated abelian group.

So $E(K) = \mathbb{Z}^r \times$ torsion part,

- What are the possibilities for the torsion part?
- What can we say about the rank r?

(日)

Conjecture: The rank of $E(\mathbb{Q})$ is arbitrarily large.

- The biggest exactly known rank is 18 (Elkies).
- Elliptic curves of rank at least 28 are known.
- One of the Clay's Millennium Problems *the Birch and Swinnerton-Dyer conjecture* is concerned with determining the rank.

Conjecture: The rank of $E(\mathbb{Q})$ is arbitrarily large.

- The biggest exactly known rank is 18 (Elkies).
- Elliptic curves of rank at least 28 are known.
- One of the Clay's Millennium Problems *the Birch and Swinnerton-Dyer conjecture* is concerned with determining the rank.

A B > A B >

Rank is a complete mystery, even for elliptic curves over \mathbb{Q} . **Conjecture:** The rank of $E(\mathbb{Q})$ is arbitrarily large.

- The biggest exactly known rank is 18 (Elkies).
- Elliptic curves of rank at least 28 are known.
- One of the Clay's Millennium Problems *the Birch and Swinnerton-Dyer conjecture* is concerned with determining the rank.

A B > A B >

Conjecture: The rank of $E(\mathbb{Q})$ is arbitrarily large.

- The biggest exactly known rank is 18 (Elkies).
- Elliptic curves of rank at least 28 are known.
- One of the Clay's Millennium Problems *the Birch and Swinnerton-Dyer conjecture* is concerned with determining the rank.

(日)

Conjecture: The rank of $E(\mathbb{Q})$ is arbitrarily large.

- The biggest exactly known rank is 18 (Elkies).
- Elliptic curves of rank at least 28 are known.
- One of the Clay's Millennium Problems *the Birch and Swinnerton-Dyer conjecture* is concerned with determining the rank.

ヘロト ヘヨト ヘヨト

Conjecture: The rank of $E(\mathbb{Q})$ is arbitrarily large.

- The biggest exactly known rank is 18 (Elkies).
- Elliptic curves of rank at least 28 are known.
- One of the Clay's Millennium Problems *the Birch and Swinnerton-Dyer conjecture* is concerned with determining the rank.

Torsion part is well-studied. For instance:

Theorem (Mazur, 1977)

The torsion subgroup of $E(\mathbb{Q})$ is one of the 15 following groups: $\mathbb{Z}/N\mathbb{Z}$ for N = 1, 2, ..., 10, 12 or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$ with N = 1, 2, 3, 4. And examples for every case are known.

Classical Modular Curve \Rightarrow classifes elliptic curves with torsion subgroup.

ヘロト ヘアト ヘヨト ヘ

.≣⇒

Torsion part is well-studied. For instance:

Theorem (Mazur, 1977)

The torsion subgroup of $E(\mathbb{Q})$ is one of the 15 following groups: $\mathbb{Z}/N\mathbb{Z}$ for N = 1, 2, ..., 10, 12 or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$ with N = 1, 2, 3, 4. And examples for every case are known.

Classical Modular Curve \Rightarrow classifes elliptic curves with torsion subgroup.

ヘロト ヘアト ヘヨト

Torsion part is well-studied. For instance:

Theorem (Mazur, 1977)

The torsion subgroup of $E(\mathbb{Q})$ is one of the 15 following groups: $\mathbb{Z}/N\mathbb{Z}$ for N = 1, 2, ..., 10, 12 or $\mathbb{Z}/2\mathbb{Z} \times \mathbb{Z}/2N\mathbb{Z}$ with N = 1, 2, 3, 4. And examples for every case are known.

Classical Modular Curve \Rightarrow classifes elliptic curves with torsion subgroup.

Let E_1 , E_2 be two elliptic curves, an *isogeny* $\phi : E_1 \rightarrow E_2$ is a surjective morphism that maps O_1 to O_2 .

- Every isogeny induces a homomorphism between K-rational points of E_1 and E_2 .
- Isogenies have finite kernel.
- Conversely, for every finite subgroup G of E(K), there exists an isogeny φ defined over K such that ker(φ) ≅ G.
- Every isogeny $\phi: E_1 \to E_2$ has a *dual*, $\hat{\phi}: E_2 \to E_1$.

isogenies \Leftrightarrow finite subgroups

◆□ > ◆□ > ◆豆 > ◆豆 > →

Let E_1 , E_2 be two elliptic curves, an *isogeny* $\phi : E_1 \rightarrow E_2$ is a surjective morphism that maps O_1 to O_2 .

