Euclidean pairs, Quasi Euclidean rings and Continuant Polynomials

Groups, Rings and Group Rings, 2014
On the occasion of Prof. Polcino Milies’s 70th birthday
Ubatuba 2014

Joint works with A. Alahmadi, S.K. Jain, T.Y.Lam and A. Facchini
In all the talk R will stand for a unital associative ring.

1 The Euclidean pair (a, b) and its associated continuant polynomials.

Definitions 1.1. (a) An ordered pair $(a, b) \in R^2$ is a right Euclidean pair if there exist elements $(q_1, r_1), \ldots, (q_{n+1}, r_{n+1}) \in R^2$ (for some $n \geq 0$) such that $a = bq_1 + r_1$, $b = r_1q_2 + r_2$, and

\[r_{i-1} = r_i q_{i+1} + r_{i+1} \quad \text{for } 1 < i \leq n, \quad \text{with } r_{n+1} = 0. \]

The notion of a left Euclidean pair is defined similarly.

(b) A ring R is right quasi Euclidean if every pair $(a, b) \in R^2$ is right Euclidean.

(c) Let $T = \{t_1, t_2, \ldots \}$ be a countable set of noncommuting variables, and let $\mathbb{Z}\langle T \rangle$ be the free \mathbb{Z}-algebra generated by T. We define the n-th right continuant polynomials

\[p_n(t_1, \ldots, t_n) \in \mathbb{Z}\langle t_1, \ldots, t_n \rangle \subseteq \mathbb{Z}\langle T \rangle \]

by $p_0 = 1$, $p_1(t_1) = t_1$, and inductively for $i \geq 2$ by

\[p_i(t_1, \ldots, t_i) = p_{i-1}(t_1, \ldots, t_{i-1}) t_i + p_{i-2}(t_1, \ldots, t_{i-2}). \]

Thus, $p_2(t_1, t_2) = t_1t_2 + 1$, $p_3(t_1, t_2, t_3) = t_1t_2t_3 + t_3 + t_1$, etc.

Notation: $P(q) = \begin{pmatrix} q & 1 \\ 1 & 0 \end{pmatrix}$

Are there connections between these three notions?

Let us consider an easy example:

$(a, b) = (22, 8) \in \mathbb{Z}^2$ we write

$22 = 8 \times 2 + 6$

$8 = 6 \times 1 + 2$

$6 = 2 \times 3$

we then have:

$(22, 8) = (8, 6) \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}$
\[(22, 8) = (6, 2) \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}
\]
\[(22, 8) = (2, 0) \begin{pmatrix} 3 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix}
\]

In general for a Euclidean pair \((a, b)\) \(a = bq_1 + r_1, \ b = r_1 q_2 + r_2,\) and

\((*\) \(r_{i-1} = r_i q_{i+1} + r_{i+1}\) for \(1 < i \leq n,\) with \(r_{n+1} = 0.\)

We will get that

\[(a, b) = (r_n, 0)P(q_{n+1})P(q_n)\cdots P(q_1)
\]

Now, looking at the product \(P(t_1)P(t_2)\cdots P(t_n)\) we have

\[P(t_1)P(t_2) = \begin{pmatrix} t_1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} t_2 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} t_1 t_2 + 1 & t_1 \\ t_2 & 1 \end{pmatrix}
\]

and

\[P(t_1)P(t_2)P(t_3) = \begin{pmatrix} t_1 t_2 + 1 & t_1 \\ t_2 & 1 \end{pmatrix} \begin{pmatrix} t_3 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} t_1 t_2 t_3 + t_1 + t_3 & t_1 t_2 + 1 \\ t_2 t_3 + 1 & t_2 \end{pmatrix}
\]

In general:

\[P(t_1)P(t_2)\cdots P(t_n) = \begin{pmatrix} p_n(t_1, \ldots, t_n) & p_{n-1}(t_1, \ldots, t_{n-1}) \\ p_{n-2}(t_2, \ldots, t_n) & p_{n-2}(t_2, \ldots, t_{n-1}) \end{pmatrix}
\]

Examples 1.2.

1. \((bq, b), (a, 0)\) are Euclidean pairs for any \(a, b, q \in R.\)

2. If \((a, b)\) is a Euclidean pair and \(c \in R\) then \((b, a), (ca, cb), (ac+b, a), (bc + a, b)\) are Euclidean pairs.

