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Factorizations in Ore Extensions

Denison Conference, Columbus, Ohio, May 2012

The content of this talk is extracted from a few
joint works with

T.Y. Lam, A. Ozturk, J. Delenclos.

A) Counting roots.

a) Skew polynomial rings.

b) Roots of polynomials and kernel of operators.

c) Counting the number of roots.

d) Wedderburn polynomials and their factorizations.

B) Factorizations.

a) Fully reducible polynomials and their characterizations.

b) Factorizations of fully reducible polynomials.

C)Application.

Factorizations in Fq[x; θ].

.



2

1 A) Counting roots.

a)Skew polynomial rings.

K a division ring, S ∈ End(K), D a S-derivation:

D ∈ End(K,+) D(ab) = S(a)D(b) +D(a)b,∀a, b ∈ K.

For a ∈ K, La left multiplication by a.

In End(K,+), we then have : D ◦ La = LS(a) ◦D + LD(a).

Define a ring R := K[t;S,D]; Polynomials f(t) =
∑n

i=0 ait
i ∈ R.

Degree and addition are defined as usual, the product is based on:

∀a ∈ K, ta = S(a)t+D(a).

Exemples 1.1. 1) If S = id. and D = 0 we get back the usual

polynomial ring K[x].

2) R = C[t;S] where S is the complex conjugation. If x ∈ C is such

that S(x)x = 1 then

t2 − 1 = (t+ S(x))(t− x)

. On the other hand t2 + 1 is central and irreducible in R.

3) R = Q(x)[t; id., d
dx ]. tx− xt = 1; for any q(x) ∈ Q[x] the

polynomial (t− q(x))n has distinct roots...

4) K a field, q ∈ K \ {0} and S ∈ EndK(K[x]) defined by

S(x) = qx. R = K[x][y;S]. Commutation rule: yx = qxy.
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Facts

a) Ore (1933): R = K[t;S,D] is a left principal ideal domain.

b) Ore (1933): R = K[t;S,D] is a unique factorization domain:

If f(t) = p1(t) . . . pn(t) = q1(t) . . . qm(t), pi(t), qi(t) irreducible

then m = n and there exists σ ∈ Sn such that,

For 1 ≤ i ≤ n,
R

Rqi
∼=

R

Rpσ(i)

b) Roots and kernels

The map φ0 : R −→ End(K,+), ◦ defined by

φ0(
n∑

i=0

ait
i) =

n∑
i=0

aiD
i

is a ring homomorphism.

More generally, for a ∈ K, Ta ∈ End(K,+) is defined by

Ta(x) = S(x)a+D(x) ∀x ∈ K.

Examples: T0 = D, T1 = S +D.

The map φa : R −→ End(K,+) given by

φa(
n∑

i=0

ait
i) =

n∑
i=0

aiT
i
a.

is a ring homomorphism.

For a ∈ K and f(t) ∈ R there exist q(t) ∈ R, c ∈ K such that

f(t) = q(t)(t− a) + c. c is called the (right) evaluation of f(t) at a.

We write c = f(a). We say a is a (right) root of f(t) if f(a) = 0.

Link between ker f(Ta) and (right) roots of f(t) ?
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Theorem 1.2. (a) f(Ta)(1) = f(a).

(b) For f, g ∈ R, fg(a) = f(Ta)(g(a)).

(c) For a, b ∈ K with b ̸= 0, we have (t− c)b = S(b)(t− a) where

c := S(b)ab−1 +D(b)b−1. This will be denoted c = ab)

(d) For b ̸= 0, (f(t)b)(a) = f(ab)b.

(e) For b ̸= 0, f(Ta)(b) = f(ab)b.

(f) If g(a) ̸= 0, we have fg(a) = f(ag(a))g(a).

