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In all the talk R will stand for a unital associative ring.

1 The Euclidean pair (a, b) and its associated continuant

polynomials.

Definitions 1.1. (a) An ordered pair (a, b) ∈ R2 is a right Euclidean
pair if there exist elements (q1, r1), ... , (qn+1, rn+1) ∈ R2 (for some

n ≥ 0) such that a = bq1 + r1, b = r1q2 + r2, and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

The notion of a left Euclidean pair is defined similarly.

(b) A ring R is right quasi Euclidean if every pair (a, b) ∈ R2 is right

Euclidean.

(c) Let T = {t1, t2, . . . } be a countable set of noncommuting vari-

ables, and let Z 〈T 〉 be the free Z-algebra generated by T . We
define the n -th right continuant polynomials

pn(t1, . . . , tn) ∈ Z 〈t1, . . . , tn〉 ⊆ Z 〈T 〉

by p0 = 1, p1(t1) = t1, and inductively for i ≥ 2 by

pi(t1, . . . , ti) = pi−1(t1, . . . , ti−1) ti + pi−2(t1, . . . , ti−2).

Thus, p2(t1, t2) = t1t2 + 1, p3(t1, t2, t3) = t1t2t3 + t3 + t1, etc.

Notation: P (q) =

(
q 1
1 0

)

Are there connections between these three notions ?
Let us consider an easy example:

(a, b) = (22, 8) ∈ Z
2 we write

22 = 8× 2 + 6
8 = 6× 1 + 2

6 = 2× 3
we then have:

(22, 8) = (8, 6)

(
2 1
1 0

)
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(22, 8) = (6, 2)

(
1 1

1 0

)(
2 1

1 0

)

(22, 8) = (2, 0)

(
3 1

1 0

)(
1 1

1 0

)(
2 1

1 0

)

In general for a Euclidean pair (a, b) a = bq1 + r1, b = r1q2 + r2,
and

(∗) ri−1 = riqi+1 + ri+1 for 1 < i ≤ n, with rn+1 = 0.

We will get that

(a, b) = (rn, 0)P (qn+1)P (qn) · · ·P (q1)

Now, looking at a the product P (t1)P (t2) · · ·P (tn)
we have

P (t1)P (t2) =

(
t1 1
1 0

)(
t2 1
1 0

)
=

(
t1t2 + 1 t1

t2 1

)

and

P (t1)P (t2)P (t3) =

(
t1t2 + 1 t1

t2 1

)(
t3 1

1 0

)
=

(
t1t2t3 + t1 + t3 t1t2 + 1

t2t3 + 1 t2

)

In general:

P (t1)P (t2) · · ·P (tn) =

(
pn(t1, . . . , tn) pn−1(t1, . . . , tn−1)
pn−2(t2, . . . , tn) pn−2(t2, . . . , tn−1)

)

Examples 1.2. 1. (bq, b), (a, 0) are Euclidean pairs for any a, b, q ∈
R.

2. If (a, b) is a Euclidean pair and c ∈ R then (b, a), (ca, cb), (ac+b, a),
(bc+ a, b) are Euclidean pairs.

3. If a, b ∈ R are such that a + bq is right-invertible for some q,

then (a, b) is a Euclidean pair. Hence if R is of stable range one,
then every pair (a, b) with aR + bR = R is Euclidean.

4. If e = e2 is such that eRe = Re (e is said to be left semi central)

then for any b ∈ R, (e, b) is a Euclidean pair.
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Definition 1.3. A ring R is a right K-Hermite ring if for any (a, b) ∈
R2 there exists an invertible 2×2 matrix P ∈ GL2(R) and an element

d ∈ R such that (a, b)P = (d, 0).

Theorem 1.4. Let a, b be elements in a ring R. The following are
equivalent :

(1) (a, b) is a Euclidean pair.

(2) For some n ≥ 0 there exist q1, . . . , qn+1 ∈ R and rn ∈ R such

that
(a, b) = (rn, 0)P (qn+1) · · ·P (q1).

In particular, every right quasi-Euclidean ring is right K-Hermite.

(3) For some n ≥ 0 there exist q1, . . . , qn+1 ∈ R and rn ∈ R such

that a = rnpn+1 (qn+1, . . . , q1) and b = rnpn (qn+1, . . . , q2).

Now, let (a, b) ∈ R2 be a Euclidean pair. Then

(a) aR + bR = rnR where rn is the last nonzero remainder of the
Euclidean algorithm.