3. If \(a, b \in R\) are such that \(a + bq\) is right-invertible for some \(q,\) then \((a, b)\) is a Euclidean pair. Hence if \(R\) is of stable range one, then every pair \((a, b)\) with \(aR + bR = R\) is Euclidean.

4. If \(e = e^2\) is such that \(eRe = Re\) (\(e\) is said to be left semi central) then for any \(b \in R, (e, b)\) is a Euclidean pair.
Definition 1.3. A ring R is a right K-Hermite ring if for any $(a, b) \in R^2$ there exists an invertible 2×2 matrix $P \in GL_2(R)$ and an element $d \in R$ such that $(a, b)P = (d, 0)$.

Theorem 1.4. Let a, b be elements in a ring R. The following are equivalent:

1. (a, b) is a Euclidean pair.

2. For some $n \geq 0$ there exist $q_1, \ldots, q_{n+1} \in R$ and $r_n \in R$ such that

 $$(a, b) = (r_n, 0)P(q_{n+1}) \cdots P(q_1).$$

 In particular, every right quasi-Euclidean ring is right K-Hermite.

3. For some $n \geq 0$ there exist $q_1, \ldots, q_{n+1} \in R$ and $r_n \in R$ such that $a = r_n p_{n+1} (q_{n+1}, \ldots, q_1)$ and $b = r_n p_n (q_{n+1}, \ldots, q_2)$.

 Now, let $(a, b) \in R^2$ be a Euclidean pair. Then

 a) $aR + bR = r_n R$ where r_n is the last nonzero remainder of the Euclidean algorithm.

 b) If r_n is either central or not a left zero-divisor in R, then $aR \cap bR$ is also principal.

 c) $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ is a product of $n + 2$ idempotents in $M_2(R)$.

Proof. Sketch of partial proof of (c) above (n=1):

Want to show that if

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} r & 0 \\ 0 & 0 \end{pmatrix} P(q_2)P(q_1)$$

then the matrix $\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix}$ is a product of idempotents.

Write successively

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & r \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ q_2 & 1 \end{pmatrix} P(q_1)$$

Notice that the second matrix of the RHS is an idempotent. Conjugating with the last matrix $P(q_1)$ we get

$$\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & r \\ 0 & 0 \end{pmatrix} P(q_1)P(q_1)^{-1} \begin{pmatrix} 0 & 0 \\ q_2 & 1 \end{pmatrix} P(q_1)$$
and so,
\[
\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} P(q_1)^{-1} \begin{pmatrix} 0 & 0 \\ q_2 & 1 \end{pmatrix} P(q_1)
\]

More generally
\[
a = bq_1 + r_1, \ b = r_1q_2 + r_2, \ r_1 = r_2q_3 + r_3, \ldots, r_{n-1} = r_nq_{n+1}.
\]

Let us define:
\[
Q_i = \begin{pmatrix} q_i & 1 \\ 1 & 0 \end{pmatrix}, \ E_i = \begin{pmatrix} 0 & 0 \\ q_i + 1 & 1 \end{pmatrix}, \ P_i = Q_iQ_{i-1} \cdots Q_1
\]

We then have:
\[
\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & r_n \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} E_1 E_2 P_1 E_3 P_2 \cdots E_{n+1} P_n
\]

\[\square\]

Examples 1.5. (1) Let \((a, b) = (14, 8)\) over \(R = \mathbb{Z}\), for which \(n = 2\), \(q_1 = q_2 = 1\), \(q_3 = 3\), and \(r_2 = \gcd(14, 8) = 2\). Applying (c) above we get the following factorization of \(A\) into \(n + 2 = 4\) idempotents:

\[
A = \begin{pmatrix} 14 & 8 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} \begin{pmatrix} 4 & 3 \\ -4 & -3 \end{pmatrix} \begin{pmatrix} -7 & -4 \\ 14 & 8 \end{pmatrix} \in \mathbb{M}_2(\mathbb{Z}).
\]

Not unique: here is a shorter factorization:

\[
\begin{pmatrix} 14 & 8 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} -7 & -4 \\ 14 & 8 \end{pmatrix} \in \mathbb{M}_2(\mathbb{Z}),
\]

and it can be shown that this is in fact “a shortest” factorization for \(A\).

