Right Gaussian Rings and Skew Power Series Rings

Michał Ziembowski

Warsaw University of Technology

Lens June 15, 2011

Based on a joint work with R. Mazurek

マロト イヨト イヨト

Theorem 1 (J. Brewer, E. Rutter and J. Watkins, (1977))

For any commutative power series ring R[[x]] the following conditions are equivalent:

- (1) R[[x]] is Bézout
- (2) R[[x]] has weak dimension less or equal to one
- (3) R is \aleph_0 -injective von Neumann regular

・ロン ・四 と ・ 回 と ・ 日 と

3

Theorem 1 (J. Brewer, E. Rutter and J. Watkins, (1977))

For any commutative power series ring R[[x]] the following conditions are equivalent:

- (1) R[[x]] is Bézout
- (2) R[[x]] has weak dimension less or equal to one
- (3) R is ℵ₀-injective von Neumann regular

Theorem 2 (D. Herbera, (2003))

Let R be a strongly regular ring. The following conditions are equivalent:

- (1) R[[x]] is right Bézout.
- (2) *R*[[*x*]] *is Bézout.*
- (3) R[[x]] has weak dimension less or equal to one.
- (4) R is \aleph_0 -injective.

イロト イポト イヨト イヨト

3

Theorem 3 (A. Tuganbaev, (1990))

Let σ be an injective endomorphism of a ring R. Then the following conditions are equivalent:

- (1) $R[[x; \sigma]]$ is right Bézout and R is semicommutative.
- (2) $R[[x; \sigma]]$ is right Bézout and R is right quasi-duo.
- (3) $R[[x; \sigma]]$ is right distributive.
- (4) *R* is \aleph_0 -injective strongly regular, σ is bijective and $\sigma(e) = e$ for any idempotent $e = e^2 \in R$.

- 4 回 2 - 4 □ 2 - 4 □

Theorem 3 (A. Tuganbaev, (1990))

Let σ be an injective endomorphism of a ring R. Then the following conditions are equivalent:

- (1) $R[[x; \sigma]]$ is right Bézout and R is semicommutative.
- (2) $R[[x; \sigma]]$ is right Bézout and R is right quasi-duo.
- (3) $R[[x; \sigma]]$ is right distributive.
- (4) *R* is \aleph_0 -injective strongly regular, σ is bijective and $\sigma(e) = e$ for any idempotent $e = e^2 \in R$.

Theorem 4 (A. Tuganbaev, (1987))

Let R be an abelian ring and σ an automorphism of R such that $\sigma(e) = e$ for any idempotent $e = e^2 \in R$. Then the following conditions are equivalent:

- (1) $R[[x; \sigma]]$ has weak dimension less or equal to one.
- (2) All 2-generated right ideals of $R[[x; \sigma]]$ are flat.
- (3) R is \aleph_0 -injective strongly regular.

Theorem 5 (R. Mazurek, M.Z., (2009))

Let σ be an endomorphism of a ring R. Then the following conditions are equivalent:

- (1) $R[[x; \sigma]]$ is right distributive and σ is injective.
- (2) $R[[x; \sigma]]$ is right distributive and right duo.
- (3) $R[[x; \sigma]]$ is right Bézout and right quasi-duo.
- (4) $R[[x; \sigma]]$ is right Bézout and abelian, and σ is injective.
- (5) $R[[x; \sigma]]$ is right Bézout and semicommutative, and σ is injective.
- (6) All 2-generated right ideals of $R[[x; \sigma]]$ are flat, R is abelian, σ is bijective and $\sigma(e) = e$ for any $e = e^2 \in R$.
- (7) R[[x; σ]] has weak dimension less or equal to one and R[[x; σ]] is right duo.
- (8) *R* is \aleph_0 -injective strongly regular, σ is bijective and $\sigma(e) = e$ for any $e = e^2 \in R$.

<ロ> (日) (日) (日) (日) (日)

Э

For a commutative ring R and $f \in R[x]$, c(f) denotes the ideal of R generated by coefficients of f. R is called Gaussian ring if c(fg) = c(f)c(g) for all $f, g \in R[x]$.