(b) If rn is either central or not a left zero-divisor in R, then aR∩bR
is also principal.

(c)

(
a b

0 0

)
is a product of n+ 2 idempotents in M2(R).

Proof. Sketch of partial proof of (c) above (n=1):
Want to show that if

(
a b
0 0

)
=

(
r 0
0 0

)
P (q2)P (q1)

then the matrix

(
a b
0 0

)
is a product of idempotents.

Write successively(
a b
0 0

)
=

(
1 r
0 0

)(
0 0
q2 1

)
P (q1)

Notice that the second matrix of the RHS is an idempotent. Con-

jugating with the last matrix P (q1) we get(
a b
0 0

)
=

(
1 r
0 0

)
P (q1)P (q1)

−1

(
0 0
q2 1

)
P (q1)
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and so,(
a b
0 0

)
=

(
1 1
0 0

)(
0 0

q1 + r 1

)
P (q1)

−1

(
0 0
q2 1

)
P (q1)

More generally

a = bq1 + r1, b = r1q2 + r2, r1 = r2q3 + r3, . . . , rn−1 = rnqn+1.

Let us define:

Qi =

(
qi 1

1 0

)
Ei =

(
0 0

qi + 1 1

)
Pi = QiQi−1 · · ·Q1

We then have:

(
a b

0 0

)
=

(
1 rn
0 0

)(
0 0

1 1

)
E1E

P1

2 EP2

3 · · ·EPn

n+1

Examples 1.5. (1) Let (a, b) = (14, 8) over R = Z, for which n =
2, q1 = q2 = 1, q3 = 3, and r2 = gcd (14, 8) = 2. Applying (c) above

we get the following factorization of A into n+ 2 = 4 idempotents:

A =

(
14 8
0 0

)
=

(
1 1
0 0

)(
0 0
2 1

)(
4 3
−4 −3

)(
−7 −4
14 8

)
∈ M2(Z).

Not unique: here is a shorter factorization:
(
14 8

0 0

)
=

(
1 0

0 0

)(
0 1

0 1

)(
−7 −4

14 8

)
∈ M2(Z),

and it can be shown that this is in fact “a shortest” factorization for
A.

(2) Statement (c) is only a necessary but not a sufficient condition

for (a, b) to be a Euclidean pair. To see this, let θ =
√
−5 and

R = Z [θ] . The ideal −2R+ (θ + 1)R is not principal.

The matrix E =

(
−2 θ + 1
θ − 1 3

)
over R has trace 1 and determi-

nant 0, so E2 = E.
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Thus, A :=

(
−2 θ + 1
0 0

)
= diag (1, 0)E. However, the ideal

−2R+ (θ+1)R is not a principal ideal. In particular, (−2, θ+1) is

not a Euclidean pair over R, according to Theorem 1.4 (3),(a).

(3) If the pair (a, b) is left Euclidean instead, a similar decomposition

into products of idempotents holds for the matrix

(
a 0

b 0

)
.

2 Euclidean pairs and Euclidean rings

Definitions 2.1. 1. R is of stable range one if aR+ bR = R implies
that there exists x ∈ R such that a+ bx is invertible in R.

2. R is a right Bézout ring if finitely generated ideals are principal.

3. R is projective free if projective finitely generated right R-modules

are free.

4. R is a GE2-ring if GL2(R) is generated by elementary matrices
and invertible diagonal matrices.

Theorem 2.2. Let R be a ring of stable range 1. Then (a, b) ∈ R2

is a Euclidean pair if and only if the right ideal aR+ bR is principal.
In particular:

(1) If R is a right Bézout ring with stable range 1 (e.g. R can be
any semilocal right Bézout ring ), then R is right quasi-Euclidean.

(2) If R is a unit-regular ring, then all matrix rings Mn(R) are
right (and left) quasi-Euclidean.

Proof. Proof of the first statement:
The “only if” part is Theorem above (a).

For the “if” part, assume that aR+ bR = dR for some d ∈ R, and
write a = da0, b = db0, and d = ax + by. Letting c = 1− a0x− b0y,

we have dc = d− ax− by = 0, and a0x+ (b0y + c) = 1. Since R has
stable range 1, there exists t ∈ R such that u := a0 + (b0y + c) t is a

unit. Left-multiplication by d then yields du = a+byt+dct = a+byt.
We have now a = b (−yt) + du and b = (du) (u−1b0), so (a, b) is a
Euclidean pair.
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Theorem 2.3. For any ring R, the following statements are equiva-

lent :

(A) R is right quasi-Euclidean.
(B) R is a GE-ring that is right K-Hermite.