(2) Statement (c) is only a necessary but not a sufficient condition for \((a, b)\) to be a Euclidean pair. To see this, let \(\theta = \sqrt{-5}\) and \(R = \mathbb{Z}[\theta]\). The ideal \(-2R + (\theta + 1) R\) is not principal.

The matrix \(E = \begin{pmatrix} -2 & \theta + 1 \\ \theta - 1 & 3 \end{pmatrix}\) over \(R\) has trace 1 and determinant 0, so \(E^2 = E\).
Thus, \(A := \begin{pmatrix} -2 & \theta + 1 \\ 0 & 0 \end{pmatrix} = \text{diag}(1,0) E \). However, the ideal \(-2R + (\theta + 1) R\) is not a principal ideal. In particular, \((-2, \theta + 1)\) is not a Euclidean pair over \(R \), according to Theorem 1.4 (3),(a).

(3) If the pair \((a, b)\) is left Euclidean instead, a similar decomposition into products of idempotents holds for the matrix \(\begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \).

2 Euclidean pairs and Euclidean rings

Definitions 2.1.
1. \(R \) is of stable range one if \(aR + bR = R \) implies that there exists \(x \in R \) such that \(a + bx \) is invertible in \(R \).
2. \(R \) is a right Bézout ring if finitely generated ideals are principal.
3. \(R \) is projective free if projective finitely generated right \(R \)-modules are free.
4. \(R \) is a \(GE_2 \)-ring if \(GL_2(R) \) is generated by elementary matrices and invertible diagonal matrices.

Theorem 2.2. Let \(R \) be a ring of stable range 1. Then \((a, b) \in R^2\) is a Euclidean pair if and only if the right ideal \(aR + bR \) is principal.

In particular:
1. If \(R \) is a right Bézout ring with stable range 1 (e.g. \(R \) can be any semilocal right Bézout ring), then \(R \) is right quasi-Euclidean.
2. If \(R \) is a unit-regular ring, then all matrix rings \(M_n(R) \) are right (and left) quasi-Euclidean.

Proof. Proof of the first statement:

The “only if” part is Theorem above (a).

For the “if” part, assume that \(aR + bR = dR \) for some \(d \in R \), and write \(a = da_0, \ b = db_0, \) and \(d = ax + by \). Letting \(c = 1 - a_0x - b_0y \), we have \(dc = d - ax - by = 0 \), and \(a_0x + (b_0y + c) = 1 \). Since \(R \) has stable range 1, there exists \(t \in R \) such that \(u := a_0 + (b_0y + c) t \) is a unit. Left-multiplication by \(d \) then yields \(du = a + byt + dct = a + byt \).

We have now \(a = b(-yt) + du \) and \(b = (du)(u^{-1}b_0) \), so \((a, b)\) is a Euclidean pair. \(\Box \)
Theorem 2.3. For any ring R, the following statements are equivalent:

(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K-Hermite.
(C) R is a GE$_2$-ring that is right K-Hermite.
(D) For any $a, b \in R$, $(a, b) = (r, 0)Q$ for some $r \in R$ and $Q \in GE_2(R)$.
(E) For any $a, b \in R$, $(a, b) = (r, 0)Q$ for some $r \in R$ and $Q \in E_2(R)$.

If R is a domain there is another characterization. Recall that R is a projective-free if every finitely generated projective module is free.

Theorem 2.4. A domain R is right quasi-Euclidean if and only if R is a projective-free GE$_2$-ring such that every matrix \(\begin{pmatrix} a & b \\ 0 & 0 \end{pmatrix} \) is a product of idempotents in $M_2(R)$.

As an application of Theorem 2.3 we obtain the following results:

Theorem 2.5. 1. If R is a right quasi-Euclidean ring, so is $S = M_k(R)$ for every $k \geq 1$.

2. For any ideal $I \subseteq \text{rad } (R)$, R is right quasi-Euclidean if and only if R is right Bézout and R/I is right quasi-Euclidean.

3. If R is a right Euclidean ring and S is a right denominator set then RS^{-1} is right Euclidean.

3 Left-Right Symmetry and Dedekind-Finiteness

Example 3.1. k a field and $a \in k \setminus \sigma(k)$ a non-surjective endomorphism of k. R stands for $R = k[x; \sigma]$.