Proof. (a) From p(t) = q(t)(t− a) + p(a) we get

p(Ta) = q(Ta)(Ta − La) + Lp(a). Since (Ta − La)(1) = 0, this gives (a)

(b) fg(a) = fg(Ta)(1) = f(Ta)(g(Ta)(1)) = f(Ta)(g(a)).

(c) (t− c)b = tb− cb = tb− S(b)a−D(b) = S(b)(t− a).

(d) Write f(t) = q(t)(t− ab) + f(ab) and

f(t)b = q(t)S(b)(t− a) + f(ab)b.

(e) For b ̸= 0, f(ab)b = (f(t)b)(a) = (f(Ta) ◦ Lb)(1) = f(Ta)(b)

(f) This is clear from (b) and (e).

We define

E(f, a) := ker f(Ta) = {0 ̸= b ∈ K | f(ab) = 0} ∪ {0}

.
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c) Counting roots

Facts and notations

a ∈ K, R = K[t;S,D].

1) ∆(a) := {ac = S(c)ac−1 +D(c)c−1 | 0 ̸= c ∈ K}.

2) Ta defines a left R-module structure on K via f(t).x = f(Ta)(x).

3) In fact, RK ∼= R/R(t− a) as left R-module.

4) RKS where S = EndR(RK) ∼= EndR(R/R(t− a)), a division ring.

isomorphic to the division ring C(a) := {0 ̸= x ∈ K | ax = a} ∪ {0}.

5) For any a ∈ K and f(t) ∈ R = K[t;S,D], ker f(Ta) is a right

vector space on the division ring C(a).

Theorem 1.3. Let f(t) ∈ R = K[t;S,D] be of degree n. We have

(a) The roots of f(t) belong to at most n conjugacy classes, say

∆(a1), . . . ,∆(ar); r ≤ n (Gordon Motzkin in ”classical” case).

(b)
∑r

i=1 dimCi
ker f(Tai) ≤ n.

For any f(t) ∈ R = K[t;S,D] we thus ”compute” the number of

roots by adding the dimensions of the vector spaces consisting of

”exponents” of roots in the different conjugacy classes...

Theorem 1.4. let p be a prime number, Fq a finite field with q = pn

elements, θ the Frobenius automorphism (θ(x) = xp). Then:

a) There are p distinct θ-classes of conjugation in Fq.

b) 0 ̸= a ∈ Fq we have Cθ(a) = Fp and Cθ(0) = Fq.

(c) R = Fq[t; θ], t− a for a ∈ Fq is

G(t) := [t− a | a ∈ Fq]l = t(p−1)n+1 − t

. We have RG(t) = G(t)R.
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The polynomial G(t) in the above theorem is a Wedderburn

polynomial...

d) Wedderburn polynomials and their factorizations

Definitions 1.5. 1. (a) A monic polynomial p(t) ∈ R = K[t;S,D]

is a Wedderburn polynomial if we have equality in the ”counting

roots formula”.

(b) For a1, . . . , an ∈ K the matrix

V S,D
n (a1, . . . , an) =


1 1 . . . 1

Ta1(1) Ta2(1) . . . Tan(1)
. . . . . . . . . . . .

T n−1
a1

(1) T n−1
a1

(1) . . . T n−1
a1

(1)


Theorem 1.6. Let f(t) ∈ R = K[t;S,D] be a monic polynomial of

degree n. The following are equivalent:

(a) f(t) is a Wedderburn polynomial.

(b) There exist n elements a1, . . . , an ∈ K such that

f(t) = [t− a1, . . . , t− an]l where [g, h]l stands for LLCM of g, h.

(c) There exist n elements a1, . . . , an ∈ K such that

S(V )CfV
−1 +D(V )V −1 = Diag(a1, . . . , an)

Where Cf is the companion matrix of f and V = V (a1, . . . , an)

(d) Every quadratic factor of f is a Wedderburn polynomial.
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Exemple 1.7. Construction of Wedderburn polynomials: Let

a, b ∈ K be two different elements in K.

f(t) := [t− a, t− b]l = (t− bb−a)(t− a) = (t− aa−b)(t− b).