- Every isogeny induces a homomorphism between *K*-rational points of *E*₁ and *E*₂.
- Isogenies have finite kernel.
- Conversely, for every finite subgroup G of E(K), there exists an isogeny φ defined over K such that ker(φ) ≅ G.
- Every isogeny $\phi: E_1 \to E_2$ has a *dual*, $\hat{\phi}: E_2 \to E_1$.

isogenies \Leftrightarrow finite subgroups

イロン 不良 とくほう 不良 とうほ

Let E_1 , E_2 be two elliptic curves, an *isogeny* $\phi : E_1 \rightarrow E_2$ is a surjective morphism that maps O_1 to O_2 .

- Every isogeny induces a homomorphism between *K*-rational points of *E*₁ and *E*₂.
- Isogenies have finite kernel.
- Conversely, for every finite subgroup G of E(K), there exists an isogeny φ defined over K such that ker(φ) ≅ G.
- Every isogeny $\phi: E_1 \to E_2$ has a *dual*, $\hat{\phi}: E_2 \to E_1$.

isogenies \Leftrightarrow finite subgroups

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Let E_1 , E_2 be two elliptic curves, an *isogeny* $\phi : E_1 \rightarrow E_2$ is a surjective morphism that maps O_1 to O_2 .

- Every isogeny induces a homomorphism between *K*-rational points of *E*₁ and *E*₂.
- Isogenies have finite kernel.
- Conversely, for every finite subgroup G of E(K), there exists an isogeny φ defined over K such that ker(φ) ≅ G.
- Every isogeny $\phi: E_1 \to E_2$ has a *dual*, $\hat{\phi}: E_2 \to E_1$.

isogenies \Leftrightarrow finite subgroups

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

Let E_1 , E_2 be two elliptic curves, an *isogeny* $\phi : E_1 \rightarrow E_2$ is a surjective morphism that maps O_1 to O_2 .

- Every isogeny induces a homomorphism between *K*-rational points of *E*₁ and *E*₂.
- Isogenies have finite kernel.
- Conversely, for every finite subgroup G of E(K), there exists an isogeny φ defined over K such that ker(φ) ≅ G.
- Every isogeny $\phi: E_1 \to E_2$ has a *dual*, $\hat{\phi}: E_2 \to E_1$.

isogenies ⇔ finite subgroups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Let E_1 , E_2 be two elliptic curves, an *isogeny* $\phi : E_1 \rightarrow E_2$ is a surjective morphism that maps O_1 to O_2 .

- Every isogeny induces a homomorphism between *K*-rational points of *E*₁ and *E*₂.
- Isogenies have finite kernel.
- Conversely, for every finite subgroup G of E(K), there exists an isogeny φ defined over K such that ker(φ) ≅ G.
- Every isogeny $\phi: E_1 \to E_2$ has a *dual*, $\hat{\phi}: E_2 \to E_1$.

isogenies \Leftrightarrow finite subgroups

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$ To study \mathbb{Q} -rational torsion subgroups of *E*, we study $X_0(N)(\mathbb{Q})$

イロン 不良 とくほう 不良 とうほ

A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$ To study \mathbb{Q} -rational torsion subgroups of *E*, we study $X_0(N)(\mathbb{Q})$

<ロ> (四) (四) (三) (三) (三)
A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$ To study \mathbb{Q} -rational torsion subgroups of *E*, we study $X_0(N)(\mathbb{Q})$

イロン 不良 とくほう 不良 とうほ

A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$ To study \mathbb{Q} -rational torsion subgroups of *E*, we study $X_0(N)(\mathbb{Q})$

イロン 不良 とくほう 不良 とうほ

A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$ To study \mathbb{Q} -rational torsion subgroups of *E*, we study $X_0(N)(\mathbb{Q})$

(ロ) (四) (主) (主) (三)

A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$

To study ${\mathbb Q}$ -rational torsion subgroups of E, we study $X_0(N)({\mathbb Q})$

イロン 不良 とくほう 不良 とうほ

A *moduli space* is a geometric space whose points represent other algebro-geometric objects of a fixed kind.

Definition

Quotient of upper half plane with the action of $\Gamma_0(N) := \{M \in SL_2(\mathbb{Z}) | M \mod N \text{ is upper triangular}\}$ is called **classical modular curve**, denoted as $X_0(N)$.