* $R = k[x; \sigma]$ is a left Euclidean domain with respect to the usual degree function; in particular, R is a left quasi-Euclidean domain.

* One can check that $axR \cap xR = 0$, and that the right ideal direct sum $axR + xR$ is non-principal.
* R is not right Bézout hence not a right quasi-Euclidean domain.
* (ax, x) is a left Euclidean pair but it is not a right Euclidean pair.
* R is a left PID hence it is a projective-free ring; Thus, by a previous lemma, the fact that $axR + xR$ is non-principal implies that the matrix $A = \begin{pmatrix} ax & x \\ 0 & 0 \end{pmatrix}$ is not a product of idempotent matrices over R.
* for any two elements a, x in any ring, the “other” pair (xa, x) is obviously always a right Euclidean pair and indeed the matrix $B = \begin{pmatrix} xa & x \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 1 & x \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 0 \\ a & 1 \end{pmatrix}$ is a product of idempotent matrices.

but under some circumstances there is a symmetry:

Theorem 3.2. (A) A left quasi-Euclidean ring R is right quasi-Euclidean if and only if it is right Bézout. In particular, a regular ring is left quasi-Euclidean if and only if it is right quasi-Euclidean.

(B) A left quasi-Euclidean domain R is right quasi-Euclidean if and only if it is a right Ore domain.

A right Euclidean is not necessarily Dedekind finite ($ab = 1 \Rightarrow ba \neq 1$).

Example 3.3. (due to Bergman)

Let $A = k[[x]]$ over a field k, and let $K = k((x))$ be the Laurent series field, which is the quotient field of A.

(A) $R = \{ f \in \text{End}_k(A) : \exists f_0 \in K$ such that $(f - f_0)(x^nA) = 0$ for some $n \geq 1 \}$. R is von Neuman regular but not Dedekind finite.

Steps to prove that R is right Euclidean (and hence left Euclidean):

(B) For any $f, g \in R$,

\[f \in Rg \iff \ker(g) \subseteq \ker(f) \]

(C) If n is chosen large enough so that $x^nA \cap \text{im}(g) = 0$. Then

\[\ker(g + x^n f) = \ker(f) \cap \ker(g) \]
4 Applications.

A) Decomposition of singular matrices

Theorem 4.1. Let R be a right quasi-Euclidean domain and let $A \in M_2(R)$ be such that $\text{l.ann}(A) \neq 0$. Then A is a product of idempotent matrices.

Proposition 4.2. Let R be a right quasi-Euclidean domain and $A \in M_n(R)$. Then $\text{l.ann}(A) \neq 0$ implies that $\text{r.ann}(A) \neq 0$.

Theorem 4.3. Let R be a right and left quasi-Euclidean domain. Then every matrix $A \in M_n(R)$ with $\text{l.ann}(A) \neq 0$ (equivalently, $\text{r.ann}(A) \neq 0$) is a product of idempotent matrices.

A ring has the IP property if any singular matrix is a product of idempotent matrices. A ring has the IP$_2$ property if every 2×2 singular matrix is a product of idempotent matrices.

Corollaire 4.4. Let R be a domain which is any one of the following types:

(a) a Euclidean domain,

(b) a local domain such that its radical $J = Rg = gR$ with $\cap Rg^n = 0$,

(c) a commutative principal ideal domain with IP$_2$, or

(d) a local Bézout domain.

Then every singular matrix over R is a product of idempotent matrices (in other words, R has the IP property).
B) Rings with the SSP property.

More Euclidean pairs:

Using the fact that for a Euclidean pair \((a, b)\), \(aR + bR\) is principal, one can show the following Theorem.

Theorem 4.5. For a ring \(R\) the following are equivalent

(i) \(\text{idem}(R).\text{idem}(R) \subseteq \text{reg}(R)\).

(ii) \(\text{reg}(R)\).\text{reg}(R) \subseteq \text{reg}(R)\).

(iii) \(\text{ureg}(R).\text{ureg}(R) \subseteq \text{reg}(R)\).

(iv) \(R_R\) satisfies the SSP property.

(v) \(R_R\) satisfies the SSP property.

In a ring \(R\) which satisfies one of these equivalent statement one can show that a pair \((a, b)\) where \(a \in \text{ureg}(R)\) and \(b \in \text{reg}(R)\) is automatically a Euclidean pair. Thus if \(e\) is an idempotent in a regular ring then \((e, b)\) is an Euclidean pair for any \(b \in R\).

