Celebrating Walter Ferrer $70^{\text {th }}$ birthday

Commutatively Closed Sets in Rings

Joint work with Mona Abdi and Dilshad Alghazzawi

Colloquium on Algebras and Representations Quantum 19

Montevideo, March 2019

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

- R is Dedekind finite iff $\forall a, b \in R, a b=1 \Rightarrow b a=1$.

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

- R is Dedekind finite iff $\forall a, b \in R, a b=1 \Rightarrow b a=1$.
- R is reversible iff $\forall a, b \in R, a b=0 \Rightarrow b a=0$.

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

- R is Dedekind finite iff $\forall a, b \in R, a b=1 \Rightarrow b a=1$.
- R is reversible iff $\forall a, b \in R, a b=0 \Rightarrow b a=0$.
- R is symmetric iff $\forall a, b, c \in R$, $a b c=0 \Rightarrow a c b=0$. Equivalently R is symmetric iff $\forall a, b, c \in R$ we have $b c \in r(a) \Rightarrow c b \in r(a)$.

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

- R is Dedekind finite iff $\forall a, b \in R, a b=1 \Rightarrow b a=1$.
- R is reversible iff $\forall a, b \in R, a b=0 \Rightarrow b a=0$.
- R is symmetric iff $\forall a, b, c \in R$, $a b c=0 \Rightarrow a c b=0$.

Equivalently R is symmetric iff $\forall a, b, c \in R$ we have $b c \in r(a) \Rightarrow c b \in r(a)$.

- $\forall a, b \in R, a b \in 1-U(R) \Leftrightarrow b a \in 1-U(R)$.

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

- R is Dedekind finite iff $\forall a, b \in R, a b=1 \Rightarrow b a=1$.
- R is reversible iff $\forall a, b \in R, a b=0 \Rightarrow b a=0$.
- R is symmetric iff $\forall a, b, c \in R, a b c=0 \Rightarrow a c b=0$. Equivalently R is symmetric iff $\forall a, b, c \in R$ we have $b c \in r(a) \Rightarrow c b \in r(a)$.
- $\forall a, b \in R, a b \in 1-U(R) \Leftrightarrow b a \in 1-U(R)$.

Definition

Notations and Definitions

R denotes an associative ring with unity. $U(R)$ is the set of invertible elements and $N(R)$ is the set of nilpotent elements. For $a \in R, r(a)=\{x \in R \mid a x=0\}$.

- R is Dedekind finite iff $\forall a, b \in R, a b=1 \Rightarrow b a=1$.
- R is reversible iff $\forall a, b \in R, a b=0 \Rightarrow b a=0$.
- R is symmetric iff $\forall a, b, c \in R, a b c=0 \Rightarrow a c b=0$. Equivalently R is symmetric iff $\forall a, b, c \in R$ we have $b c \in r(a) \Rightarrow c b \in r(a)$.
- $\forall a, b \in R, a b \in 1-U(R) \Leftrightarrow b a \in 1-U(R)$.

Definition

A subset $S \subseteq R$ is commutatively closed if and only if $a b \in S \Rightarrow b a \in S$

Examples

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).
(2) $U(R)-1$ is always commutatively closed (Abbreviated CC).

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).
(2) $U(R)-1$ is always commutatively closed (Abbreviated CC).
(3) $N(R)=\left\{x \in R \mid \exists n \in \mathbb{N}: x^{n}=0\right\}$ is always C.C..

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).
(2) $U(R)-1$ is always commutatively closed (Abbreviated CC).
(3) $N(R)=\left\{x \in R \mid \exists n \in \mathbb{N}: x^{n}=0\right\}$ is always C.C..
(1) $S=\operatorname{Reg}(R)=\{r \in R \mid \exists x \in R: r=r \times r\}$ (resp. $S=\operatorname{Ureg}(R)$ or $\left.S=S_{\pi} \operatorname{Reg}(R)\right)$ then $S-1$ is C.C..