Theorem 6 (D.D. Anderson, V. Camillo, (1998))

For a commutative ring R, the following conditions are equivaent:

- (1) R[[x]] is Gaussian
- (2) R[[x]] is distributive
- (3) R[[x]] has weak dimension less or equal to one
- (4) R[[x]] is Bézout
- (5) R is \aleph_0 -injective von Neumann regular

- 4 同下 4 日下 4 日下

For a ring R and a polynomial $f \in R[x]$, let $c_r(f)$ denote the right ideal of R generated by the coefficients of f. Obviously, for any $f, g \in R[x]$ we have $c_r(fg) \subseteq c_r(f)c_r(g)$.

Definition 7

A ring R is right Gaussian if $c_r(fg) = c_r(f)c_r(g)$ for any $f, g \in R[x]$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

・ 同 ト ・ ヨ ト ・ ヨ ト

Facts about the right Gaussian rings

・ロト ・ 同ト ・ ヨト ・ ヨト

Facts about the right Gaussian rings

• If a ring R is right Gaussian, then R is right duo.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Facts about the right Gaussian rings

- If a ring R is right Gaussian, then R is right duo.
- If a ring R is right Gaussian, then so is any homomorphic image of R

- 4 回 ト 4 ヨ ト 4 ヨ ト

Facts about the right Gaussian rings

- If a ring R is right Gaussian, then R is right duo.
- If a ring R is right Gaussian, then so is any homomorphic image of R
- A direct product ring ∏_{i∈I} R_i is right Gaussian if and only if each component ring R_i is.

・ロト ・回ト ・ヨト

Facts about the right Gaussian rings

- If a ring R is right Gaussian, then R is right duo.
- If a ring R is right Gaussian, then so is any homomorphic image of R
- A direct product ring ∏_{i∈I} R_i is right Gaussian if and only if each component ring R_i is.
- A ring R is right Gaussian if and only if R is right duo and every homomorphic image of R is Armendariz.

イロト イポト イヨト イヨト

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

A ring R is Gaussian if and only if R_M is Gaussian for each maximal ideal M of R

・ロン ・回 と ・ ヨン ・ ヨン

A ring R is Gaussian if and only if R_M is Gaussian for each maximal ideal M of R

What about noncommutative case?

イロト イポト イヨト イヨト

A ring R is Gaussian if and only if R_M is Gaussian for each maximal ideal M of R

What about noncommutative case?

Theorem 8

Let R be a right Gaussian ring, P an ideal of R such that $S = R \setminus P$ is a right denominator set in R, and R_S a right ring of quotients with respect to S. Then the following conditions are equivalent:

- (1) R_S is right Gaussian.
- (2) R_S is right duo.

(3) For any $a \in R$ we have $Sa \subseteq aS$ or as = 0 for some $s \in S$.

- 4 回 ト 4 ヨ ト 4 ヨ ト

Theorem 5 (R. Mazurek, M.Z., (2009))

Let σ be an endomorphism of a ring R. Then the following conditions are equivalent:

- (1) $R[[x; \sigma]]$ is right distributive and σ is injective.
- (2) $R[[x; \sigma]]$ is right distributive and right duo.
- (3) $R[[x; \sigma]]$ is right Bézout and right quasi-duo.
- (4) $R[[x; \sigma]]$ is right Bézout and abelian, and σ is injective.
- (5) $R[[x; \sigma]]$ is right Bézout and semicommutative, and σ is injective.
- (6) All 2-generated right ideals of $R[[x; \sigma]]$ are flat, R is abelian, σ is bijective and $\sigma(e) = e$ for any $e = e^2 \in R$.
- (7) R[[x; σ]] has weak dimension less or equal to one and R[[x; σ]] is right duo.
- (8) *R* is \aleph_0 -injective strongly regular, σ is bijective and $\sigma(e) = e$ for any $e = e^2 \in R$.

<ロ> (日) (日) (日) (日) (日)

Э

Using totally different arguments than in commutative case we can prove the following:

Theorem 9 (R. Mazurek, M.Z., (2011))

Let σ be an endomorphism of a ring R. Then the following conditions are equivalent:

- (1) $R[[x; \sigma]]$ is right Gaussian.
- (2) $R[[x; \sigma]]$ is right distributive and σ is injective.
- (3) *R* is \aleph_0 -injective strongly regular, and σ is bijective and $\sigma(e) = e$ for any idempotent $e = e^2 \in R$.