5 Continuant polynomials.

Recall \(p_n(t_1, t_2, \ldots, t_n) \in \mathbb{Z}\langle t_1, \ldots, t_n \rangle\) are such that \(p_0 = 1, p_1(t_1) = t_1, p_2(t_1, t_2) = t_1t_2 + 1, p_n(t_1, t_2, t_3) = t_1t_2t_3 + t_1 + t_3, \ldots\)

for \(n \geq 2, p_n(t_1, \ldots, t_n) = p_{n-1}(t_1, \ldots, t_{n-1})t_n + p_{n-2}(t_1, \ldots, t_{n-2})\)

They appear, for instance, in:

- Continued fractions
- Getting Generators for \(GL_2(R)\) (P.M. Cohn).
- Characterizations of comaximal relations in certain rings (P.M. Cohn).
- Characterizations of Euclidean pairs and quasi Euclidean rings.

We collect a bunch of relations for these polynomials

Proposition 5.1.

- \(p_n(t_1, \ldots, t_n) = t_1p_{n-1}(t_2, \ldots, t_n) + p_{n-2}(t_3, \ldots, t_n)\).
- \(p_n(0, t_2, \ldots, t_n) = p_{n-2}(t_3, \ldots, t_n)\).
\[p_n(1, t_2, \ldots, t_n) = p_n(t_2 + 1, t_3, \ldots, t_n). \]

- for \(1 \leq k \leq n \), we have
 \[p_n(t_1, \ldots, t_n) = p_k(t_1, \ldots, t_k)p_{n-k}(t_{k+1}, \ldots, t_n) + p_{k-1}(t_1, \ldots, t_{k-1})p_{n-k-1}(t_{k+2}, \ldots, t_n). \]

- Relations coming from the fact that the inverse of \(P(t_1) \cdots P(t_n) \) is equal to \(P(0)P(-t_n) \cdots P(-t_1)P(0) \).

- For \(1 \leq m \leq n \), one has
 \[\frac{\partial p_n(t_1, \ldots, t_n)}{\partial t_m} = p_{m-1}(t_1, \ldots, t_{m-1})p_{n-m}(t_{m+1}, \ldots, t_n). \]

First leapfrog construction

0) The first term of \(p_n \) is \(t_1t_2 \cdots t_n \).

1) The next terms are obtained by erasing two consecutive indeterminates (the frog jumps over them) from \(t_1t_2 \cdots t_n \) to get the sum:
\[t_3t_4 \cdots t_n + t_1t_4t_5 \cdots t_n + t_1t_2t_5 \cdots t_n + \ldots \]

2) We erase 2 pairs of consecutive indeterminates (2 jumps) and get the terms
\[\sum_{1 \leq i_1 < i_2 < \cdots < i_j \leq n} t_1 \cdots \hat{t}_{i_1} \hat{t}_{i_1+1} \cdots \hat{t}_{i_2} \hat{t}_{i_2+1} \cdots t_n. \]

3) We then continue adding terms corresponding to 3 leaps, 4 leaps, and so on. Finally, we can write
\[p_n(t_1, \ldots, t_n) = \sum_{i_1, i_2, \ldots, i_j} t_1 \cdots \hat{t}_{i_1} \hat{t}_{i_1+1} \cdots \hat{t}_{i_2} \hat{t}_{i_2+1} \cdots \hat{t}_{i_j} \hat{t}_{i_j+1} \cdots t_n \]
where \(1 \leq j \leq \lfloor n/2 \rfloor \) and \(i_j + 1 < i_{j+1} \) for every \(j \),

Second leapfrog construction

Remark that
- \(p_{2n} \) is a sum of monomials with an even number of factors.
- \(p_{2n+1} \) is a sum of monomials with an odd number of factors.

