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1 Continuant polynomials: definition and interest.

a, b 6= 0 integers, suppose we have an Euclidean algorithm as follows:

a = bq1 + r1; b = r1q2 + r2; r1 = r2q3 + r3; r2 = r3q4 with |ri| > |ri+1|
We can then write:

a

b
= q1 +

r1
b

= q1 +
1

b/r1

= q1 +
1

q2 +
r2

r1

= q1 +
1

q2 + 1
r1/r2

= q1 +
1

q2 +
1

q3 + r3
r2

= q1 +
1

q2 +
1

q3 + 1
q4

going backwards we then write:

a

b
= q1 +

1

q2 + q4
q3q4+1

= q1 +
q3q4 + 1

q2q3q4 + q2 + q4

and finally

a

b
=

q1q2q3q4 + q1q2 + q1q4 + q3q4 + 1

q2q3q4 + q2 + q4

The polynomial appearing on the numerator and denominator are
the continuant polynomials.

Very long history...Mainly examples

1. Rafael Bombelli ( 1530) presented
√

13 as periodic continued frac-
tions.

2. Pietro Cataldi (1548-1626) presented
√

18 as periodic continued
fractions.
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3. John Wallis (1616-1703) in his book Arithemetica Infinitorium
(1655), studied the continued fractions, Euler laid down much of
the modern theory (1737). The non commutative settings started
as early as Hamilton followed by Wedderburn, P.M. Cohn...

Definition 1.1. Let X = {t1, t2, . . . } be a countable set of noncom-
muting variables, and let Z 〈X〉 be the free Z-algebra generated by
X. We define the n -th right continuant polynomials

pn(t1, . . . , tn) ∈ Z 〈t1, . . . , tn〉 ⊆ Z 〈X〉

by p0 = 1, p1(t1) = t1, and inductively for i ≥ 2 by

pi(t1, . . . , ti) = pi−1(t1, . . . , ti−1) ti + pi−2(t1, . . . , ti−2).

the first continuants pn. They are

p0 = 1, p1 = t1, p2 = t1t2 + 1, p3 = t1t2t3 + t1 + t3,

p4 = t1t2t3t4 + t1t2 + t1t4 + t3t4 + 1,
p5 = t1t2t3t4t5 + t1t2t3 + t1t2t5 + t1t4t5 + t3t4t5 + t1 + t3 + t5

They appear, for instance, in:

• Continued fractions

• Generating subgroups of matrices for M2(R) (P.M. Cohn and be-
low).

• Characterizations of comaximal relations in certain rings (P.M.
Cohn).

• Characterizations of Euclidean pairs and quasi Euclidean rings
(Alahmadi, Jain, Lam, L.).

For r ∈ R we denote by P (r) the invertible matrix P (r) :=

(
r 1
1 0

)
.

Theorem 1.2.

a) pn(t1, . . . , tn) = t1pn−1(t2, . . . , tn) + pn−2(t3, . . . , tn).

b)

Pn := P (t1)P (t2) · · ·P (tn) =

(
pn(t1, . . . , tn) pn−1(t1, . . . , tn−1)
pn−1(t2, . . . , tn) pn−2(t2, . . . , tn−1)

)
.
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c) P−1n = (−1)n
(
p(tn−1, . . . , t2) −p(tn−1, . . . , t1)
−p(tn, . . . , t2) p(tn, . . . , t1)

)
Remark that

• p2n is a sum of monomials with an even number of factors.

• p2n+1 is a sum of monomials with an odd number of factors.

Put xn = t2n−1, yn = t2n and Gn = p2n, Hn = p2n−1.
So Gn is a polynomial in the indeterminates x1, y1, . . . , xn, yn, and

Hn is a polynomial in the indeterminates x1, y1, . . . , xn−1, xn.
We have:

G0 = 1, G1 = x1y1 + 1, G2 = x1y1x2y2 + x1y1 + x1y2 + x2y2 + 1,
G3 = x1y1x2y2x3y3 + x1y1x2y2 + x1y1x2y3 + x1y1x3y3+

+x1y2x3y3 + x2y2x3y3 + x1y1 + x1y2 + x1y3 + x2y2 + x2y3 + x3y3 + 1

and

H0 = 0, H1 = x1, H2 = x1y1x2 + x1 + x2,

H3 = x1y1x2y2x3 + x1y1x2 + x1y1x3 + x1y2x3 + x2y2x3 + x1 + x2 + x3.