 $X_0(N)$ is an algebraic curve, moreover it is a moduli space i.e. $P \in X_0(N)(\mathbb{Q}) \Leftrightarrow (E, C)$ s.t. *E* is an ell. c. over \mathbb{Q} and $C \cong \mathbb{Z}/N\mathbb{Z}$ subgroup of *N*-torsion points of *E*, defined over \mathbb{Q} . (elliptic curve + *N*-cyclic subgroup) \Leftrightarrow (elliptic curve + isogeny) \Leftrightarrow point on $X_0(N)$ To study \mathbb{Q} -rational torsion subgroups of *E*, we study $X_0(N)(\mathbb{Q})$

Given a curve *X* over \mathbb{Q} its *twist* is another curve over \mathbb{Q} that is isomorphic to *X* over $\overline{\mathbb{Q}}$.

Remark

Geometrically a curve and its twist are the same. but arithmetically not... action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ differs.

イロン 不得 とくほ とくほ とうほ

Given a curve *X* over \mathbb{Q} its *twist* is another curve over \mathbb{Q} that is isomorphic to *X* over $\overline{\mathbb{Q}}$.

Remark

Geometrically a curve and its twist are the same. but arithmetically not... action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ differs.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Given a curve *X* over \mathbb{Q} its *twist* is another curve over \mathbb{Q} that is isomorphic to *X* over $\overline{\mathbb{Q}}$.

Remark

Geometrically a curve and its twist are the same. but arithmetically not... action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ differs.

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ○ ○ ○

Given a curve *X* over \mathbb{Q} its *twist* is another curve over \mathbb{Q} that is isomorphic to *X* over $\overline{\mathbb{Q}}$.

Remark

Geometrically a curve and its twist are the same. but arithmetically not... action of $Gal(\overline{\mathbb{Q}}/\mathbb{Q})$ differs.

イロト イポト イヨト イヨト 一臣

Twist of $X_0(N)$

Recall that $P \in X_0(N) \Leftrightarrow (E, \phi)$, E ell. c. and $\phi : E \to E'$ an isogeny.

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = \langle \sigma \rangle$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^{d}(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

ヘロン 人間 とくほ とくほ とう

Twist of $X_0(N)$

Recall that $P \in X_0(N) \Leftrightarrow (E, \phi)$, E ell. c. and $\phi : E \to E'$ an isogeny.

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = \langle \sigma \rangle$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^{d}(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$.

Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^{d}(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

3

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^{d}(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^d(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^d(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^{d}(N)(\mathbb{Q}) = \{P \in X_0(N)(K) | P = w_N(\sigma(P))\}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^d(N)(\mathbb{Q}) = \{ P \in X_0(N)(K) | P = w_N(\sigma(P)) \}$
- X^d(N) is also a moduli space!
 Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^d(N)(\mathbb{Q}) = \{ P \in X_0(N)(K) | P = w_N(\sigma(P)) \}$
- X^d(N) is also a moduli space! Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^d(N)(\mathbb{Q}) = \{ P \in X_0(N)(K) | P = w_N(\sigma(P)) \}$
- X^d(N) is also a moduli space! Rational points of X^d(N) ⇔ "Quadratic Q-curves of degree N"

Definition

Involution w_N on $X_0(N)$: $(E, \phi) \Leftrightarrow (E', \hat{\phi})$

Let $K := \mathbb{Q}(\sqrt{d})$, $\operatorname{Gal}(K/\mathbb{Q}) = <\sigma >$. Redefine the action of σ on $X_0(N)$ as: $P^{\sigma} := w_N \circ \sigma(P)$.

- This is a twist of $X_0(N)$! Denoted by $X^d(N)$.
- $X_0(N)$ and $X^d(N)$ are isomorphic over K.
- $X^d(N)(\mathbb{Q}) = \{ P \in X_0(N)(K) | P = w_N(\sigma(P)) \}$
- X^d(N) is also a moduli space! Rational points of X^d(N) ⇔ "'Quadratic Q-curves of degree N"'

A quadratic \mathbb{Q} -curve of degree *N* is an elliptic curve *E* defined over a quadratic field $\mathbb{Q}(\sqrt{d})$ such that *E* and its Galois conjugate E^{σ} are isogenous via $\phi : E \to E^{\sigma}$, kernel of ϕ is $\mathbb{Z}/N\mathbb{Z}$.