(C) R is a GE2-ring that is right K-Hermite.
(D) For any a, b ∈ R, (a, b) = (r, 0)Q for some r ∈ R and Q ∈

GE2(R).
(E) For any a, b ∈ R, (a, b) = (r, 0)Q for some r ∈ R and Q ∈

E2(R).

If R is a domain there is another characterization. Recall that R is

a projective-free if every finitely generated projective module is free.

Theorem 2.4. A domain R is right quasi-Euclidean if and only if

R is a projective-free GE2-ring such that every matrix

(
a b
0 0

)
is a

product of idempotents in M2(R).

As an application of Theorem 2.3 we obtain the following results:

Theorem 2.5. 1. If R is a right quasi-Euclidean ring, so is S =

Mk(R) for every k ≥ 1.

2. For any ideal I ⊆ rad (R), R is right quasi-Euclidean if and only
if R is right Bézout and R/I is right quasi-Euclidean.

3. If R is a right Euclidean ring and S is a right denominator set
then RS−1 is right Euclidean.

3 Left-Right Symmetry and Dedekind-Finiteness

Example 3.1. k a field and a ∈ k \ σ(k) a non-surjective endomor-
phism of k. R stands for R = k[x; σ] .

* R = k[x; σ] is a left Euclidean domain with respect to the usual
degree function; in particular, R is a left quasi-Euclidean domain.

* One can check that axR∩ xR = 0, and that the right ideal direct
sum axR + xR is non-principal.
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* R is not right Bézout hence not a right quasi-Euclidean domain.

* (ax, x) is a left Euclidean pair but it is not a right Euclidean
pair.

* R is a left PID hence it is a projective-free ring; Thus, by a
previous lemma, the fact that axR+ xR is non-principal implies

that the matrix A =

(
ax x
0 0

)
is not a product of idempotent

matrices over R.

* for any two elements a, x in any ring, the “other” pair (xa, x)
is obviously always a right Euclidean pair and indeed the matrix

B =

(
xa x

0 0

)
=

(
1 x

0 0

)(
0 0

a 1

)
is a product of idempotent ma-

trices.

but under some circumstances there is a symmetry:

Theorem 3.2. (A) A left quasi-Euclidean ring R is right quasi-
Euclidean if and only if it is right Bézout. In particular, a regular

ring is left quasi-Euclidean if and only if it is right quasi-Euclidean.
(B) A left quasi-Euclidean domain R is right quasi-Euclidean if and

only if it is a right Ore domain.

A right Euclidean is not necessarily Dedekind finite (ab = 1 ⇒ ba 6=
1).

Example 3.3. (due to Bergman )
Let A = k[[x]] over a field k, and let K = k ((x)) be the Laurent

series field, which is the quotient field of A.

(A) R = { f ∈ Endk(A) : ∃ f0 ∈ K such that (f − f0)(x
nA) =

0 for some n ≥ 1}. R is von Neuman regular but not Dedekind finite.

Steps to prove that R is right Euclidean (and hence left Euclidean):
(B) For any f, g ∈ R,

f ∈ Rg ↔ ker (g) ⊆ ker (f)

.

(C) If n is chosen large enough so that xnA ∩ im (g) = 0. Then

ker (g + xnf) = ker (f) ∩ ker (g)

.
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4 Applications.

A) Decomposition of singular matrices

Theorem 4.1. Let R be a right quasi-Euclidean domain and let A ∈
M2(R) be such that l.ann (A) 6= 0. Then A is a product of idempotent
matrices.

Proposition 4.2. Let R be a right quasi-Euclidean domain and A ∈
Mn(R). Then l.ann (A) 6= 0 implies that r.ann (A) 6= 0.

Theorem 4.3. Let R be a right and left quasi-Euclidean domain.
Then every matrix A ∈ Mn(R) with l.ann (A) 6= 0 (equivalently,

r.ann (A) 6= 0) is a product of idempotent matrices.

A ring has the IP property if any singular matrix is a product
of idempotent matrices. A ring has the IP2 property if every 2 × 2

singular matrix is a product of idempotent matrices.

