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Notations and Definitions

R denotes an associative ring with unity. U(R) is the set of
invertible elements and N(R) is the set of nilpotent elements. For
a ∈ R, r(a) = {x ∈ R | ax = 0}.

R is Dedekind finite iff ∀a, b ∈ R, ab = 1⇒ ba = 1.

R is reversible iff ∀a, b ∈ R, ab = 0⇒ ba = 0.

R is symmetric iff ∀a, b, c ∈ R, abc = 0⇒ acb = 0.
Equivalently R is symmetric iff ∀a, b, c ∈ R we have
bc ∈ r(a)⇒ cb ∈ r(a).

∀a, b ∈ R, ab ∈ 1− U(R) ⇔ ba ∈ 1− U(R).

Definition

A subset S ⊆ R is commutatively closed if and only if
ab ∈ S ⇒ ba ∈ S
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Examples

1 R is Dedekind finite (resp. reversible) iff {1} (resp. {0} is
commutatively closed).

2 U(R)− 1 is always commutatively closed (Abbreviated CC).

3 N(R) = {x ∈ R | ∃n ∈ N : xn = 0} is always C.C..

4 S = Reg(R) = {r ∈ R | ∃x ∈ R : r = rxr} (resp.
S = Ureg(R) or S = SπReg(R)) then S − 1 is C.C..

5 MR a right R-module, {u ∈ R | annM(u − 1) 6= 0} is C.C..

6 In particular Zr (R) + 1 is CC.

7 (Gurgun) The set of strongly clean elements Scl(R) = {x ∈
R | ∃u ∈ U(R), e ∈ Idem(R) : x = e + u, ue = eu} is C.C..

8 (Cline) The set of Drazin invertible elements is also C.C..
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Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}
3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}

3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}
3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}
3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}
3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}
3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Definitions

1 For S ⊆ R we define an ascending chain Si ⊆ R, i ≥ 0:

S0 = S and, for i > 0, Si = {ab | ba ∈ Si−1}

We denote S the union S =
⋃

i≥0 Si .

2 For x , y ∈ R we define: x ∼ y if and only if y ∈ {x}
3 For any n ≥ 0, we also define a ∼n b if and only if b ∈ {a}n.

S is the smallest C.C. subset of R containing S .

SU = {usu−1 | u ∈ U(R), s ∈ S} ⊆ S1.

If R is a division ring and S ⊆ R then SU = S

Remark

The set of commutatively closed subsets of R defines a topology
on R.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Morphisms

Proposition

If ϕ : R −→ S is a ring homomorphism, then

For any X ⊆ R, ϕ
(
X
)
⊆ {ϕ(X )}.

If T ⊆ S is commutatively closed in S, then ϕ−1(T ) is a
commutatively closed set in R.

If S is reversible, ker(ϕ) is commutatively closed.

If S is Dedekind finite then ϕ−1({1}) is commutatively closed.

If ϕ is an isomorphism then for any X ⊆ R, we have
ϕ(X ) = ϕ(X ).
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Theorem

Let S be a subset of a ring R. r(S) (l(S)) denotes the right (left)
annihilator of S.

1 (1 + r(S))S ⊆ S1 and S(1 + l(S)) ⊆ S1

2 For any n ≥ 1 we have (1 + r(S))nS ∪ S(1 + l(S))n ⊆ Sn.

3 If a = xy, then (y + r(x))nx ∈ {a}n and y(x + l(y))n ∈ {a}n

Proposition

1 Two idempotents e = e2 ∈ R and f = f 2 ∈ R we have
eR ∼= fR if and only if f ∈ {e}1.

2 For a, x ∈ R, i , n ∈ N \ {0} and x ∈ {a}n, we have:
x i ∈ {ai}n and an ∼1 x

n.

3 If a ∈ R is C.C. then l(a) = r(a).

4 If {a, b} ⊆ R is C.C. then r(a) ∪ l(b) = r(b) ∪ l(a).
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Proposition

Let a ∈ R be such that {a} = {a}.

1 a commutes with its factors and with units. If 2 is not a zero
divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Proposition

Let a ∈ R be such that {a} = {a}.
1 a commutes with its factors and with units. If 2 is not a zero

divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Proposition

Let a ∈ R be such that {a} = {a}.
1 a commutes with its factors and with units. If 2 is not a zero

divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Proposition

Let a ∈ R be such that {a} = {a}.
1 a commutes with its factors and with units. If 2 is not a zero

divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Proposition

Let a ∈ R be such that {a} = {a}.
1 a commutes with its factors and with units. If 2 is not a zero

divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Proposition

Let a ∈ R be such that {a} = {a}.
1 a commutes with its factors and with units. If 2 is not a zero

divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Proposition

Let a ∈ R be such that {a} = {a}.
1 a commutes with its factors and with units. If 2 is not a zero

divisor then a commutes with every idempotent elements.

2 l(a) = r(a)

3 Every factor of a is a right and a left factor of a.

4 If a = 0 then R is reversible and hence Dedekind finite (i.e.
{1} = {1}). In this case, R is abelian and we have,for any
idempotent e2 = e ∈ R, that {e} = {e}.