Put \(x_n = t_{2n-1}, y_n = t_{2n} \) and \(G_n = p_{2n}, H_n = p_{2n-1} \).
So \(G_n \) is a polynomial in the indeterminates \(x_1, y_1, \ldots, x_n, y_n \), and \(H_n \) is a polynomial in the indeterminates \(x_1, y_1, \ldots, y_{n-1}, x_n \).
We have:

\[G_0 = 1, \quad G_1 = x_1y_1 + 1, \quad G_2 = x_1y_1x_2y_2 + x_1y_1 + x_1y_2 + x_2y_2 + 1, \]
\[G_3 = x_1y_1x_2y_2x_3y_3 + x_1y_1x_2y_2 + x_1y_1x_2y_3 + x_1y_1x_3y_3 +
 x_1y_2x_3y_3 + x_2y_2x_3y_3 + x_1y_1 + x_1y_2 + x_1y_3 + x_2y_2 + x_2y_3 + x_3y_3 + 1 \]

and
\[H_0 = 0, \quad H_1 = x_1, \quad H_2 = x_1y_1x_2 + x_1 + x_2, \]
\[H_3 = x_1y_1x_2y_2x_3 + x_1y_1x_2 + x_1y_1x_3 + x_1y_2x_3 + x_2y_2x_3 + x_1 + x_2 + x_3. \]

Now consider the following directed graph (quiver) \(\Gamma_n \) with two vertices \(A \) and \(B \):

```
A ← x_2 → B ← y_2 → A ← x_1 → B ← y_1 → A
```

Thus \(\Gamma_n \) has \(2n \) arrows, of which \(n \) goes from \(A \) to \(B \) and are indexed by the indeterminates \(x_i \), and \(n \) from \(B \) to \(A \) indexed by the indeterminates \(y_i \).

Let \(k \) be a field, consider the quiver algebra \(k\Gamma_n \) and the ideal \(I \) of \(k\Gamma_n \) generated by all paths \(x_iy_j : A \xrightarrow{x_i} B \xrightarrow{y_j} A \) with \(i > j \) and all paths \(y_ix_j : B \xrightarrow{y_i} A \xrightarrow{x_j} B \) with \(i \geq j \).

Theorem 5.2. Let \(R = k\Gamma_n/I \).

1) The \(k \)-algebra \(R \) is finite dimensional.

2) The Jacobson radical \(J(R) \) is a nilpotent ideal that contains all nilpotent elements of \(R \).

3) \(R = R_0 \oplus R_1 \) is 2-graded, where \(R_0 \) corresponds to the paths of even length and \(R_1 \) to the paths of odd length.

4) The images of the polynomials \(G_n \) in \(R \) are in \(R_0 \) and the images of the polynomials \(H_n \) are in \(R_1 \).

5) \n\[H_n = \left(1 - \sum_{1 \leq i \leq j \leq n} x_iy_j \right)^{-1} \left(\sum_{i=1} x_i \right) \quad \text{and} \quad G_n = \left(1 - \sum_{1 \leq i \leq j \leq n} x_iy_j \right)^{-1} \]
for every \(n \geq 0 \).
6 Generalized Fibonacci Polynomials

Definition 6.1. The polynomials \(f_n \in \mathbb{Z}\langle x_1, y_1, x_2, y_2, \ldots \rangle \) are defined by the recursion formulae:

\[
\begin{align*}
&f_{-1} = 0, \quad f_0 = 1, \\
&f_n(x_1, \ldots, x_n, y_1, \ldots, y_n) = f_{n-1}(x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1})x_n + \\
&\quad \quad + f_{n-2}(x_1, \ldots, x_{n-2}, y_1, \ldots, y_{n-2})y_n.
\end{align*}
\]

The first of these polynomials \(f_n \) are

\[
\begin{align*}
f_0 &= 1, \quad f_1 = x_1, \quad f_2 = x_1x_2 + y_2, \\
f_3 &= x_1x_2x_3 + x_1y_3 + y_2x_3, \\
f_4 &= x_1x_2x_3x_4 + x_1x_2y_4 + x_1y_3x_4 + y_2x_3x_4 + y_2y_4, \\
f_5 &= x_1x_2x_3x_4x_5 + x_1x_2x_3y_5 + x_1x_2y_4x_5 + x_1y_3x_4x_5 + \\
&\quad \quad + x_1y_3y_5 + y_2x_3x_4x_5 + y_2x_3y_5 + y_2y_4x_5, \ldots
\end{align*}
\]

- The number of monomials in each \(f_n \) is the \((n+1)\)th Fibonacci number \(F_{n+1} \).
- When we specialize all the indeterminates \(y_i \) to 1, we get back the continuant polynomials i.e. \(f_n(x_1, \ldots, x_n, 1, \ldots, 1) = p_n(x, \ldots, x_n) \).
- If we specialize further: \(f_n(x, \ldots, x, 1, 1, \ldots, 1) = F_n(x) \), i.e. we get the commutative Fibonacci polynomials.
- The polynomials \(f_n \) are homogeneous of degree \(n \) if we give the \(x_i \) degree one and the \(y_i \) degree 2.
- Notice that the indeterminate \(y_1 \) does not appear in any polynomial \(f_n(x_1, \ldots, x_n, y_1, \ldots, y_n) \).

