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1 Strongly prime rings

All rings in this report are associative with identity element which should
be preserved by ring homomorphisms, and R −Mod denotes the category
of a unital left modules over the ring R. By an ideal of the ring we shall
understand a two-sided ideal. A⊂B means that A is proper subset of B.

Let R be a ring. The subring of EndZR, generated as a ring by all left
and right mutiplications la and rb, where a, b ∈ R, and lax = ax , rbx = xb for
x ∈ R is called the multiplication ring of the ring R and will be denoted by
M(R). Each element of theM(R) is of the form λ =

∑
k lakrbk where ak, bk ∈

R. Then λx =
∑

k akxbk, x ∈ R. It’s clear that the canonical embedding
R ↪→M(R), sending a ∈ R to la is onto if and only if R is commutative. The
map π : M(R) → R, λ 7→ λ1, is an M(R)-module homomorphism. If R is a
central simple algebra over the field F , its multiplication ring is isomorphic
to R⊗F R

◦ which is also central simple over F . If R is an Azumaya algebra
then there are canonical isomorphisms M(R) ∼= R⊗Z(R) R

◦ ∼= EndZ(R)R.
Let M be an R-bimodule. Denote by ZM = ZM(R) = {δ ∈ M | rδ =

δr, ∀r ∈ R} the set of R-centralizing elements of the M . A bimodule M is
called centred R-bimodule if M = RZM .

Let ϕ : R → S be a ring homomorphism. Then S becomes a canonical
R-bimodule. We call ϕ a centred homomorphism if S is a centred R-bimodule
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under this structure. And then the ring S is called centred extension of the
ring R (via ϕ). Of course, ZS = ZS(R) is a subring of the ring S. It easily
follows from the definition that each centred extension of the ring R can be
obtained as a factor ring of a semigroup ring R[G] where G is a free semigroup
with unit. Rings and their centred homomophisms form a category which is
called Procesi category. For a semiprime ring R we denote Q(R) the central
closure and byF (R) the extended centroid of the ring R. By definition, F (R)
is the centre of Q(R) and is a field when R is a prime ring. See [3],[12] for
definitions and basic properties of these rings.

LetM be a nonzero left R-module. M is called strongly prime if a for any
non-zero x, y ∈ M , there exits finite set of elements {a1, ..., an} ⊆ R, n =
n(x, y), such that AnnR{a1x, ..., anx} ⊆ AnnR{y} (see [2]). Other equivalent
definitions and some properties of the strongly prime modules can also be
found in [2], [12]. Taking M = R in the definition of the strongly prime
module over R, the notion of left strongly prime ring is obtained (see [6]).

When we look at a ring R as an R-bimodule, this means that we con-
sider R as the left M(R)-module. Ring R is called strongly prime if R
is a strongly prime module over its multiplication ring. We call an ele-
ment a ∈ R a symmetric zero divisor if for any finite subset of elements
{a1, ..., an} ⊆ (a), AnnM(R){a1, ..., an} ̸⊆ AnnM(R){1R}. Of course, when R
is commutative, taking n = 1 anda1 = a, we obtain the usual definition of
zero divisors. Denote zd(R) the set of zero divisors of the ring R.

Now we give the main characterizations of a strongly prime rings.

Theorem 1.1. For any nonzero ring R the following conditions are equiva-
lent:

(1) R is a strongly prime ring;

(2) zd(R) = 0;

(3) R is a prime ring and the central closure Q(R) of the ring R is a simple
ring;

(4) for any nonzero a, b ∈ R, there exist λ1, ..., λn ∈M(R) such that

AnnM(R){λ1a, ..., λna} ⊆ AnnM(R){b};
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(5) for any nonzero a ∈ R, there exist λ1, ..., λn ∈M(R) such that

AnnM(R){λ1a, ..., λna} ⊆ AnnM(R){1R};

(5′) for any nonzero a ∈ R, there exist a1, ..., an ∈ (a), such that∑
i xiakyi = 0, for all 1 ≤ k ≤ n, implies

∑
i xiyi = 0;

(6) there exists a centred monomorphism ϕ : R → K where K is a simple
ring;

(7) there exists a centred monomorphism ϕ : R → S , where the ring S has
the following property: for each nonzero ideal I ⊆ R, its extension Iε

in S, Iε = SIS, is equal to S.