Corollaire 4.4. Let R be a domain which is any one of the following

types:

(a) a Euclidean domain,

(b) a local domain such that its radical J = Rg = gR with ∩Rgn = 0,

(c) a commutative principal ideal domain with IP2, or

(d) a local Bézout domain.

Then every singular matrix over R is a product of idempotent ma-
trices (in other words, R has the IP property).
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B) Rings with the SSP property.

More Euclidean pairs:

Using the fact that for a Euclidean pair (a, b), aR+ bR is principal,
one can show the following Theorem.

Theorem 4.5. For a ring R the following are equivalent

(i) idem(R).idem(R) ⊆ reg(R).

(ii) reg(R)reg(R) ⊆ reg(R).

(iii) ureg(R).ureg(R) ⊆ reg(R).

(iv) RR satisfies the SSP property.

(v) RR satisfies the SSP property.

In a ring R which satisfies one of these equivalent statement one
can show that a pair (a, b) where a ∈ ureg(R) and b ∈ reg(R) is

automatically a Euclidean pair. Thus if e is an idempotent in a regular
ring then (e, b) is an Euclidean pair for any b ∈ R.

5 Continuant polynomials.

Recall pn(t1, t2, . . . , tn) ∈ Z〈t1, . . . , tn〉 are such that p0 = 1, p1(t1) =

t1, p2(t1, t2) = t1t2 + 1, p”(t1, t2, t3) = t1t2t3 + t1 + t3, ...

for n ≥ 2, pn(t1, . . . , tn) = pn−1(t1, . . . , tn−1)tn + pn−2(t1, . . . , tn−2)
They appear, for instance, in:

• Continued fractions

• Getting Generators for GL2(R) (P.M. Cohn).

• Characterizations of comaximal relations in certain rings (P.M.
Cohn).

• Characterizations of Euclidean pairs and quasi Euclidean rings.

We collect a bunch of relations for these polynomials

Proposition 5.1. • pn(t1, . . . , tn) = t1pn−1(t2, . . . , tn)+pn−2(t3, . . . , tn).

• pn(0, t2, . . . , tn) = pn−2(t3, . . . , tn).
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• pn(1, t2, . . . , tn) = pn1
(t2 + 1, t3, . . . , tn).

• for 1 ≤ k ≤ n, we have pn(t1, . . . , tn) = pk(t1, . . . , tk)pn−k(tk+1, . . . , tn)+

pk−1(t1, . . . , tk−1)pn−k−1(tk+2, . . . , tn).

• Relations coming from the fact that the inverse of P (t1) · · ·P (tn)
is equal to P (0)P (−tn)P (−tn−1) · · ·P (−t1)P (0).

• For 1 ≤ m ≤ n, one has ∂pn(t1,...,tn)
∂tm

= pm−1(t1, . . . , tm−1)pn−m(tm+1, . . . , tn).

First leapfrog construction

0) The first term of pn is t1t2 · · · tn.
1) The next terms are obtained by erasing two consecutive indeter-

minates (the frog jumps over them) from t1t2 · · · tn to get the sum:

t3t4 · · · tn + t1t4t5 · · · tn + t1t2t5 · · · tn + . . . .

2) We erase 2 pairs of consecutive indeterminates (2 jumps) and get
the terms

∑

1≤i1<i2−1≤n

t1 · · · t̂i1 t̂i1+1 · · · t̂i2 t̂i2+1 · · · tn

.

3) We then continue adding terms corresponding to 3 leaps, 4 leaps,
and so on. Finally, we can write

pn(t1, . . . , tn) =
∑

i1,i2,...,ij

t1 · · · t̂i1 t̂i1+1 · · · t̂i2 t̂i2+1 · · · t̂ij t̂ij+1 · · · tn

where 1 ≤ j ≤ ⌊n/2⌋ and ij + 1 < ij+1 for every j,

Second leapfrog construction

Remark that

• p2n is a sum of monomials with an even number of factors.

• p2n+1 is a sum of monomials with an odd number of factors.

Put xn = t2n−1, yn = t2n and Gn = p2n, Hn = p2n−1.
So Gn is a polynomial in the indeterminates x1, y1, . . . , xn, yn, and

Hn is a polynomial in the indeterminates x1, y1, . . . , yn−1, xn.
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We have:

G0 = 1, G1 = x1y1 + 1, G2 = x1y1x2y2 + x1y1 + x1y2 + x2y2 + 1,
G3 = x1y1x2y2x3y3 + x1y1x2y2 + x1y1x2y3 + x1y1x3y3+
+x1y2x3y3 + x2y2x3y3 + x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y3 + 1

and

H0 = 0, H1 = x1, H2 = x1y1x2 + x1 + x2,

H3 = x1y1x2y2x3 + x1y1x2 + x1y1x3 + x1y2x3 + x2y2x3 + x1 + x2 + x3.