Why do we care???

Fermat's Last Theoem

- $x^n + y^n = z^n \Leftrightarrow$ elliptic curves over \mathbb{Q} .
- *twisted* Fermat, $x^n + y^m = z^k \Leftrightarrow \mathbb{Q}$ -curves.

A quadratic \mathbb{Q} -curve of degree *N* is an elliptic curve *E* defined over a quadratic field $\mathbb{Q}(\sqrt{d})$ such that *E* and its Galois conjugate E^{σ} are isogenous via $\phi : E \to E^{\sigma}$, kernel of ϕ is $\mathbb{Z}/N\mathbb{Z}$.

Why do we care???

Fermat's Last Theoem

- $x^n + y^n = z^n \Leftrightarrow$ elliptic curves over \mathbb{Q} .
- *twisted* Fermat, $x^n + y^m = z^k \Leftrightarrow \mathbb{Q}$ -curves.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A quadratic \mathbb{Q} -curve of degree *N* is an elliptic curve *E* defined over a quadratic field $\mathbb{Q}(\sqrt{d})$ such that *E* and its Galois conjugate E^{σ} are isogenous via $\phi : E \to E^{\sigma}$, kernel of ϕ is $\mathbb{Z}/N\mathbb{Z}$.

Why do we care???

Fermat's Last Theoem

- $x^n + y^n = z^n \Leftrightarrow$ elliptic curves over \mathbb{Q} .
- *twisted* Fermat, $x^n + y^m = z^k \Leftrightarrow \mathbb{Q}$ -curves.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A quadratic \mathbb{Q} -curve of degree *N* is an elliptic curve *E* defined over a quadratic field $\mathbb{Q}(\sqrt{d})$ such that *E* and its Galois conjugate E^{σ} are isogenous via $\phi : E \to E^{\sigma}$, kernel of ϕ is $\mathbb{Z}/N\mathbb{Z}$.

Why do we care???

Fermat's Last Theoem

• $x^n + y^n = z^n \Leftrightarrow$ elliptic curves over \mathbb{Q} .

• *twisted* Fermat, $x^n + y^m = z^k \Leftrightarrow \mathbb{Q}$ -curves.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A quadratic \mathbb{Q} -curve of degree *N* is an elliptic curve *E* defined over a quadratic field $\mathbb{Q}(\sqrt{d})$ such that *E* and its Galois conjugate E^{σ} are isogenous via $\phi : E \to E^{\sigma}$, kernel of ϕ is $\mathbb{Z}/N\mathbb{Z}$.

Why do we care???

Fermat's Last Theoem

- $x^n + y^n = z^n \Leftrightarrow$ elliptic curves over \mathbb{Q} .
- *twisted* Fermat, $x^n + y^m = z^k \Leftrightarrow \mathbb{Q}$ -curves.

3

ヘロト ヘアト ヘヨト

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

<ロ> (四) (四) (三) (三) (三) (三)

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve

 $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties.

(Frey, 198

Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve

 $E_{A,B,C}$: $y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

<ロ> (四) (四) (三) (三) (三) (三)

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

<ロ> (四) (四) (三) (三) (三) (三)

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

イロン 不良 とくほう 不良 とうしょう

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

イロン 不良 とくほう 不良 とうしょう

There are no three positive integers a, b, and c can satisfy the equation $a^n + b^n = c^n$ for any integer value of n greater than two.

Say (a, b, c) is a solution for exponent n > 2, then the corresponding elliptic curve $y^2 = x(x - a^n)(x + b^n)$ would have very unusual properties. (Frey, 1984) Similarly, say (A, B, C) are coprime positive integers such that $A^4 + B^2 = C^p$ then the Q-curve $E_{A,B,C}: y^2 = x^3 + 2(1 + i)Ax^2 + (B + iA^2)x$ would have very unusual properties. (Ellenberg-Skinner, 2001)

Theorem (Ellenberg, 2004)

There are no three positive integers A, B, and C which satisfy the equation $A^4 + B^2 = C^p$ for any value of p greater than 211.

프 🗼 🛛 프

Given C, a quadratic \mathbb{Q} -curve of degree N: Which quadratic

field it is defined over? if over $\mathbb{Q}(\sqrt{d})$ then C corresponds to a

 $P \in X^d(N)(\mathbb{Q}).$

For which (d, N), $X^{d}(N)(\mathbb{Q}) \neq \emptyset$?