Particularly, by (2) of this theorem, each ring which is not strongly prime
has nonzero symmetric zero divisors. It is also clear that a strongly prime
ring is left and right strongly prime in the sense of Handelman-Lawrence. We
note that for any strongly prime ring the central closure coincides with the
right and left Martindale’s quotient rings, and so with the symmetric ring of
quotients.

The central closure Q(R) of any strongly prime ring R has an important
universal property. In [8] the following result was proved. Let the ringR be
centrally embedded into a ring S, in which for each nonzero ideal I ⊆ R, its
extension Iε in S,Iε = SIS is equal to S. Then R is strongly prime and there
exists a unique centred homomorphism ρ : Q(R) → S, extending the given
embedding, and sending the extended centroid F = Z(Q(R)) of the ringR
into Z(S) (see [8], Theorems 2 and 5). This generalizes Amitsur’s result,
proved for simple rings S (see [1], Theorem 18). Particularly this universal
property shows that the simple ring Q(R) is a minimal centred extension
satisfying (7) of the Theorem 1.1.

Theorem 1.2. A ring R is strongly prime if and only if its multiplication
ring M(R) is strongly prime.

In this case their extended centroids are canonically isomorphic, and the
central closure Q(M(R)) ∼= Q⊗F Q

◦, where Q = Q(R).

Theorem 1.3. Let R be a strongly prime ring. If a ring S is Morita equiva-
lent to the ring R, then S is strongly prime and extended centroids of R and
S are isomorphic.
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We recall that a ring R is semiprime if it does not contain any nonzero
nilpotent ideals. It is well known that in a semiprime ring left and right
annihilators of an ideal coincide, so we can speak about ideals with zero
annihilators. It is also clear that an ideal of a semiprime ring R isessential
as an M(R)-submodule if and only if it has a zero annihilator. A finite set
A = {a1, ..., an} ⊆ R is called an insulator, if

AnnM(R){a1, ..., an} ⊆ AnnM(R){1R};

i.e. if λa1 = ... = λan = 0, implies λ1 = 0.The set In(R) of the insulators
of a ring R is evidently closed under multiplication. In a semiprime ring
R, insulators can be characterised in terms of the central closure Q(R) and
extended centroid F (R) of the ring. Indeed, using Theorem 32.3 in [12], we
obtain the following

Proposition 1.4. In any semiprime ring R, a finite subset A = {a1, ..., an}
is aninsulator if and only if 1 ∈ AF , i.e. if

a1φ1 + ...+ anφn = 1,

with suitable φk from the extended centroid F of R.

Let R be a ring. Denote by F the set of right ideals in R containing an
insulator. Analogously we define the set F ′ as the left ideals of R containing
an insulator. If R is commutative, any ideal generated by elements of an
insulator is dense. It will follow from the proof of Proposition 1.5 below that
in any commutative ring F is a Gabriel filter. We remind that a semiprime
ring R is called strongly semiprime if for each essential ideal I of the ring,
R ∈ σM(R)[I] (see [12]). It easily follows from the definitions that R is
strongly semiprime if and only if each essential ideal contains an insulator.
Clearly each strongly prime ring is strongly semiprime.

Proposition 1.5. If R is a strongly semiprime ring, then F and F ′ are
symmetric Gabriel filters. Corresponding left and right localizations form a
biradical in the sense of Jategaonkar i.e. corresponding torsion submodules
inR/A coincide for each ideal A ⊆ R.

Theorem 1.6. Let R be a strongly semiprime ring. Then the canonical map

ϕ : Q(R)⊗R Q(R) → Q(R)

is an isomorphism, and Q(R) is flat as a left and a right as R-module.
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A ring homomorphism, ϕ : R → S, for which the canonical map S⊗RS →
S is an isomorphism and which induces the structure of a right (left) flat R-
module is called a right (left) flat epimorphism. The proved theorem means
that for a strongly semiprime ring, canonical embedding R → Q(R) is right
and left flat epimorphism. By a theorem of Popescu-Spircu, for each right
flat epimorphism ϕ : R → S, the set of right ideals

F = {UR ⊆ R | ϕ(U)S = S}

is a Gabriel filter and S is canonically isomorphic to the quotient ring QF(R).
It is well known that for any right flat epimorphism ϕ : R → S, M ⊗R S ∼=
QF(M), for eachM ∈ Mod − R, i.e. the localization, associated with a flat
epimorphism, is perfect.