Assume now that c ∈ K is such that f(c) ̸= 0 then:

g(t) := [t− a, t− b, t− c]l = (t− cf(c))f(t).

Remarques 1.8.

(b) Wedderburn polynomials can be used to develop noncommuative

symmetric functions.

(b) Question: Is every left V -domain a right V -domain?

Can we use R = K[t;S,D] to construct such an example?

One necessary condition for R to be a right V domain is that

every monic polynomial is Wedderburn... (-,T.Y.Lam, S.K.Jain)

(c) Matrices A ∈ Mn(K) that are (S,D)-diagonalizable are can be

characterized by Wedderburn polynomials (S ∈ Aut(K).)

How can we build all the linear factorizations of a Wedderburn

polynomial?

Theorem 1.9. Let f ∈ R be a Wedderburn polynomial and V (f) the

set of his right roots.

(a) Assume that V (f) ⊆ ∆(a), then the linear factorizations are in

bijection with the complete flags of right C(a)-vector spaces in

E(f, a).

(b) Assume that V (f) ⊆
∪r

i=1∆(ai) then the linear factorizations of

f are in bijection with the ”shuffle complete flags” of∪r
i=1E(f, ai).
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Since a polynomial which is linearly factorizable is a product of

Wedderburn polynomials we can use the above factorizations to get

factorizations of such polynomials.

Exemple 1.10. Let us describe all the factorizations of

f = [t− ax, t− a]l. These factorizations are in bijection with the

complete flags in the two dimensional vector space E(f, a) = C + xC

where C := CS,D(a). The flags are of the form 0 ̸= yC ⊂ E(f, a).

Apart from the flag 0 ⊂ xC ⊂ E(f, a), they are given by

0 ⊂ (1 + xβ)C ⊂ E(f, a), where β ∈ CS,D(a). Hence we get the

following factorizations f = (t− aa−ax)(t− ax) and

(t− aa−γ)(t− a1+xβ), where γ = a− a1+xβ.

.
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2 B) Fully reducible polynomials and
their factorizations.

a) Fully reducible polynomials

Definitions 2.1. (a) A monic polynomial f ∈ R = K[t;S;D] is

fully reducible if there exist irreducible polynomials p1, . . . , pn

such that Rf =
∩n

i=1Rpi.

(b) p, q ∈ R are conjugate iff R/Rp ∼= R/Rq.

Theorem 2.2. Let f ∈ R be a monic polynomial of degree l. Then

the following are equivalent:

(i) f is fully reducible.

(ii) There exist monic irreducible polynomials p1 . . . , pn such that

Rf = ∩n
i=1Rpi is an irredundant intersection.

(iii) There exist monic irreducible polynomials p1 . . . pn ∈ R and an

invertible matrix V ∈ Ml(K) such that

CfV = S(V )diag(Cp1 . . . , Cpn) +D(V ).

where Cf , Cp1, . . . , Cpn denote companion matrices.

(iv) R = R/Rf is semisimple.

.
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b) Factorizations of fully reducible polynomials.

Definitions 2.3. (a) Let p be an irreducible monic polynomial of

degree n.

t. : R/RP −→ R/Rp : g +Rp 7→ tg +Rp

Tp : K
n −→ Kn : v 7→ S(v)Cp +D(v)

Where Cp denotes the companion matrix of p.

(b) Get a left R-module structure on Kn: f(t).v = f(Tp)(v).

RK
n
Sp

where Sp := EndR(K
n) ∼= EndR(R/Rp) is a division ring.

For f(t) ∈ R, f(Tp) ∈ End(Kn,+) is right Sp-linear.

Define V (f) = {p ∈ R | p is irreducible and f ∈ Rp}

(c) Two monic polynomials p, q ∈ R are conjugate if R/Rp ∼= R/Rq.