・ 同 ト ・ ヨ ト ・ ヨ ト

• Let R be a commutative ring, and denote by Q(R), the total ring of quotients of R. An ideal I of R, is invertible if $I \cdot I^{-1} = R$, where $I^{-1} = \{r \in Q(R) : rI \subseteq R\}$.

・ロン ・回 と ・ ヨ と ・ ヨ と

3

- Let R be a commutative ring, and denote by Q(R), the total ring of quotients of R. An ideal I of R, is invertible if $I \cdot I^{-1} = R$, where $I^{-1} = \{r \in Q(R) : rI \subseteq R\}$.
- Recall that a commutative ring *R* is a Prüfer ring (if *R* is domain, then *R* is called Prüfer domain) if every finitely generated regular ideal of *R* is invertible.

- Let R be a commutative ring, and denote by Q(R), the total ring of quotients of R. An ideal I of R, is invertible if $I \cdot I^{-1} = R$, where $I^{-1} = \{r \in Q(R) : rI \subseteq R\}$.
- Recall that a commutative ring *R* is a Prüfer ring (if *R* is domain, then *R* is called Prüfer domain) if every finitely generated regular ideal of R is invertible.
- For a commutative domain R we have

R is semihereditary \Leftrightarrow

 \Leftrightarrow *R* has weak dimension less or equal to one \Leftrightarrow

 $\Leftrightarrow R \text{ is distributive } \Leftrightarrow R \text{ is Gaussian } \Leftrightarrow R \text{ is Prüfer}$

- 4 回 ト 4 日 ト 4 日 ト

• For a commutative ring R we have

R is semihereditary \Rightarrow

 \Rightarrow *R* has weak dimension less or equal to one \Rightarrow

 \Rightarrow R is distributive \Rightarrow R is Gaussian \Rightarrow R is Prüfer

- 4 回 ト 4 ヨ ト 4 ヨ ト

• For a commutative ring R we have

R is semihereditary \Rightarrow

 \Rightarrow *R* has weak dimension less or equal to one \Rightarrow

 \Rightarrow *R* is distributive \Rightarrow *R* is Gaussian \Rightarrow *R* is Prüfer

• Is it true that if *R* is right distributive ring, then *R* is right Gaussian?

(4月) イヨト イヨト

• For a commutative ring R we have

R is semihereditary \Rightarrow

 \Rightarrow *R* has weak dimension less or equal to one \Rightarrow

 \Rightarrow *R* is distributive \Rightarrow *R* is Gaussian \Rightarrow *R* is Prüfer

• Is it true that if *R* is right distributive ring, then *R* is right Gaussian?

Answer: NO!

(4月) イヨト イヨト

Theorem 10 (R.Mazurek, M.Z. (2011))

If R is a right duo right distributive ring, then R is right Gaussian.

・ロト ・回ト ・ヨト ・ヨト

(4回) (日) (日)

We say that (S, ≤) is an ordered monoid if for any s, t, v ∈ S, s ≤ t implies sv ≤ tv and vs ≤ vt.

(1日) (1日) (1日)

- We say that (S, ≤) is an ordered monoid if for any s, t, v ∈ S, s ≤ t implies sv ≤ tv and vs ≤ vt.
- If for any $s, t, v \in S$, s < t implies sv < tv and vs < vt, then (S, \leq) is said to be a strictly ordered monoid.

- We say that (S,≤) is an ordered monoid if for any s, t, v ∈ S, s ≤ t implies sv ≤ tv and vs ≤ vt.
- If for any $s, t, v \in S$, s < t implies sv < tv and vs < vt, then (S, \leq) is said to be a strictly ordered monoid.
- A subset *T* ⊆ *S* is *artinian* if every strictly decreasing sequence of elements of S is finite.

イロト イポト イヨト イヨト

- We say that (S,≤) is an ordered monoid if for any s, t, v ∈ S, s ≤ t implies sv ≤ tv and vs ≤ vt.
- If for any $s, t, v \in S$, s < t implies sv < tv and vs < vt, then (S, \leq) is said to be a strictly ordered monoid.
- A subset *T* ⊆ *S* is *artinian* if every strictly decreasing sequence of elements of S is finite.
- A subset T ⊆ S is narrow if every subset of pairwise order-incomparable elements of S is finite.

