Factorizations in Ore Extensions

Denison Conference, Columbus, Ohio, May 2012

The content of this talk is extracted from a few
joint works with

T.Y. Lam, A. Ozturk, J. Delenclos.

A) Counting roots.

a) Skew polynomial rings.
b) Roots of polynomials and kernel of operators.
¢) Counting the number of roots.

d) Wedderburn polynomials and their factorizations.

B) Factorizations.
a) Fully reducible polynomials and their characterizations.

b) Factorizations of fully reducible polynomials.
C)Application.

Factorizations in F [x; 6].



1 A) Counting roots.

a)Skew polynomial rings.
K a division ring, S € End(K), D a S-derivation:
D € End(K,+) D(ab) = S(a)D(b) + D(a)b,Va,b € K.

For a € K, L, left multiplication by a.
In End(K,+), we then have : Do L, = Lg o D + Lp(,.
Define a ring R := K[t; S, D]; Polynomials f(t) = > ,a;it" € R.

Degree and addition are defined as usual, the product is based on:
Va € K, ta=S(a)t+ D(a).

Exemples 1.1. 1) If S =id. and D = 0 we get back the usual
polynomial ring K{z].

2) R = C[t; S] where S is the complex conjugation. If z € C is such
that S(z)x =1 then

t? —1=(t+S(x)(t— )
. On the other hand t2 + 1 is central and irreducible in R.

3) R = Q(2)[t;id., L]. tw — xt = 1; for any q(z) € Q[z] the

polynomial (¢ — ¢(x))"™ has distinct roots...

4) K afield, ¢ € K\ {0} and S € Endg(K]|x]) defined by
S(z) = qv. R= Klz|ly; S]. Commutation rule: yx = qzy.



Facts
a) Ore (1933): R = K|t; S, D] is a left principal ideal domain.
b) Ore (1933): R = K|t; S, D] is a unique factorization domain:

If f(t) =p1(t)...pa(t) = qi(t) ... qm(t), pi(t),q(t) irreducible
then m = n and there exists ¢ € §,, such that,
R _ R

For 1 <i<n, =
Rq;  Rps)

b) Roots and kernels

The map g : R — End(K,+),0 defined by

900(2 a;t’) = Z a;D’
i=0 i=0

is a ring homomorphism.

More generally, for a € K, T, € End(K, +) is defined by
To(x) = S(x)a+ D(z) Ve K.

Examples: Ty =D, T1 =S + D.
The map ¢, : R — End(K,+) given by

n n
goa(z a;it’) = Z a;T".
i=0 i=0

is a ring homomorphism.

For a € K and f(t) € R there exist ¢(t) € R, c € K such that
f(t)=q(t)(t —a)+ c. cis called the (right) evaluation of f(¢) at a.
We write ¢ = f(a). We say a is a (right) root of f(t) if f(a) = 0.
Link between ker f(7},) and (right) roots of f(t) 7
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Theorem 1.2. (a) f(T,)(1) = f(a).

(b) For f,g € R, fg(a) = f(Ta)(g(a)).

(c) For a,b € K with b# 0, we have (t — c)b = S(b)(t — a) where
c:=Sb)ab~t + D(b)b~t. This will be denoted c = a’)

(@) For b £ 0, (f(1)b)(a) = f(a"b.
(e) For b # 0, f(T,)(b) = f(a’)b.

(f) If g(a) # 0, we have fg(a) = f(a?)g(a).

Proof. (a) From p(t) = q(t)(t — a) + p(a) we get

p(T,) = q(T,)(T, — Ly) + Lyq). Since (T, — L,)(1) = 0, this gives (a)
b) fg(a) = fg(Ta)(1) = f(Tu)(9(Ta)(1)) = f(Tu)(9(a)).
¢) (t—c)b=1tb—cb=1tb— S(b)a— D(b) = S(b)(t—a).
d) Write f(t) = q(t)(t — a®) + f(a’) and
F()b=q()S®)(t — a) + f(a’).

(e) For b #0, f(a’)b = (f(t)b)(a) = (f(Ta) o Ly)(1) = f(Ta)(b)

(f) This is clear from (b) and (e). O

(
(
(

We define

E(f,a) :=ker f(T,) = {0 £ b € K| f(a") = 0} U{0}



c) Counting roots

Facts and notations

a€ K, R=K][t;S,D].

1) A(a) :={a®= S(c)ac' + D(c)c7 1|0 #£ c € K}.

2) T, defines a left R-module structure on K via f(t).z = f(T,)(x).

3) In fact, pRK = R/R(t — a) as left R-module.

