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Theorem 1 (J. Brewer, E. Rutter and J. Watkins, (1977))

For any commutative power series ring R[[x ]] the following
conditions are equivalent:

(1) R[[x ]] is Bézout

(2) R[[x ]] has weak dimension less or equal to one

(3) R is ℵ0-injective von Neumann regular

Theorem 2 (D. Herbera, (2003))

Let R be a strongly regular ring. The following conditions are
equivalent:

(1) R[[x ]] is right Bézout.

(2) R[[x ]] is Bézout.

(3) R[[x ]] has weak dimension less or equal to one.

(4) R is ℵ0-injective.
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Theorem 3 (A. Tuganbaev, (1990))

Let σ be an injective endomorphism of a ring R. Then the
following conditions are equivalent:

(1) R[[x ;σ]] is right Bézout and R is semicommutative.

(2) R[[x ;σ]] is right Bézout and R is right quasi-duo.

(3) R[[x ;σ]] is right distributive.

(4) R is ℵ0-injective strongly regular, σ is bijective and σ(e) = e
for any idempotent e = e2 ∈ R.

Theorem 4 (A. Tuganbaev, (1987))

Let R be an abelian ring and σ an automorphism of R such that
σ(e) = e for any idempotent e = e2 ∈ R. Then the following
conditions are equivalent:

(1) R[[x ;σ]] has weak dimension less or equal to one.

(2) All 2-generated right ideals of R[[x ;σ]] are flat.

(3) R is ℵ0-injective strongly regular.
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Theorem 5 (R. Mazurek, M.Z., (2009))

Let σ be an endomorphism of a ring R. Then the following
conditions are equivalent:

(1) R[[x ;σ]] is right distributive and σ is injective.

(2) R[[x ;σ]] is right distributive and right duo.

(3) R[[x ;σ]] is right Bézout and right quasi-duo.

(4) R[[x ;σ]] is right Bézout and abelian, and σ is injective.

(5) R[[x ;σ]] is right Bézout and semicommutative, and σ is
injective.

(6) All 2-generated right ideals of R[[x ;σ]] are flat, R is abelian,
σ is bijective and σ(e) = e for any e = e2 ∈ R.

(7) R[[x ;σ]] has weak dimension less or equal to one and R[[x ;σ]]
is right duo.

(8) R is ℵ0-injective strongly regular, σ is bijective and σ(e) = e
for any e = e2 ∈ R.
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For a commutative ring R and f ∈ R[x ], c(f ) denotes the ideal of
R generated by coefficients of f . R is called Gaussian ring if
c(fg) = c(f )c(g) for all f , g ∈ R[x ].

Theorem 6 (D.D. Anderson, V. Camillo, (1998))

For a commutative ring R, the following conditions are equivaent:

(1) R[[x ]] is Gaussian

(2) R[[x ]] is distributive

(3) R[[x ]] has weak dimension less or equal to one

(4) R[[x ]] is Bézout

(5) R is ℵ0-injective von Neumann regular
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For a ring R and a polynomial f ∈ R[x ], let cr (f ) denote the right
ideal of R generated by the coefficients of f . Obviously, for any
f , g ∈ R[x ] we have cr (fg) ⊆ cr (f )cr (g).

Definition 7

A ring R is right Gaussian if cr (fg) = cr (f )cr (g) for any
f , g ∈ R[x ].
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Recall that a ring R is an Armendariz ring if whenever the product
of two polynomials over R is zero, then the products of their
coefficients are all zero, that is, for any
f =

∑m
i=0 aix

i , g =
∑n

j=0 bjx
j ∈ R[x ], if fg = 0, then aibj = 0 for

all i , j .

Facts about the right Gaussian rings

If a ring R is right Gaussian, then R is right duo.

If a ring R is right Gaussian, then so is any homomorphic
image of R

A direct product ring
∏

i∈I Ri is right Gaussian if and only if
each component ring Ri is.

A ring R is right Gaussian if and only if R is right duo and
every homomorphic image of R is Armendariz.
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The main tool for commutative rings:

A ring R is Gaussian if and only if RM is Gaussian for each
maximal ideal M of R

What about noncommutative case?

Theorem 8

Let R be a right Gaussian ring, P an ideal of R such that
S = R \ P is a right denominator set in R, and RS a right ring of
quotients with respect to S. Then the following conditions are
equivalent:

(1) RS is right Gaussian.

(2) RS is right duo.

(3) For any a ∈ R we have Sa ⊆ aS or as = 0 for some s ∈ S.
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Theorem 5 (R. Mazurek, M.Z., (2009))

Let σ be an endomorphism of a ring R. Then the following
conditions are equivalent:

(1) R[[x ;σ]] is right distributive and σ is injective.

(2) R[[x ;σ]] is right distributive and right duo.

(3) R[[x ;σ]] is right Bézout and right quasi-duo.

(4) R[[x ;σ]] is right Bézout and abelian, and σ is injective.