Applying Popescu-Spircu Theorem to the embedding R → Q(R) for a
strongly semiprime ringR and the characterisation of Gabriel filters in Propo-
sition 1.5 and Theorem 1.6 we obtain the following:

Theorem 1.7. Let R be a strongly semiprime ring. Then Q(R)⊗R Q(R) ∼=
Q(R), Q(R) is flat as left and right R-module. Thes ets F and F ′ are
symmetric Gabriel filters, the corresponding localizations are perfect, and the
central closure Q(R) is canonically isomorphic to the guotient ring of R with
respect toF and F ′.

It is worth noting, that the following lemma implies one of the equivalent
conditions of the theorem Popescu-Spircu and from it we could regain all the
statements of the Theorem 1.7.

Lemma 1. Let R be a strongly semiprime ring. Then for every q ∈ Q(R)
there exist elements i1, ..., in ∈ R and ψ1, ..., ψn ∈ F , such that qik, ikq ∈ R,
and

∑
k ikψk = 1.

2 Strongly prime ideals

An ideal p ⊂ R is called strongly prime if the factor ring R/p is a strongly
prime ring. We can adapt the Theorem 1.1 for equivalent characterizations
of th estrongly prime ideal. From the (5) of this theorem we obtain the
following:
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Proposition 2.1. An ideal p ⊂ R is strongly prime if and only if for each
a /∈ p, there exist elements a1, ..., an ∈ (a), n = n(a), such that for each
λ ∈M(R) with λ1 /∈ p, at least one of elements λak /∈ p.

Clearly, maximal ideals are strongly prime. It is well known that in PI
rings each prime ideal is strongly prime. Of course, any strongly prime ideal
is prime by (3) of Theorem 1.1. Since not each prime ring has a simple cen-
tral closure, prime ideals are not necessarily strongly prime. Using standard
arguments we easily obtain from Theorem 1.3, that strongly prime ideals
are preserved under Morita equivalences. If ϕ : R → S is a centred homo-
morphism of rings, and q ⊂ S is a strongly prime ideal, we easily obtain
from(6) of Theorem 1.1 that p = ϕ−1q is a strongly prime ideal in R. The
intersection of all strongly prime ideals of the ring R we call a strongly prime
radical and denote it by sr(R). We give a characterisation of the strongly
prime radical of the ring. Let R[X1, ...Xn] be a polynomial ring over the ring
R with commuting or noncommuting indeterminates.

Theorem 2.2. a ∈ sr(R) if and only if for each n ∈ IN and arbitrary ele-
ments a1, ..., an ∈ (a), the ideal in R[X1, ..., Xn], generated by the polynomial
a1X1 + ...+ anXn − 1 contains 1.

Proof. If some polynomial a1X1 + ... + anXn − 1 generates a proper ideal
in R[X1, ..., Xn], we can take a maximal ideal M ⊂ R[X1, ..., Xn] containing
this polynomial. Evidently a /∈ M.So we have the centred homomorphims
ϕ : R → R[X1, ..., Xn]/M with ϕa ̸= 0 and ϕ−1M is a strongly prime ideal
in R not containing a. This implies a ̸∈ sr(R).Now assume a /∈ sr(R). Then
a /∈ p for some strongly prime ideal p ⊂ R and therefore (ā)ε = Q(R/p)
yielding an expression

ā1u1 + ...+ ānun = 1 in Q(R/p), with ā1, ..., ān ∈ (ā), u1, ..., un ∈ F (R/p).

So the polynomial a1X1 + ... + anXn − 1 is in the kernel of the homomor-
phismfrom R[X1, ..., Xn] to Q(R/p), which sends Xk to the uk, 1 ≤ k ≤ n.
Thus the ideal generated by this polynomial is proper.