Now consider the following directed graph (quiver) Γn with two

vertices A and B:

A B

x1

x2

xn

y1

y2

yn

Thus Γn has 2n arrows, of which n goes from A to B and are

indexed by the indeterminates xi, and n from B to A indexed by the
indeterminates yi.

Let k be a field, consider the quiver algebra kΓn and the ideal I of

kΓn generated by all paths xiyj : A
xi−→ B

yj−→ A with i > j and all

paths yixj : B
yi−→ A

xj−→ B with i ≥ j.

Theorem 5.2. Let R = kΓn/I.

1) The k-algebra R is finite dimensional.

2) The Jacobson radical J(R) is a nilpotent ideal that contains all

nilpotent elements of R.

3) R = R0 ⊕ R1 is 2-graded, where R0 corresponds to the paths of

even length and R1 to the paths of odd length.

4) The images of the polynomials Gn in R are in R0 and the images
of the polynomials Hn are in R1.

5)

Hn =

(
1−

∑

1≤i≤j≤n

xiyj

)−1(∑

i=1

xi

)
and Gn =

(
1−

∑

1≤i≤j≤n

xiyj

)−1

for every n ≥ 0.
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6 Generalized Fibonacci Polynomials

Definition 6.1. The polynomials fn ∈ Z〈x1, y1, x2, y2, . . . , 〉 are de-
fined by the recursion formulae:

(6.I)
f−1 = 0, f0 = 1,

fn(x1, . . . , xn, y1, . . . , yn) = fn−1(x1, . . . , xn−1, y1, . . . , yn−1)xn+
+fn−2(x1, . . . , xn−2, y1, . . . , yn−2)yn.

The first of these polynomials fn are

f0 = 1, f1 = x1, f2 = x1x2 + y2,

f3 = x1x2x3 + x1y3 + y2x3,
f4 = x1x2x3x4 + x1x2y4 + x1y3x4 + y2x3x4 + y2y4,

f5 = x1x2x3x4x5 + x1x2x3y5 + x1x2y4x5 + x1y3x4x5+
+x1y3y5 + y2x3x4x5 + y2x3y5 + y2y4x5, . . .

• The number of monomials in each fn is the (n+ 1)-th Fibonacci
number Fn+1.

• When we specialize all the indeterminates yi to 1, we get back the
continuant polynomials i.e. fn(x1, . . . , xn, 1, . . . , 1) = pn(x, . . . , xn).

• If we specialize further: fn(x, . . . , x, 1, 1, . . . , 1) = Fn(x), i.e. we

get the commutative Fibonacci polynomials.

• The polynomials fn are homogeneous of degree n if we give the xi

degree one and the yi degree 2.

• Notice that the indeterminate y1 does not appear in any polyno-

mial fn(x1, . . . , xn, y1, . . . , yn).

Theorem 6.2. 1. fn(2, 2, . . . , 2,−1,−1, . . . ,−1) = n

2. fn(x+1, x+1, . . . , x+1,−x,−x, . . . ,−x) = 1+x+x2+ · · ·+xn−1.

3. We have:

Fn :=

(
x1 1

y1 0

)
· · ·
(

xn 1

yn 0

)
=

=

(
fn(x1, . . . , xn, y1, . . . , yn) fn−1(x1, . . . , xn−1, y1, . . . , yn−1)

y1fn−1(x2, . . . , xn, y2, . . . , yn) y1fn−2(x2, . . . , xn−1, y2, . . . , yn−1)

)
.
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4.

Fn =

(
fk(x1, . . . , yk) fk−1(x1, . . . , yk−1)

y1fk−1(x2, . . . , yk) y1fk−2(x2, . . . , yk−1)

)
·

·
(

fn−k(xk+1, . . . , yn) fn−k−1(xk+1, . . . , yn−1)

yk+1fn−k−1(xk+2, . . . , yn) yk+1fn−k−2(xk+2, . . . , yn−1)

)

5. fn(x1, . . . , xn, y1, x1x2, x2x3, x3x4, . . . , xn−1xn) = Fn+1x1x2 . . . xn.