Quick answer: *Not for all d and N*.

Given C, a quadratic \mathbb{Q} -curve of degree N: Which quadratic

field it is defined over? if over $\mathbb{Q}(\sqrt{d})$ then C corresponds to a

 $P \in X^d(N)(\mathbb{Q}).$

For which (d, N), $X^{d}(N)(\mathbb{Q}) \neq \emptyset$?

Quick answer: Not for all d and N.

Given C, a quadratic \mathbb{Q} -curve of degree N: Which quadratic

field it is defined over? if over $\mathbb{Q}(\sqrt{d})$ then C corresponds to a

 $P \in X^d(N)(\mathbb{Q}).$

For which (d, N), $X^{d}(N)(\mathbb{Q}) \neq \emptyset$?

Quick answer: *Not for all d and N*.

3
Given C, a quadratic \mathbb{Q} -curve of degree N: Which quadratic

field it is defined over? if over $\mathbb{Q}(\sqrt{d})$ then C corresponds to a

 $P \in X^d(N)(\mathbb{Q}).$

For which (d, N), $X^d(N)(\mathbb{Q}) \neq \emptyset$?

Quick answer: Not for all d and N.

= 990

Given C, a quadratic \mathbb{Q} -curve of degree N: Which quadratic

field it is defined over? if over $\mathbb{Q}(\sqrt{d})$ then C corresponds to a

 $P \in X^d(N)(\mathbb{Q}).$

For which (d, N), $X^{d}(N)(\mathbb{Q}) \neq \emptyset$?

Quick answer: Not for all d and N.

= 990

If $X^{d}(N)(\mathbb{Q})$ is non-empty then $X^{d}(\mathbb{Q}_{p})$ is non-empty for all p as well.

Question: Given (N, d, p) what can be said about $X^{d}(N)(\mathbb{Q}_{p})$?

Theorem (O,2009)

Given $(N, d, p) \Rightarrow$ necessary and sufficient conditions for $X^{d}(N)(\mathbb{Q}_{p})$ to be non-empty.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

If $X^{d}(N)(\mathbb{Q})$ is non-empty then $X^{d}(\mathbb{Q}_{p})$ is non-empty for all p as well.

Question: Given (N, d, p) what can be said about $X^{d}(N)(\mathbb{Q}_{p})$?

Theorem (O,2009)

Given $(N, d, p) \Rightarrow$ necessary and sufficient conditions for $X^{d}(N)(\mathbb{Q}_{p})$ to be non-empty.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

If $X^{d}(N)(\mathbb{Q})$ is non-empty then $X^{d}(\mathbb{Q}_{p})$ is non-empty for all p as well.

Question: Given (N, d, p) what can be said about $X^{d}(N)(\mathbb{Q}_{p})$?

Theorem (O,2009)

Given $(N, d, p) \Rightarrow$ necessary and sufficient conditions for $X^d(N)(\mathbb{Q}_p)$ to be non-empty.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

If $X^{d}(N)(\mathbb{Q})$ is non-empty then $X^{d}(\mathbb{Q}_{p})$ is non-empty for all p as well.

Question: Given (N, d, p) what can be said about $X^{d}(N)(\mathbb{Q}_{p})$?

Theorem (O,2009)

Given $(N, d, p) \Rightarrow$ necessary and sufficient conditions for $X^d(N)(\mathbb{Q}_p)$ to be non-empty.

・ロト ・ 『 ト ・ ヨ ト

< ∃ > ∃ < < < <

Given a curve C, if $P \in C(\mathbb{Q})$ then $P \in C(\mathbb{Q}_p)$. What about the reverse?

Definition

If a curve *C* has real and \mathbb{Q}_p -points for every prime *p* but no \mathbb{Q} -points then we say that *C* violates **the Hasse Principle**.

A conic never violates the Hasse Principle but for higher genus curves there are many examples of the violation.

Given a curve *C*, if $P \in C(\mathbb{Q})$ then $P \in C(\mathbb{Q}_p)$. What about the reverse?

Definition

If a curve *C* has real and \mathbb{Q}_p -points for every prime *p* but no \mathbb{Q} -points then we say that *C* violates **the Hasse Principle.**

A conic never violates the Hasse Principle but for higher genus curves there are many examples of the violation.