Theorem 6.2. 1. \(f_n(2, 2, \ldots, 2, -1, -1, \ldots, -1) = n \)

2. \(f_n(x+1, x+1, \ldots, x+1, -x, -x, \ldots, -x) = 1 + x + x^2 + \cdots + x^{n-1} \).

3. We have:

\[
\mathcal{F}_n := \begin{pmatrix} x_1 & 1 \\ y_1 & 0 \end{pmatrix} \cdots \begin{pmatrix} x_n & 1 \\ y_n & 0 \end{pmatrix} = \\
\begin{pmatrix} f_n(x_1, \ldots, x_n, y_1, \ldots, y_n) & f_{n-1}(x_1, \ldots, x_{n-1}, y_1, \ldots, y_{n-1}) \\ y_1f_{n-1}(x_2, \ldots, x_n, y_2, \ldots, y_n) & y_1f_{n-2}(x_2, \ldots, x_{n-1}, y_2, \ldots, y_{n-1}) \end{pmatrix}.
\]
4.
\[\mathcal{F}_n = \begin{pmatrix}
 f_k(x_1, \ldots, y_k) & f_{k-1}(x_1, \ldots, y_{k-1}) \\
 y_1 f_{k-1}(x_2, \ldots, y_k) & y_1 f_{k-2}(x_2, \ldots, y_{k-1}) \\
 f_{n-k}(x_{k+1}, \ldots, y_n) & f_{n-k-1}(x_{k+1}, \ldots, y_{n-1}) \\
 y_{k+1} f_{n-k-1}(x_{k+2}, \ldots, y_n) & y_{k+1} f_{n-k-2}(x_{k+2}, \ldots, y_{n-1})
\end{pmatrix}. \]

5. \(f_n(x_1, \ldots, x_n, y_1, x_1 x_2, x_2 x_3, x_3 x_4, \ldots, x_{n-1} x_n) = F_{n+1} x_1 x_2 \ldots x_n. \)

6. \(f_n(x_1, \ldots, y_n) = f_k(x_1, \ldots, y_k) f_{n-k}(x_{k+1}, \ldots, y_n) + \\
 + f_{k-1}(x_1, \ldots, y_{k-1}) y_{k+1} f_{n-k-1}(x_{k+2}, \ldots, y_n) \)

7. \(f_n(x_1, \ldots, x_n, y_1, \ldots, y_n) = \\
 = x_1 f_{n-1}(x_2, \ldots, x_n, y_2, \ldots, y_n) + y_2 f_{n-2}(x_3, \ldots, x_n, y_3, \ldots, y_n). \)

8. \(f_n(x_1, x_2, \ldots, y_n) = \\
 = f_{k+1}(x_1, \ldots, x_k, f_{n-k}(x_{k+1}, \ldots, y_n), y_1, \ldots, y_k, f_{n-k-1}(x_{k+2}, \ldots, y_n)). \)

9. \(\frac{\partial f_n(x_1, \ldots, y_n)}{\partial x_k} = f_{k-1}(x_1, \ldots, y_{k-1}) f_{n-k}(x_{k+1}, \ldots, y_n), \text{ for } 1 \leq k \leq n. \)

\(\frac{\partial f_n(x_1, \ldots, y_n)}{\partial y_k} = f_{k-2}(x_1, \ldots, y_{k-2}) f_{n-k}(x_{k+1}, \ldots, y_n), \text{ for } 2 \leq k \leq n. \)

It is also possible to describe the generalized Fibonacci polynomials via leapfrog constructions and a path algebra can also be defined based on this definition.

7 Tilings and general recurrence sequences.

Definition 7.1. A linear tiling of a row of squares (a \(1 \times n \) strip of square cells) is a covering of the strip of squares with squares and dominos (which cover two squares).