4) rRKg where S = Endg(rK) = Endr(R/R(t — a)), a division ring.
isomorphic to the division ring C(a) := {0 # z € K |a® = a} U {0}.

5) For any a € K and f(t) € R = K[t; S, D], ker f(T,) is a right

vector space on the division ring C'(a).
Theorem 1.3. Let f(t) € R = K|[t; S, D] be of degree n. We have

(a) The roots of f(t) belong to at most n conjugacy classes, say

Alay),...,Ala,); r <n (Gordon Motzkin in "classical” case).

(8) So1_, dime, ker f(T,) < n
For any f(t) € R = K]|t; S, D] we thus ”compute” the number of

roots by adding the dimensions of the vector spaces consisting of

"exponents” of roots in the different conjugacy classes...

Theorem 1.4. let p be a prime number, F, a finite field with ¢ = p"

elements, 0 the Frobenius automorphism (0(x) = xP). Then:
a) There are p distinct 0-classes of conjugation in F,.
b) 0 # a € F, we have C%(a) =F, and C’(0) = T,.
(¢c) R=F,t:0], t —a fora € F, is
G(t):=[t—ala €T, =PI+l ¢

. We have RG(t) = G(t)R.
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The polynomial G(t) in the above theorem is a Wedderburn

polynomial...

d) Wedderburn polynomials and their factorizations

Definitions 1.5. 1. (a) A monic polynomial p(t) € R = K|[t; S, D]
is a Wedderburn polynomial if we have equality in the ”counting

roots formula”.

(b) For ay,...,a, € K the matrix

1 1 1
V(g ey = | T T To()
T () T ) T ()

Theorem 1.6. Let f(t) € R = K|t; S, D] be a monic polynomial of

degree n. The following are equivalent:

(a) f(t) is a Wedderburn polynomial.

(b) There exist n elements ay,...,a, € K such that

f(t)=1[t—ay,...,t—ay|; where [g,h]; stands for LLCM of g, h.
(c) There exist n elements ay,...,a, € K such that
S(VYC; V=t 4+ D(V)V ! = Diag(ay, . . ., ay)

Where Cy is the companion matriz of f and V =V (a,...,a,)

(d) Every quadratic factor of f is a Wedderburn polynomial.



Exemple 1.7. Construction of Wedderburn polynomials: Let
a,b € K be two different elements in K.
f&)=[t—at—bi=t—-")t—a)=(t—a"")(t D).
Assume now that ¢ € K is such that f(c) # 0 then:
g(t) == [t —a,t = bt — = (t — /) f(1).
Remarques 1.8.

(b) Wedderburn polynomials can be used to develop noncommuative

symmetric functions.

(b) Question: Is every left V-domain a right V-domain?
Can we use R = K[t; S, D] to construct such an example?
One necessary condition for R to be a right V' domain is that

every monic polynomial is Wedderburn... (-, T.Y.Lam, S.K.Jain)

(c¢) Matrices A € M, (K) that are (S, D)-diagonalizable are can be
characterized by Wedderburn polynomials (S € Aut(K).)

How can we build all the linear factorizations of a Wedderburn
polynomial?
Theorem 1.9. Let f € R be a Wedderburn polynomial and V (f) the

set of his right roots.

(a) Assume that V(f) C A(a), then the linear factorizations are in

bijection with the complete flags of right C(a)-vector spaces in
E(f,a).

(b) Assume that V(f) C J._; A(a;) then the linear factorizations of

f are in bijection with the "shuffle complete flags” of
U;:1 E(fv ai)'



Since a polynomial which is linearly factorizable is a product of
Wedderburn polynomials we can use the above factorizations to get

factorizations of such polynomials.

Exemple 1.10. Let us describe all the factorizations of
f=[t—a",t —a];. These factorizations are in bijection with the
complete flags in the two dimensional vector space E(f,a) = C + zC
where C := C*P(a). The flags are of the form 0 # yC C E(f,a).
Apart from the flag 0 C xC' C E(f,a), they are given by

0C (1+2B)C C E(f,a), where 3 € C%P(a). Hence we get the
following factorizations f = (¢t —a® " )(t — a®) and

(t —a® ") (t — a'**P), where v = a — a' 77,



2 B) Fully reducible polynomials and
their factorizations.

a) Fully reducible polynomials

Definitions 2.1. (a) A monic polynomial f € R = K[t; S; D] is
fully reducible if there exist irreducible polynomials pq,...,p,

such that Rf = (., Rp;.
(b) p,q € R are conjugate iff R/Rp = R/Rgq.