イロト イポト イヨト イヨト

- We say that (S,≤) is an ordered monoid if for any s, t, v ∈ S, s ≤ t implies sv ≤ tv and vs ≤ vt.
- If for any $s, t, v \in S$, s < t implies sv < tv and vs < vt, then (S, \leq) is said to be a strictly ordered monoid.
- A subset *T* ⊆ *S* is *artinian* if every strictly decreasing sequence of elements of S is finite.
- A subset T ⊆ S is narrow if every subset of pairwise order-incomparable elements of S is finite.

Thus a subset $T \subseteq S$ is artinian and narrow if and only if every nonempty subset of S has at least one but only a finite number of minimal elements.

イロト イポト イヨト イヨト 二日

For given a ring R and a strictly ordered monoid (S, \leq) , consider the set A of all formal series $f = \sum_{s \in S} a_s s$, where $s \in S$ and $a_s \in R$, whose support $supp(f) = \{s \in S : a_s \neq 0\}$ is artinian and narrow.

If $f,g \in A$ and $s \in S$, it turns out that the set

$$X_{s}(f,g) = \{(x,y) \in supp(f) imes supp(g) : s = xy\}$$

is finite and the set $T = \{xy : x \in supp(f), y \in supp(g)\}$ is artinian and narrow. Thus one can define the product fg of $f = \sum_{s \in S} a_s s, g = \sum_{t \in S} b_t t \in A$ as follows:

$$fg = \sum_{v \in S} (\sum_{s,t \in S, st = v} a_s b_t) v$$

(by convention, a sum over the empty set is 0).

向下 イヨト イヨト

回 と く ヨ と く ヨ と

The construction of generalized power series rings generalizes some classical ring constructions such as:

(4 回 2 4 回 2 4 回 2 4

The construction of generalized power series rings generalizes some classical ring constructions such as:

• polynomial rings - $S = \mathbb{N} \cup \{0\}$ with usual addition, and trivial \leq

- 4 同 ト 4 日 ト - 4 日 ト

The construction of generalized power series rings generalizes some classical ring constructions such as:

- polynomial rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and trivial \leq
- ullet monoid rings a monoid S with trivial \leq

・ 同 ト ・ ヨ ト ・ ヨ ト

The construction of generalized power series rings generalizes some classical ring constructions such as:

- polynomial rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and trivial \leq
- ullet monoid rings a monoid S with trivial \leq
- Laurent polynomial rings $S=\mathbb{Z}$ with usual addition and trivial \leq

イロト イポト イヨト イヨト 二日

The construction of generalized power series rings generalizes some classical ring constructions such as:

- polynomial rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and trivial \leq
- ullet monoid rings a monoid S with trivial \leq
- Laurent polynomial rings $S=\mathbb{Z}$ with usual addition and trivial \leq
- power series rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and usual \leq

(日)(同)(日)(日)(日)(日)

The construction of generalized power series rings generalizes some classical ring constructions such as:

- polynomial rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and trivial \leq
- ullet monoid rings a monoid S with trivial \leq
- Laurent polynomial rings $S=\mathbb{Z}$ with usual addition and trivial \leq
- power series rings $S=\mathbb{N}\cup\{0\}$ with usual addition, and usual \leq
- ullet Laurent series rings $S=\mathbb{Z}$ with usual addition and usual \leq

イロト イポト イヨト イヨト 二日

The construction of generalized power series rings generalizes some classical ring constructions such as:

- polynomial rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and trivial \leq
- ullet monoid rings a monoid S with trivial \leq
- Laurent polynomial rings $S=\mathbb{Z}$ with usual addition and trivial \leq
- power series rings $S = \mathbb{N} \cup \{0\}$ with usual addition, and usual \leq
- ullet Laurent series rings $S=\mathbb{Z}$ with usual addition and usual \leq
- the Malcev Neumann construction (S, \leq) a totally ordered group

イロト イポト イヨト イヨト 二日

Theorem 11

Let R be a ring, and (S, \leq) a nontrivial positively strictly ordered monoid. Then the following conditions are equivalent:

- (1) R[[S]] is a right Gaussian ring and S is right chain monoid.
- (2) *R*[[*S*]] is right duo right distributive.
- (3) Either
 - (a) S is cyclic and R is \aleph_0 -injective strongly regular
 - or

(b) S is not cyclic, S is a right chain monoid and R is a finite direct product of division rings.

- 4 同下 4 日下 4 日下

THANK YOU FOR YOUR ATTENTION.

・ロン ・回 と ・ ヨン ・ ヨン

3