For instance, the polynomial \(f_3 = x_1 x_2 x_3 + x_1 y_3 + y_2 x_3 \) parametrizes the set of the three linear tilings

![Tilings](image)

of a row of three squares. Here \(x_i \) denotes the \(i \)-th square and \(y_i \) denotes the domino that covers the \((i-1) \)-th and the \(i \)-th square (the
The Fibonacci number F_n represents the number of tilings of a strip of length n using length 1 squares and length 2 dominos.

Now consider the following family of polynomials g_n, with $n \geq 0$. To define them, we need countably many non-commutative indeterminates x_{ij}, where $1 \leq i \leq j$. Set $g_0 = 1$ and

$$g_n = \sum_{i=1}^{n} g_{i-1} x_{in}, \text{ for } n \geq 1.$$

For instance, the first polynomials g_n are

$g_1 = x_{11}$,
$g_2 = x_{12} + x_{11} x_{22}$,
$g_3 = x_{13} + x_{11} x_{23} + x_{12} x_{33} + x_{11} x_{22} x_{33}$,
$g_4 = x_{14} + x_{11} x_{24} + x_{12} x_{34} + x_{11} x_{22} x_{34} + x_{13} x_{44} + x_{11} x_{23} x_{44} + x_{12} x_{33} x_{44} + x_{11} x_{22} x_{33} x_{44}$.

For every $n \geq 1$, the polynomial $g_n \in \mathbb{Z}\langle x_{ij} \mid 1 \leq i \leq j \leq n \rangle$. The polynomial g_n is a sum of monic monomials that parametrize all linear tilings of a strip of n square cells, that is, all coverings of the strip of squares with rectangles of any length 1, 2, ..., n. The indeterminate x_{ij} indicates the rectangle of length $j - i + 1$ that starts from the i-th square and ends covering the j-th square.

For instance, $g_3 = x_{13} + x_{11} x_{23} + x_{12} x_{33} + x_{11} x_{22} x_{33}$ and, correspondingly, the tilings of a strip of three squares are

```

```

We can get back the polynomials p_n and f_n by different specializations.

We have:

$$(g_1, \ldots, g_n) = (g_0, \ldots, g_{n-1}) \begin{pmatrix} x_{11} & x_{12} & \ldots & x_{1n} \\ 0 & x_{22} & \ldots & x_{2n} \\ \vdots & \ddots & \ddots & \vdots \\ 0 & \ldots & 0 & x_{nn} \end{pmatrix}$$

Since, for $1 \leq l \leq n$, a tiling of a strip of length n is obtained by a tile of length l followed by a tiling of length $n - l$, the following formula,
where we have specified explicitly the indeterminates ("the tiles") for each polynomial, is easy to get:

\[g_n(x_{ij}; 1 \leq i \leq j \leq n) = \sum_{l=1}^{n} x_{1l} g_{n-l}(x_{l+i,l+j}; 1 \leq i \leq j \leq n-l) \]

Let \(R \) be a ring, define a mapping \(\text{perm}: M_n(R) \to R \) setting, for every matrix \(A = (a_{i,j})_{i,j} \in M_n(R) \),

\[\text{perm}(A) := \sum_{\sigma \in S_n} a_{1,\sigma(1)} \cdots a_{n,\sigma(n)}. \]

If \(A_{i,j} \) denotes the \((n-1) \times (n-1)\)-matrix that results from \(A \) removing the \(i \)-th row and the \(j \)-th column, then \(\text{perm}(A) := \sum_{j=1}^{n} a_{1,j} \text{perm}(A_{1,j}) = \sum_{j=1}^{n} \text{perm}(A_{n,j}) a_{n,j} \) (it is possible to easily expand our permanent along the first row or the last row only).

Theorem 7.2. For every \(n \geq 1 \), we have:

\[g_n(x_{ij}) = \text{perm}(A_n) = \text{perm}(A_n^t), \]

where

\[
A_n = \begin{pmatrix}
x_{11} & x_{12} & x_{13} & \cdots & x_{1n} \\
1 & x_{22} & x_{23} & \cdots & x_{2n} \\
0 & 1 & x_{33} & \cdots & x_{3n} \\
\vdots & \ddots & \ddots & \ddots & \vdots \\
0 & \cdots & 0 & 1 & x_{nn}
\end{pmatrix}
\]

References

THANK YOU!