(d) For f(t) ∈ R, E(f, p) := {q ∈ R | q ∈ V (f) and R/RP ∼= R/Rq}.

Theorem 2.4. Let f(t) ∈ R of degree n;

(a) V (f) intersects at most n conjugacy classes say

∆(p1), . . . ,∆(pn).

(b)
∑n

i=1 dimSi
ker f(TPi

) ≤ n, where Si := End(R/Rpi).

(c) The equality occurs in (b) if and only if f is fully reducible.

As for the Wedderburn polynomials, one can get all the

factorizations of a fully reducible polynomial by looking at flags in

the and shuffles of flags in the different ker f(Tp) where p(t) ∈ V (f).

.
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3 C) Application

a)Factorizations in Fq[t; θ].

Aim: reduce factorization in Fq[t; θ] to factorisation in Fq[x]

Definitions 3.1. p a prime number,

(a)i ≥ 1, put [i] := pi−1
p−1 = pi−1 + pi−2 + · · ·+ 1 and put [0] = 0.

(b) q = pn. define Fq[x
[]] ⊂ Fq[x] by:

Fq[x
[]] := {

∑
i≥0

αix
[i] ∈ Fq[x]}

Elements of Fq[x
[]] are called [p]-polynomials.

Extend θ to Fq[x] via θ(x) = xp i.e. θ(g) = gp for g ∈ Fq[x].

Let us consider R := Fq[t; θ] ⊂ S := Fq[x][t; θ].

For f ∈ R := Fq[t; θ] ⊂ Fq[x][t; θ]

We may evaluate f in x.

Theorem 3.2. Let f(t) =
∑n

i=0 ait
i ∈ R := Fq[t; θ] ⊂ S := Fq[x][t; θ].

We have:

1) for every b ∈ Fq, f(b) =
∑n

i=0 aib
[i].

2) f [](x) =
∑n

i=0 aix
[i] ∈ Fq[x

[]].

3) {f []|f ∈ R = Fq[t; θ]} = Fq[x
[]].

4) For i ≥ 0 and h(x) ∈ Fq[x] we have T i
x(h) = hpix[i].

5) If g(t) ∈ S = Fq[x][t; θ] et h(x) ∈ Fq[x] g(Tx)(h(x)) ∈ Fq[x]h(x).

6) For h(t) ∈ R = Fq[t; θ], f(t) ∈ Rh(t) iff f [](x) ∈ Fq[x]h
[](x).
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Corollaire 3.3. f(t) ∈ Fq[t; θ] is irrducible iff the corresponding

p-polynomial f [] does not have non trivial factors in Fq[x
[]].

Method

Let f(t) ∈ R := Fq[t; θ].

Step 1 Compute f [] and check if f [] has a factor in

Fq[x
[]]. If no then f(t) is irreducible R.

Step 2 If f [](x) = q(x)h[](x) for some polynomial h(t) then h(t)

divides f(t) and write f(t) = g(t)h(t). Come back to step 1 replacing

f(t) by g(t).

Example

Consider f(t) = t4 + (a+ 1)t3 + a2t2 + (1 + a)t+ 1 ∈ F4[t; θ]. its

associated polynomial is

x15 + (a+ 1)x7 + (a+ 1)x3 + (1 + a)x+ 1 ∈ F4[x]. We may factorize

it as:

(x12+ax10+x9+(a+1)x8+(a+1)x5+(a+1)x4+x3+ax2+x+1)(x3+ax+1)

This last factor is a [p]-polynomial that corresponds to

t2 + at+1 ∈ F4[t; θ]. Since x
3 + ax+1 is irreducible in F4[x], we have

t2 + at+ 1 is irreducible as well in F4[t; θ]. We conclude that

f(t) = (t2 + t+ 1)(t2 + at+ 1) is a decomposition of f(t) in

irreducible factors in F4[t; θ].
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Very happy birthday !