(5) R[[x ;σ]] is right Bézout and semicommutative, and σ is
injective.

(6) All 2-generated right ideals of R[[x ;σ]] are flat, R is abelian,
σ is bijective and σ(e) = e for any e = e2 ∈ R.

(7) R[[x ;σ]] has weak dimension less or equal to one and R[[x ;σ]]
is right duo.

(8) R is ℵ0-injective strongly regular, σ is bijective and σ(e) = e
for any e = e2 ∈ R.
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Using totally different arguments than in commutative case we can
prove the following:

Theorem 9 (R. Mazurek, M.Z., (2011))

Let σ be an endomorphism of a ring R. Then the following
conditions are equivalent:

(1) R[[x ;σ]] is right Gaussian.

(2) R[[x ;σ]] is right distributive and σ is injective.

(3) R is ℵ0-injective strongly regular, and σ is bijective and
σ(e) = e for any idempotent e = e2 ∈ R.
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Let R be a commutative ring, and denote by Q(R), the total
ring of quotients of R. An ideal I of R, is invertible if
I · I−1 = R, where I−1 = {r ∈ Q(R) : rI ⊆ R}.

Recall that a commutative ring R is a Prüfer ring (if R is
domain, then R is called Prüfer domain) if every finitely
generated regular ideal of R is invertible.

For a commutative domain R we have

R is semihereditary ⇔

⇔ R has weak dimension less or equal to one ⇔

⇔ R is distributive ⇔ R is Gaussian ⇔ R is Prüfer
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For a commutative ring R we have

R is semihereditary ⇒

⇒ R has weak dimension less or equal to one ⇒

⇒ R is distributive ⇒ R is Gaussian ⇒ R is Prüfer

Is it true that if R is right distributive ring, then R is right
Gaussian?

Answer: NO!
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Theorem 10 (R.Mazurek, M.Z. (2011))

If R is a right duo right distributive ring, then R is right Gaussian.
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Let S be a monoid (i.e. a semigroup with identity which is not
necessarily commutative), with an operation written
multiplicatively, and let ≤ be an order relation on the set S.

We say that (S ,≤) is an ordered monoid if for any
s, t, v ∈ S , s ≤ t implies sv ≤ tv and vs ≤ vt.

If for any s, t, v ∈ S , s < t implies sv < tv and vs < vt, then
(S ,≤) is said to be a strictly ordered monoid.

A subset T ⊆ S is artinian if every strictly decreasing
sequence of elements of S is finite.

A subset T ⊆ S is narrow if every subset of pairwise
order-incomparable elements of S is finite.

Thus a subset T ⊆ S is artinian and narrow if and only if every
nonempty subset of S has at least one but only a finite number of
minimal elements.
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For given a ring R and a strictly ordered monoid (S ,≤), consider
the set A of all formal series f =

∑
s∈S ass, where s ∈ S and

as ∈ R, whose support supp(f ) = {s ∈ S : as 6= 0} is artinian and
narrow.
If f , g ∈ A and s ∈ S , it turns out that the set

Xs(f , g) = {(x , y) ∈ supp(f )× supp(g) : s = xy}

is finite and the set T = {xy : x ∈ supp(f ), y ∈ supp(g)} is
artinian and narrow. Thus one can define the product fg of
f =

∑
s∈S ass, g =

∑
t∈S btt ∈ A as follows:

fg =
∑
v∈S

(
∑

s,t∈S ,st=v

asbt)v

(by convention, a sum over the empty set is 0).

M.Z. Right Gaussian Rings and Skew Power Series Rings



With pointwise addition and multiplication as defined above, A
becomes a ring, called the ring of generalized power series with
coeficients in R and exponents in S , and is denoted by R[[S ]].

The construction of generalized power series rings generalizes some
classical ring constructions such as:

polynomial rings - S = N∪ {0} with usual addition, and trivial
≤
monoid rings - a monoid S with trivial ≤
Laurent polynomial rings - S = Z with usual addition and
trivial ≤
power series rings - S = N ∪ {0} with usual addition, and
usual ≤
Laurent series rings - S = Z with usual addition and usual ≤
the Malcev - Neumann construction - (S ,≤) a totally ordered
group
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≤
monoid rings - a monoid S with trivial ≤
Laurent polynomial rings - S = Z with usual addition and
trivial ≤
power series rings - S = N ∪ {0} with usual addition, and
usual ≤
Laurent series rings - S = Z with usual addition and usual ≤
the Malcev - Neumann construction - (S ,≤) a totally ordered
group
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Theorem 11

Let R be a ring, and (S ,≤) a nontrivial positively strictly ordered
monoid. Then the following conditions are equivalent:

(1) R[[S ]] is a right Gaussian ring and S is right chain monoid.

(2) R[[S ]] is right duo right distributive.

(3) Either
(a) S is cyclic and R is ℵ0-injective strongly regular
or
(b) S is not cyclic, S is a right chain monoid and R is a finite
direct product of division rings.
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