5 If a = e = e2 is an idempotent then e is central.

6 If a is a right (or left) invertible element then a and all of its
factors are units.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings



First Page

Regular elements

Theorem

Let a = axa ∈ Reg(R) be a regular element of a ring R. Then a is
commutatively closed if and only if the following conditions are
satisfied:

1 e = ax = xa is a central idempotent.

2 a ∈ U(eRe) commutes with all units in eRe.

3 eRe is a Dedekinf finite ring.

4 (1− e)R(1− e) is a reversible ring.

In particular, a is strongly regular and the idempotent ax is central.
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Definition

For a ∈ R, C (a) := {a}.
C (a) is a graph: x , y ∈ C (a) are connected if x ∼1 y .
We can also define a distance in C (a): d(x , y) = n when x ∈ {y}n
but x /∈ {y}n−1.

Theorem

1 For any n ≥ 1 and a, b ∈ R, we have a ∼n b if and only if
there exist x1, x2, . . . , xn ∈ R and y1, y2, . . . , yn ∈ R such that
a = x1y1, y1x1 = x2y2, y2x2 = x3y3, . . . , ynxn = b.

2 If a ∼n b, then a− b is a finite sum of additive commutators.

3 If a ∼n b then there exist x , y ∈ R such that ax = xb and
ya = by. We then have yx ∈ Z (b) and xy ∈ Z (a), where, for
x ∈ R, Z (x) denotes the centralizer of x.
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Examples

1 Consider the algebra k〈X1,X2, . . . ,Xn,Y1, . . . ,Yn〉/I where
I = Idl < Y1X1−X2Y2,Y2X2−X3Y3, . . .Yn−1Xn−1−XnYn >.
We write xi , yi for Xi + I ,Yi + I . In x1y1. We have that
d(x1y1, xnyn) = n.

2 Let R = K 〈x , y〉 be free K -algebra. Since
x + yx l = (1 + yx l−1)x ∼1 x(1 + yx l−1) = (1 + xyxl−2)x ∼1

x(1 + xy l−2) = (1 + x2yx l−3)x ∼1 · · · ∼1 x(1 + x l−1y), so
d(x + yx l , x + x ly) ≤ l . In fact d(x + yx l , x + x ly) = l .

3 Let a ∈ k where k is a field and σ ∈ Aut(k). In R = k[t;σ]
we have d(at, σn(a)t) = n.

4 Let a ∈ k where k is a field and σ ∈ Aut(k), n ∈ N. In
R = k[t;σ] we have tn − 1 is C.C.
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Periodic elements

Definition

An element x ∈ R is a-periodic (a ∈ Z (R)) if there exist nonzero
natural numbers n,m ∈ N, n 6= m, such that xn = axm. If a = 1
we just say that x is periodic. The 0-periodic elements are the
nilpotent elements.

Lemma

An element x of a ring R is periodic if there exists s ∈ N such that
x s is an idempotent.

Proposition

If a ∈ Z (R) and b ∼ a then b is a-periodic. The set of a-periodic
elements is commutatively closed. The class {1} is contained in
the class of periodic elements.
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Matrix rings over a field

Lemma

Let k be a field and let A,B ∈ R = Mn(k) be two square matrices
such that A ∼ B, then the characteristic polynomials of A and B
are equal.

Proposition

Let k be a commutative field and n ∈ N, the class {0} in Mn(k) is
the set of nilpotent matrices, moreover diam({0}) = n − 1.
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Proposition

Let UTn(R) denote the ring of upper triangular matrices having 1’s
on the diagonal. Then {0} is the set of nilpotent elements.

Proposition

Let R be a field that is not Dedekind finite, then diam(R) =∞.

Proof.

Sketch: The proof is based on the fact that if ab = 1 but ba 6= 1
then, for i , j ∈ N

eij := bi (1− ba)aj are such that eijekl = δjkei ,l

Then for any n ∈ N consider an := e12 + e23 + · · ·+ en−1,n this
element is nilpotent and d(an, 0) = n − 1.
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2-primal rings

R is 2-primal if its set of nilpotent elements coincides with the
prime radical.

A ring is 2-primal if and only if its minimal prime
ideals are completely prime (Shin).

Proposition

(a) Let R be a ring such that {0}1 is contained in the center
Z (R). Then R is 2-primal.

(b) The prime radical P(R) of a ring R is commutatively closed if
and only if R is 2-primal.

Example

The converse of (a) in the above proposition is not true. If k is
a field, the ring R = k[x ][t;σ]/(t2), where σ is the k-algebra
map defined by σ(x) = 0, is easily seen to be 2-primal but
xt + (t2) ∈ {0}1 and is not central.
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Definition

For a subset E ⊆ R the commutative depth of E , denoted Cd(E ),
is defined to be the smallest l ∈ N such that El = El+1 when such
an l exists. If no such integer l exists then we put Cd(E ) =∞.

Examples

1 E is commutatively closed if and only if Cd(E ) = 0

2 If R is the upper triangular matrix ring over F2 then
Cd(R) = 1.

3 For subsets E and F of a ring R, we have
Cd(E ∪ F ) ≤ max{Cd(E ),Cd(F )}
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Open problems

Question 1: Characterize the rings R such that diam(R) = 1.

Question 2: Let k be a field, compute Diam(Mn(k)).
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THANK YOU !

Happy birthday

Walter !
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