From

P (xi)P (yi) =

(
xiyi + 1 xi

yi 1

)
,

it follows that
(1.I)(

x1y1 + 1 x1
y1 1

)
· · ·
(

xnyn + 1 xn
yn 1

)
=(

Gn(x1, y1, . . . , xn, yn) Hn(x1, y1 . . . , yn−1, xn)
Hn(y1, x2, . . . , xn, yn) Gn−1(y1, x2, . . . , yn−1, xn)

)
.

The recursion formulae for pn translate into the following ones be-
tween the Gn, Hn, xn and yn:

(1.II) Gn+1 = Hn+1yn+1 + Gn and Hn+1 = Gnxn+1 + Hn.

Using the associativity of the product of matrices we obtain:

(1.III)
Gn(x1, . . . , yn) = Gk(x1, . . . , xk−1, yk)Gn−k(xk+1, . . . , yn)+

Hk(x1, . . . , yk−1, xk)Hn−k(yk+1, xk+2 . . . , yn)
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and

(1.IV)
Hn(x1, y1, . . . , xn) = Gk(x1, . . . , yk)Hn−k(xk, y − k, . . . , xn)+

Hk(x1, y1, . . . , xk)Gn−k−1(yn−k, . . . , yn−1, xn)

Facts:

• All the polynomials pn, Hn and Gn are sums of monomials with
all the coefficients equal to 1.

• From the defining relations it is easily seen that each Gn is a sum
of monomials of all possible even degrees ≤ 2n and each Hn is a
sum of monomials of all possible odd degrees ≤ 2n− 1.

• Also, the number mn of monomials in pn, which is clearly equal
to pn(1, 1, . . . , 1), satisfies the relations m0 = 1,m1 = 1,m2 =
2,mn = mn−1 +mn−2, hence mn = Fn+1, the (n+ 1)-th Fibonacci
number, defined by F0 = 0, F1 = 1 and Fn = Fn−1 + Fn−2 for
n ≥ 2.

• The monomials in Hn and Gn do not contain consecutive letters
with descending indexes.

• ∂pn+1(t1,...,tn+1)
∂tn+1

= pn;
∂Gn(x1,y1,...,xn,yn)

∂yn
= Hn(x1, y1, . . . , xn−1, xn)

2 Continuants and groups of matrices

Let R be any ring, GL2(R) the group of all invertible 2× 2-matrices

E2(R) be the elementary group, that is, the subgroup of GL2(R) gen-

erated by matrices

(
1 x
0 1

)
and

(
1 0
y 1

)
, where x and y range in

R.

(
1 x
0 1

)−1
=

(
1 −x
0 1

)
and

(
1 0
y 1

)−1
=

(
1 0
−y 1

)
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An arbitrary element of E2(R) is a product of finitely many elements
of the form (

1 x
0 1

)(
1 0
y 1

)
=

(
xy + 1 x

y 1

)
.

These are exactly the factors on the left in the equation (1.I). Thus
an arbitrary element of E2(R) is a matrix of the form(

Gn(x1, y1, . . . , xn, yn) Hn(x1, y1 . . . , yn−1, xn)
Hn(y1, x2, . . . , xn, yn) Gn−1(y1, x2, . . . , yn−1, xn)

)
,

with x1, y1, . . . , xn, yn ∈ R.

Let G be the subsemigroup of the multiplicative semigroup M2(R)
generated by all matrices of type

P (x) :=

(
x 1
1 0

)
,

where x ranges in R. As Cohn proved in 1966, the semigroup G,
set of all products P (x1) · · ·P (xn) with n ≥ 1 and x1, . . . , xn ∈ R,
is a group, because P (0)2 is the identity of GL2(R) and P (x)−1 =
P (0)P (−x)P (0).

Theorem 2.1. For any ring R, exactly one of the following two con-
ditions holds:

(a) Either G = E2(R), or

(b) The group G is the semidirect product E2(R) o C of the group
E2(R) and the cyclic group C of order 2 generated by the involution

P (0) =

(
0 1
1 0

)
.

The action of P (0) on E2(R) is given by(
1 x
0 1

)
7→ P (0)

(
1 x
0 1

)
P (0) =

(
1 0
x 1

)
and (

1 0
y 1

)
7→ P (0)

(
1 0
y 1

)
P (0) =

(
1 y

0 1

)
.
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3 Leapfrogs and graphs

First leapfrog construction

0) The first term of pn is t1t2 · · · tn.

1) The next terms are obtained by erasing two consecutive indeter-
minates (the frog jumps over them) from t1t2 · · · tn to get the sum:
t3t4 · · · tn + t1t4t5 · · · tn + t1t2t5 · · · tn + . . . .