6. fn(x1, . . . , yn) = fk(x1, . . . , yk)fn−k(xk+1, . . . , yn) +

+ fk−1(x1, . . . , yk−1)yk+1fn−k−1(xk+2, . . . , yn)

7. fn(x1, . . . , xn, y1, . . . , yn) =

= x1fn−1(x2, . . . , xn, y2, . . . , yn) + y2fn−2(x3, . . . , xn, y3, . . . , yn).

8. fn(x1, x2, . . . , yn) =
= fk+1(x1, . . . , xk, fn−k(xk+1, . . . , yn), y1, . . . , yk, fn−k−1(xk+2, . . . , yn)).

9. ∂fn(x1,...,yn)
∂xk

= fk−1(x1, . . . , yk−1)fn−k(xk+1, . . . , yn), for 1 ≤ k ≤ n.
∂fn(x1,...,yn)

∂yk
= fk−2(x1, . . . , yk−2)fn−k(xk+1, . . . , yn), for 2 ≤ k ≤ n.

It is also possible to describe the generalized Fibonacci polynomials
via leapfrog constructions and a path algebra can also be defined based

on this definition.

7 Tilings and general recurrence sequences.

Definition 7.1. A linear tiling of a row of squares (a 1 × n strip of

square cells) is a covering of the strip of squares with squares and
dominos (which cover two squares).

For instance, the polynomial f3 = x1x2x3+x1y3+y2x3 parametrizes

the set of the three linear tilings

of a row of three squares. Here xi denotes the i-th square and yi
denotes the domino that covers the (i− 1)-th and the i-th square (the
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domino that “ends on the i-th square”.) The Fibonacci number Fn

represents the number of tilings of a strip of length n using length 1

squares and length 2 dominos.

Now consider the following family of polynomials gn, with n ≥ 0.
To define them, we need countably many non-commutative indeter-

minates xij, where 1 ≤ i ≤ j. Set g0 = 1 and

(7.I) gn =

n∑

i=1

gi−1xin, for n ≥ 1.

For instance, the first polynomials gn are

g1 = x11, g2 = x12 + x11x22, g3 = x13 + x11x23 + x12x33 + x11x22x33,

g4 = x14 + x11x24 + x12x34 + x11x22x34 + x13x44 + x11x23x44+
+x12x33x44 + x11x22x33x44.

For every n ≥ 1, the polynomial gn ∈ Z〈xij | 1 ≤ i ≤ j ≤ n〉. The

polynomial gn is a sum of monic monomials that parametrize all linear
tilings of a strip of n square cells, that is, all coverings of the strip of

squares with rectangles of any length 1, 2, . . . , n. The indeterminate
xij indicates the rectangle of length j− i+1 that starts from the i-th
square and ends covering the j-th square.

For instance, g3 = x13+x11x23+x12x33+x11x22x33 and, correspond-
ingly, the tilings of a strip of three squares are

We can get back the polynomials pn and fn by different specializa-

tions.
We have:

(g1, . . . , gn) = (g0, . . . , gn−1)




x11 x12 . . . x1n

0 x22 . . . x2n
... . . . . . . ...
0 . . . 0 xnn




Since, for 1 ≤ l ≤ n, a tiling of a strip of length n is obtained by a tile
of length l followed by a tiling of length n− l, the following formula,
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where we have specified explicitly the indeterminates (”the tiles”) for
each polynomial, is easy to get:

gn(xij; 1 ≤ i ≤ j ≤ n) =
n∑

l=1

x1lgn−l(xl+i,l+j; 1 ≤ i ≤ j ≤ n− l)

R a ring, define a mapping perm: Mn(R) → R setting, for every

matrix A = (ai,j)i,j ∈ Mn(R),

perm(A) :=
∑

σ∈Sn

a1,σ(1) . . . an,σ(n).

If Ai,j denotes the (n−1)×(n−1)-matrix that results from A remov-
ing the i-th row and the j-th column, then perm(A) :=

∑n
j=1 a1,jperm(A1,j) =∑n

j=1 perm(An,j)an,j (it is possible to easily expand our permanent
along the first row or the last row only).

Theorem 7.2. For every n ≥ 1, we have:

gn(xij) = perm(An) = perm(At
n),

where

An =




x11 x12 x13 . . . x1n

1 x22 x23 . . . x2n

0 1 x33
. . . x3n

... . . . . . . . . . ...

0 . . . 0 1 xnn



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