This theorem is an analogue of the well known fact that an element a
ofthe commutative ring R is nilpotent if and only if the polynomial aX−1 is
invertible in R[X]. Since each maximal ideal is strongly prime, the strongly
prime radical of the ring is contained in the Brown-McCoy radical.
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Theorem 2.3. Strongly prime radical sr(R) of the nonzero ring contains the
Levitzki radical L(R).

Proof. We recall that the Levitzki radical is the largest locally nilpotent ideal
of the ring. If some element a ∈ L(R) is not in the strongly prime radical,
we would have an expression (∗) ā1u1 + ... + ānun = 1 inQ(R/p), with
a1, ..., an ∈ (a), u1, ..., un ∈ F (R/p), for some strongly prime ideal p ⊂ R.
Because set A = {a1, ..., an} is in L(R), there exists m ∈ IN such that
all products ak1 ...akm with akl ∈ A are zero. Then the m-th power of the
expression (∗) would give a contradiction.

It would be interesting to know if or under which conditions the upper
nilradical of the ring is contained in sr(R).

Recall that a non-empty subset A ⊆ R of a ring is an m-system if 1 ∈ A
and for each a, b ∈ A, arb ∈ A for some r ∈ R. Two main properties of them-
systems are well known: a complement of a prime ideal is an m-system, and
each ideal maximal with respect to being disjoint with A is prime. Now we
introduce the notion of a strongly multiplicative set of a ring and characterize
strongly prime ideals in terms of these sets. We call a subset S ⊆ R strongly
multiplicative, or sm-set, if 1 ∈ S and for any a ∈ S there exist elements
a1, ..., an ∈ (a), (n = n(a)), sucht hat for each λ ∈ M(R) with λ1 ∈ S, we
have λak ∈ S for some 1 ≤ k ≤ n.

Proposition 2.4. If p ⊂ R is a strongly prime ideal, its complement is a
strongly multiplicative set.

Indeed, this Proposition is just another form of Proposition2.1. Other

examples of sm-sets are related to any ideal I ⊂ R. The set S = {1+i, i ∈ I}
is an sm-set: for each a = 1+i, i ∈ I take n = 1, a1 = a. If λ1 = 1+j, j ∈ I,
then λa = 1 + j + λi ∈ S, showing that S is strongly multiplicative.

Theorem 2.5. Let S ⊂ R, 0 ̸∈ S be a strongly multiplicative set. Each ideal
p ⊂ R, maximal with respect to p ∩ S = ∅, is strongly prime.

Proof. Let x ̸∈ p. Then p+µ0x = a ∈ S, for some p ∈ p and µ0 ∈M(R). Let
ak = λka = λkp+ λkµ0x ∈ (a), 1 ≤ k ≤ n be elements corresponding to a in
definition of the sm-sets. Let λ1 ̸∈ p. Then q+ν0λ1 = (lq+ν0λ)1 = λ′1 ∈ S,
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where lq ∈ M(R) is the left multiplication by q. Then for some k, λ′ak ∈ S
thus not in p. So we have

λ′ak = (lq + ν0λ)(λkp+ λkµ0x) = qak + ν0λλkp+ ν0λλkµ0x ̸∈ p.

But qak and ν0λλkp are in p, so λλkµ0x ̸∈ p. Thus, for each x ̸∈ p, there
exist a finite set of elements xk = λkµ0x ∈ (x), such that for each λ ∈M(R)
with λ1 ̸∈ p, at least one of the elements λxk ̸∈ p. B yProposition 2.1, the
ideal p is strongly prime.

Let S ⊂ R be a strongly multiplicative set. Similarly to the commutative
case, we define the set S ′ = {u ∈ R | (u) ∩ S ̸= ∅} and call it the saturation
of S. If S ′ = S, we call S saturated. Denote by H the union of all strongly
prime ideals p ⊂ R disjoint with R. We have shown that H ̸= ∅ when 0 ̸∈ S.

Proposition 2.6. Let S be a strongly multiplicative set. Then S ′ is also
strongly multiplicative and S ′ = R \H - the complement to the union of all
strongly prime ideals disjoint with S.

The proof is analogous to the commutative case.

Corollary 2.7. For a commutative ring saturated strongly multiplicative sets
are the usual multiplicative sets.
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[8] Kaučikas, A., On centred and integral homomorphisms, Lith. Math.J.
37(3), 1997, 264-268.
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