2) We erase 2 pairs of consecutive indeterminates (2 jumps) and get
the terms ∑

1≤i1<i2−1≤n
t1 · · · t̂i1 t̂i1+1 · · · t̂i2 t̂i2+1 · · · tn

.

3) We then continue adding terms corresponding to 3 leaps, 4 leaps,
and so on. Finally, we can write

pn(t1, . . . , tn) =
∑

i1,i2,...,ij

t1 · · · t̂i1 t̂i1+1 · · · t̂i2 t̂i2+1 · · · t̂ij t̂ij+1 · · · tn

where 1 ≤ j ≤ bn/2c and ij + 1 < ij+1 for every j,

Graph and second leapfrog construction

Consider the directed graph (quiver) Γn with two vertices A and B:

A B

x1

x2

xn

y1

y2

yn

Thus Γn has 2n arrows, of which n goes from A to B and are
indexed by the indeterminates xi, and n from B to A indexed by the
indeterminates yi.

The facts mentioned earlier about the polynomials Gn and Hn mo-
tivate the definition of the ideal I in the construction below.
Let k be a field, consider the quiver algebra kΓn and the ideal I of

kΓn generated by all paths xiyj : A
xi−→ B

yj−→ A with i > j and all

paths yixj : B
yi−→ A

xj−→ B with i ≥ j.
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Theorem 3.1. Let R = kΓn/I.

1) The k-algebra R is finite dimensional.

2) J(R) is a nilpotent ideal that contains all nilpotent elements of R.

3) R = R0 ⊕ R1 is 2-graded, where R0 corresponds to the paths of
even length and R1 to the paths of odd length.

4) The images of the polynomials Gn in R are in R0 and the images
of the polynomials Hn are in R1.

5)

Hn =

(
1−

∑
1≤i≤j≤n

xiyj

)−1(∑
i=1

xi

)
and Gn =

(
1−

∑
1≤i≤j≤n

xiyj

)−1
for every n ≥ 0.

4 Generalized Fibonacci Polynomials and tiling of strips

Definition 4.1. The polynomials fn ∈ Z〈x1, y1, x2, y2, . . . , 〉 are de-
fined by the recursion formulae:
(4.I)

f−1 = 0, f0 = 1,
fn(x1, . . . , xn, y1, . . . , yn) = fn−1(x1, . . . , xn−1, y1, . . . , yn−1)xn+

+fn−2(x1, . . . , xn−2, y1, . . . , yn−2)yn.

The first of these polynomials fn are

f0 = 1, f1 = x1, f2 = x1x2 + y2,

f3 = x1x2x3 + x1y3 + y2x3,
f4 = x1x2x3x4 + x1x2y4 + x1y3x4 + y2x3x4 + y2y4,
f5 = x1x2x3x4x5 + x1x2x3y5 + x1x2y4x5 + x1y3x4x5+

+x1y3y5 + y2x3x4x5 + y2x3y5 + y2y4x5, . . .

• The number of monomials in each fn is the (n + 1)-th Fibonacci
number Fn+1.
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• When we specialize all the indeterminates yi to 1, we get back the
continuant polynomials i.e. fn(x1, . . . , xn, 1, . . . , 1) = pn(x, . . . , xn).

• If we specialize further: fn(x, . . . , x, 1, 1, . . . , 1) = Fn(x), i.e. we
get the commutative Fibonacci polynomials.

• The polynomials fn are homogeneous of degree n if we give the xi
degree one and the yi degree 2.

• Notice that the indeterminate y1 does not appear in any polyno-
mial fn(x1, . . . , xn, y1, . . . , yn).

Theorem 4.2. 1. fn(2, 2, . . . , 2,−1,−1, . . . ,−1) = n

2. fn(x+1, x+1, . . . , x+1,−x,−x, . . . ,−x) = 1+x+x2+ · · ·+xn−1.

3. We have:

Fn :=

(
x1 1
y1 0

)
· · ·
(

xn 1
yn 0

)
=

=

(
fn(x1, . . . , xn, y1, . . . , yn) fn−1(x1, . . . , xn−1, y1, . . . , yn−1)

y1fn−1(x2, . . . , xn, y2, . . . , yn) y1fn−2(x2, . . . , xn−1, y2, . . . , yn−1)

)
.

4.

Fn =

(
fk(x1, . . . , yk) fk−1(x1, . . . , yk−1)

y1fk−1(x2, . . . , yk) y1fk−2(x2, . . . , yk−1)

)
·

·
(

fn−k(xk+1, . . . , yn) fn−k−1(xk+1, . . . , yn−1)
yk+1fn−k−1(xk+2, . . . , yn) yk+1fn−k−2(xk+2, . . . , yn−1)

)
5. fn(x1, . . . , xn, y1, x1x2, x2x3, x3x4, . . . , xn−1xn) = Fn+1x1x2 . . . xn.