ヘロト ヘヨト ヘヨト

Given a curve *C*, if $P \in C(\mathbb{Q})$ then $P \in C(\mathbb{Q}_p)$. What about the reverse?

Definition

If a curve *C* has real and \mathbb{Q}_p -points for every prime *p* but no \mathbb{Q} -points then we say that *C* violates **the Hasse Principle.**

A conic never violates the Hasse Principle but for higher genus curves there are many examples of the violation.

Example

Let N = 23, d = 17 then the genus 2 twisted modular curve $X^{d}(N)$ violates the Hasse Principle.

Theorem (Ozman,2010)

Given N, the number of the twists $X^d(N)$ which violate the Hasse Principle is given by an explicit asymptotic. In particular they have positive density.

イロン 不得 とくほ とくほ とうほ

Example

Let N = 23, d = 17 then the genus 2 twisted modular curve $X^{d}(N)$ violates the Hasse Principle.

Theorem (Ozman, 2010)

Given N, the number of the twists $X^d(N)$ which violate the Hasse Principle is given by an explicit asymptotic. In particular they have positive density.

What is the reason for the violation of the Hasse Principle?

Conjecture: For curves, *Brauer-Manin Obstruction* explains the violation of the Hasse Principle.

- Given a curve *C*, we consider a subset C^{Br} of $\prod_{p} C(\mathbb{Q}_{p})$ which contains $C(\mathbb{Q})$.
- If C^{Br} is empty then $C(\mathbb{Q})$ is empty.
- If *C* violates the Hasse Principle and *C*^{Br} is empty then we say that Brauer-Manin obstruction explains the violation of the Hasse Principle.

Remark: The violation of the twisted curve $X^{d}(N)$ with N = 23, d = 17 mentioned before is explained by Brauer-Manin obstruction.

・ロン ・回 と ・ 回 と ・

- Given a curve *C*, we consider a subset C^{Br} of $\prod_{p} C(\mathbb{Q}_{p})$ which contains $C(\mathbb{Q})$.
- If C^{Br} is empty then $C(\mathbb{Q})$ is empty.
- If *C* violates the Hasse Principle and *C*^{Br} is empty then we say that Brauer-Manin obstruction explains the violation of the Hasse Principle.

Remark: The violation of the twisted curve $X^{d}(N)$ with N = 23, d = 17 mentioned before is explained by Brauer-Manin obstruction.

ヘロン ヘロン ヘビン

- Given a curve *C*, we consider a subset C^{Br} of $\prod_{\rho} C(\mathbb{Q}_{\rho})$ which contains $C(\mathbb{Q})$.
- If C^{Br} is empty then $C(\mathbb{Q})$ is empty.
- If *C* violates the Hasse Principle and *C*^{Br} is empty then we say that Brauer-Manin obstruction explains the violation of the Hasse Principle.

Remark: The violation of the twisted curve $X^{d}(N)$ with N = 23, d = 17 mentioned before is explained by Brauer-Manin obstruction.

ヘロト ヘヨト ヘヨト ヘ

- Given a curve *C*, we consider a subset C^{Br} of $\prod_{\rho} C(\mathbb{Q}_{\rho})$ which contains $C(\mathbb{Q})$.
- If C^{Br} is empty then $C(\mathbb{Q})$ is empty.
- If *C* violates the Hasse Principle and *C*^{Br} is empty then we say that Brauer-Manin obstruction explains the violation of the Hasse Principle.

Remark: The violation of the twisted curve $X^{d}(N)$ with N = 23, d = 17 mentioned before is explained by Brauer-Manin obstruction.

・ロト ・ 『 ト ・ ヨ ト

- Given a curve *C*, we consider a subset C^{Br} of $\prod_{\rho} C(\mathbb{Q}_{\rho})$ which contains $C(\mathbb{Q})$.
- If C^{Br} is empty then $C(\mathbb{Q})$ is empty.
- If *C* violates the Hasse Principle and *C*^{Br} is empty then we say that Brauer-Manin obstruction explains the violation of the Hasse Principle.

Remark: The violation of the twisted curve $X^d(N)$ with N = 23, d = 17 mentioned before is explained by Brauer-Manin obstruction.

- Given a curve *C*, we consider a subset C^{Br} of $\prod_{p} C(\mathbb{Q}_{p})$ which contains $C(\mathbb{Q})$.
- If C^{Br} is empty then $C(\mathbb{Q})$ is empty.
- If *C* violates the Hasse Principle and *C*^{Br} is empty then we say that Brauer-Manin obstruction explains the violation of the Hasse Principle.