Theorem 2.2. Let f € R be a monic polynomial of degree [. Then

the following are equivalent:
(i) f is fully reducible.

(ii) There exist monic irreducible polynomials py ..., p, such that

Rf =N Rp; is an irredundant intersection.

(i1i) There exist monic irreducible polynomials py ...p, € R and an

invertible matriz V € M;(K) such that
CyV = S(V)diag(Cy, ...,Cp, )+ D(V).
where Cy,Cp,, ..., C,, denote companion matrices.

(iv) R = R/Rf is semisimple.
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b) Factorizations of fully reducible polynomials.

Definitions 2.3. (a) Let p be an irreducible monic polynomial of

degree n.
t.: R/IRP — R/Rp:g+ Rp—tg+ Rp
T,: K" — K" : v+~ S(v)C, + D(v)
Where C), denotes the companion matrix of p.
(b) Get a left R-module structure on K": f(t).v = f(T,)(v).
rKg where S, := Endp(K") = Endgr(R/Rp) is a division ring.
For f(t) € R, f(1,) € End(K",+) is right S)-linear.
Define V(f) = {p € R|p is irreducible and f € Rp}
(¢) Two monic polynomials p,q € R are conjugate if R/Rp = R/Rq.

(d) For f(t) € R, E(f,p):={q€ R|qe V(f)and R/RP = R/Rq}.

Theorem 2.4. Let f(t) € R of degree n;

(a) V(f) intersects at most n conjugacy classes say

A(pr), -, Alpn).
(b) S0 dimg, ker f(Tp,) < n, where S; := End(R/Rp;).

(c) The equality occurs in (b) if and only if f is fully reducible.

As for the Wedderburn polynomials, one can get all the
factorizations of a fully reducible polynomial by looking at flags in

the and shuffles of flags in the different ker f(7},) where p(t) € V(f).
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3 C) Application

a)Factorizations in F[t; 6].

Aim: reduce factorization in F,[¢; 0] to factorisation in F|x]

Definitions 3.1. p a prime number,
(a)i > 1, put [i] = 2= = p" 1+ p" 24+ + 1 and put [0] = 0.
(b) ¢ = p". define F,[2l]  F,[z] by:

Fq[a:[]] = {Z ozl € F,[z]}

1>0

Elements of F,[2]] are called [p]-polynomials.
Extend 6 to F,lz] via 0(z) = 2 i.e. 6(g) = ¢* for g € F[z].
Let us consider R := Fi[t; 0] C S = F,[z][t; ]

For f € R:=F[t;0] C F,[z][t; ]

We may evaluate f in x.

Theorem 3.2. Let f(t) =Y " ait' € R:=TF,[t;0] C S :=F,[z][t; 0].
We have:

1) for every b € F,, f(b) =S 1, a;blil.

2) fl(z) = S azl? e F[20].

3) {fUf € R=T,[t;0)} = F,[z!].

4) Fori >0 and h(zx) € F,[x] we have Ti(h) = h¥' zli,

o) If g(t) € S = Fylz][t; 0] et h(z) € Fylz] g(T:)(h(x)) € Fylz]h(z).

6) For h(t) € R=T,[t;0], f(t) € Rh(t) iff fl(x) € F,[z]hl(z).
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Corollaire 3.3. f(t) € F,[t; 0] is irrducible iff the corresponding

p-polynomial fU does not have non trivial factors in ]Fq[xﬂ].

Method

Let f(t) € R :=T,[t; 4].

Step 1 Compute f I and check if fI has a factor in

F,[2[]. If no then f(t) is irreducible R.

Step 2 If fl(2) = g(2)Rhl(z) for some polynomial h(t) then h(t)
divides f(t) and write f(t) = g(t)h(t). Come back to step 1 replacing
f(t) by g(t).

Example

Consider f(t) = t* + (a + 1)t3 + a®t> + (1 + a)t + 1 € Fy[t; 0]. its
associated polynomial is

¥+ (a+1)z" + (a+ 1)z + (1 + a)z + 1 € Fy[z]. We may factorize

1t as:
(2" +az''+2"+(a+1) 2+ (a+1)2"+(a+1) 2 + 2’ +ar+2+1) (2° +az+1)

This last factor is a [p]-polynomial that corresponds to

t2+at +1 € Fy[t; 0]. Since 2° + ax + 1 is irreducible in Fy[z], we have
t? + at + 1 is irreducible as well in F4[t; ]. We conclude that

f(t)= (> +t+1)(t* +at + 1) is a decomposition of f(¢) in

irreducible factors in Fy[t; 0.



THANK YOU ALL

THANK YOU LAM

Very happy birthday !
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