6. fn(x1, . . . , yn) = fk(x1, . . . , yk)fn−k(xk+1, . . . , yn) +
+ fk−1(x1, . . . , yk−1)yk+1fn−k−1(xk+2, . . . , yn)

7. fn(x1, . . . , xn, y1, . . . , yn) =
= x1fn−1(x2, . . . , xn, y2, . . . , yn) + y2fn−2(x3, . . . , xn, y3, . . . , yn).

8. fn(x1, x2, . . . , yn) =
= fk+1(x1, . . . , xk, fn−k(xk+1, . . . , yn), y1, . . . , yk, fn−k−1(xk+2, . . . , yn)).

9. ∂fn(x1,...,yn)
∂xk

= fk−1(x1, . . . , yk−1)fn−k(xk+1, . . . , yn), for 1 ≤ k ≤ n.
∂fn(x1,...,yn)

∂yk
= fk−2(x1, . . . , yk−2)fn−k(xk+1, . . . , yn), for 2 ≤ k ≤ n.



11

It is also possible to describe the generalized Fibonacci polynomials
via leapfrog constructions and a path algebra can also be defined based
on this definition.

Definition 4.3. A linear tiling of a row of squares (a 1 × n strip of
square cells) is a covering of the strip of squares with squares and
dominos (which cover two squares).

For instance, the polynomial f3 = x1x2x3+x1y3+y2x3 parametrizes
the set of the three linear tilings

of a row of three squares. Here xi denotes the i-th square and yi
denotes the domino that covers the (i− 1)-th and the i-th square (the
domino that “ends on the i-th square”.) The Fibonacci number Fn
represents the number of tilings of a strip of length n using length 1
squares and length 2 dominos.

5 General pattern and permanents.

Now consider the following family of polynomials gn, with n ≥ 0. To
define them, we need countably many non-commutative indetermi-
nates xij, where 1 ≤ i ≤ j. Set g0 = 1 and

(5.I) gn =
n∑
i=1

gi−1xin, for n ≥ 1.

For instance, the first polynomials gn are

g1 = x11, g2 = x12 + x11x22, g3 = x13 + x11x23 + x12x33 + x11x22x33,
g4 = x14 + x11x24 + x12x34 + x11x22x34 + x13x44 + x11x23x44+

+x12x33x44 + x11x22x33x44.

For every n ≥ 1, the polynomial gn ∈ Z〈xij | 1 ≤ i ≤ j ≤ n〉. The
polynomial gn is a sum of monic monomials that parametrize all linear
tilings of a strip of n square cells, that is, all coverings of the strip of
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squares with rectangles of any length 1, 2, . . . , n. The indeterminate
xij indicates the rectangle of length j − i+ 1 that starts from the i-th
square and ends covering the j-th square.

For instance, g3 = x13+x11x23+x12x33+x11x22x33 and, correspond-
ingly, the tilings of a strip of three squares are

We can get back the polynomials pn and fn by different specializa-
tions.

We have:

(g1, . . . , gn) = (g0, . . . , gn−1)


x11 x12 . . . x1n
0 x22 . . . x2n
... . . . . . . ...
0 . . . 0 xnn


Since, for 1 ≤ l ≤ n, a tiling of a strip of length n is obtained by a tile
of length l followed by a tiling of length n− l, the following formula,
where we have specified explicitly the indeterminates (”the tiles”) for
each polynomial, is easy to get:

gn(xij; 1 ≤ i ≤ j ≤ n) =
n∑
l=1

x1lgn−l(xl+i,l+j; 1 ≤ i ≤ j ≤ n− l)

R a ring, define a mapping perm: Mn(R) → R setting, for every
matrix A = (ai,j)i,j ∈Mn(R),

perm(A) :=
∑
σ∈Sn

a1,σ(1) . . . an,σ(n).

If Ai,j denotes the (n−1)×(n−1)-matrix that results from A remov-
ing the i-th row and the j-th column, then perm(A) :=

∑n
j=1 a1,jperm(A1,j) =∑n

j=1 perm(An,j)an,j (it is possible to expand our permanent along the
first row or the last row only).

Theorem 5.1. For every n ≥ 1, we have:

gn(xij) = perm(An) = perm(At
n),
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where

An =


x11 x12 x13 . . . x1n
1 x22 x23 . . . x2n

0 1 x33
. . . x3n

... . . . . . . . . . ...
0 . . . 0 1 xnn


.
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THANK YOU !