Remark: The violation of the twisted curve $X^{d}(N)$ with N = 23, d = 17 mentioned before is explained by Brauer-Manin obstruction.

프 🕨 🗉 프

To check BM obstruction explains the violation of the Hasse Principle we need a rational degree one divisor.

Definition

A divisor of a curve is formal sum of its points. Given a divisor $D = \sum n_i P_i$ where $n_i \in \mathbb{Z}$, the degree of *D* is sum of n_i 's. The group of divisors of degree one on a curve *C* is denoted as $\operatorname{Pic}^1(C)$.

Question: Given curve *C*, $Pic^{1}(C)(\mathbb{Q})$ is empty or not?

Example

To check BM obstruction explains the violation of the Hasse Principle we need a rational degree one divisor.

Definition

A divisor of a curve is formal sum of its points. Given a divisor $D = \sum n_i P_i$ where $n_i \in \mathbb{Z}$, the degree of *D* is sum of n_i 's. The group of divisors of degree one on a curve *C* is denoted as $\operatorname{Pic}^1(C)$.

Question: Given curve *C*, $Pic^1(C)(\mathbb{Q})$ is empty or not?

Example

To check BM obstruction explains the violation of the Hasse Principle we need a rational degree one divisor.

Definition

A divisor of a curve is formal sum of its points. Given a divisor $D = \sum n_i P_i$ where $n_i \in \mathbb{Z}$, the degree of *D* is sum of n_i 's. The group of divisors of degree one on a curve *C* is denoted as $\operatorname{Pic}^1(C)$.

Question: Given curve *C*, $Pic^1(C)(\mathbb{Q})$ is empty or not?

Example

To check BM obstruction explains the violation of the Hasse Principle we need a rational degree one divisor.

Definition

A divisor of a curve is formal sum of its points. Given a divisor $D = \sum n_i P_i$ where $n_i \in \mathbb{Z}$, the degree of *D* is sum of n_i 's. The group of divisors of degree one on a curve *C* is denoted as $\operatorname{Pic}^1(C)$.

Question: Given curve *C*, $Pic^{1}(C)(\mathbb{Q})$ is empty or not?

Example

To check BM obstruction explains the violation of the Hasse Principle we need a rational degree one divisor.

Definition

A divisor of a curve is formal sum of its points. Given a divisor $D = \sum n_i P_i$ where $n_i \in \mathbb{Z}$, the degree of *D* is sum of n_i 's. The group of divisors of degree one on a curve *C* is denoted as $\operatorname{Pic}^1(C)$.

Question: Given curve *C*, $Pic^{1}(C)(\mathbb{Q})$ is empty or not?

Example

To check BM obstruction explains the violation of the Hasse Principle we need a rational degree one divisor.

Definition

A divisor of a curve is formal sum of its points. Given a divisor $D = \sum n_i P_i$ where $n_i \in \mathbb{Z}$, the degree of *D* is sum of n_i 's. The group of divisors of degree one on a curve *C* is denoted as $\operatorname{Pic}^1(C)$.

Question: Given curve *C*, $Pic^{1}(C)(\mathbb{Q})$ is empty or not?

Example

Theorem (Ozman, 2010)

Let $X^d(N)(\mathbb{Q}_p) \neq \emptyset$ for all p and N be a prime number with numerator of $\frac{N-1}{12}$ is odd. Then there is a rational degree one divisor on $X^d(N)$.

Theorem (Ozman,2010)

Let N > 3 be a prime that is inert in the quadratic number field *K*. Then $\operatorname{Pic}^{1}(X^{d}(N))(\mathbb{Q}_{N})$ is empty if and only if numerator of $\frac{N-1}{12}$ is even.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Ozman, 2010)

Let $X^d(N)(\mathbb{Q}_p) \neq \emptyset$ for all p and N be a prime number with numerator of $\frac{N-1}{12}$ is odd. Then there is a rational degree one divisor on $X^d(N)$.

Theorem (Ozman, 2010)

Let N > 3 be a prime that is inert in the quadratic number field *K*. Then $\operatorname{Pic}^{1}(X^{d}(N))(\mathbb{Q}_{N})$ is empty if and only if numerator of $\frac{N-1}{12}$ is even.

프 🗼 🛛 프

A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

Thank you!