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).
(2) $U(R)-1$ is always commutatively closed (Abbreviated CC).
(3) $N(R)=\left\{x \in R \mid \exists n \in \mathbb{N}: x^{n}=0\right\}$ is always C.C.
(9) $S=\operatorname{Reg}(R)=\{r \in R \mid \exists x \in R: r=r x r\}$ (resp. $S=\operatorname{Ureg}(R)$ or $\left.S=S_{\pi} \operatorname{Reg}(R)\right)$ then $S-1$ is C.C..
(5) M_{R} a right R-module, $\left\{u \in R \mid \operatorname{ann}_{M}(u-1) \neq 0\right\}$ is C.C..
(0. In particular $Z_{r}(R)+1$ is $C C$.

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).
(2) $U(R)-1$ is always commutatively closed (Abbreviated CC).
(3) $N(R)=\left\{x \in R \mid \exists n \in \mathbb{N}: x^{n}=0\right\}$ is always C.C..
(9) $S=\operatorname{Reg}(R)=\{r \in R \mid \exists x \in R: r=r x r\}$ (resp. $S=\operatorname{Ureg}(R)$ or $\left.S=S_{\pi} \operatorname{Reg}(R)\right)$ then $S-1$ is C.C..
(5) M_{R} a right R-module, $\left\{u \in R \mid \operatorname{ann}_{M}(u-1) \neq 0\right\}$ is C.C..
(0) In particular $Z_{r}(R)+1$ is $C C$.
(1) (Gurgun) The set of strongly clean elements $\operatorname{Scl}(R)=\{x \in$ $R \mid \exists u \in U(R), e \in \operatorname{Idem}(R): x=e+u$, $u e=e u\}$ is C.C..

Examples

(1) R is Dedekind finite (resp. reversible) iff $\{1\}$ (resp. $\{0\}$ is commutatively closed).
(2) $U(R)-1$ is always commutatively closed (Abbreviated CC).
(3) $N(R)=\left\{x \in R \mid \exists n \in \mathbb{N}: x^{n}=0\right\}$ is always C.C..
(9) $S=\operatorname{Reg}(R)=\{r \in R \mid \exists x \in R: r=r x r\}$ (resp. $S=\operatorname{Ureg}(R)$ or $\left.S=S_{\pi} \operatorname{Reg}(R)\right)$ then $S-1$ is C.C..
(5) M_{R} a right R-module, $\left\{u \in R \mid \operatorname{ann}_{M}(u-1) \neq 0\right\}$ is C.C..
(0) In particular $Z_{r}(R)+1$ is $C C$.
(1) (Gurgun) The set of strongly clean elements $\operatorname{Scl}(R)=\{x \in$ $R \mid \exists u \in U(R), e \in \operatorname{Idem}(R): x=e+u$, $u e=e u\}$ is C.C..
(8) (Cline) The set of Drazin invertible elements is also C.C..

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.
(2) For $x, y \in R$ we define: $x \sim y$ if and only if $y \in \overline{\{x\}}$

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.
(2) For $x, y \in R$ we define: $x \sim y$ if and only if $y \in \overline{\{x\}}$
(3) For any $n \geq 0$, we also define $a \sim_{n} b$ if and only if $b \in\{a\}_{n}$.

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.
(2) For $x, y \in R$ we define: $x \sim y$ if and only if $y \in \overline{\{x\}}$
(3) For any $n \geq 0$, we also define $a \sim_{n} b$ if and only if $b \in\{a\}_{n}$.

- \bar{S} is the smallest C.C. subset of R containing S.

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.
(2) For $x, y \in R$ we define: $x \sim y$ if and only if $y \in \overline{\{x\}}$
(3) For any $n \geq 0$, we also define $a \sim_{n} b$ if and only if $b \in\{a\}_{n}$.

- \bar{S} is the smallest C.C. subset of R containing S.
- $S^{U}=\left\{u s u^{-1} \mid u \in U(R), s \in S\right\} \subseteq S_{1}$.

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.
(2) For $x, y \in R$ we define: $x \sim y$ if and only if $y \in \overline{\{x\}}$
(3) For any $n \geq 0$, we also define $a \sim_{n} b$ if and only if $b \in\{a\}_{n}$.

- \bar{S} is the smallest C.C. subset of R containing S.
- $S^{U}=\left\{u s u^{-1} \mid u \in U(R), s \in S\right\} \subseteq S_{1}$.
- If R is a division ring and $S \subseteq R$ then $S^{U}=\bar{S}$

Definitions

(1) For $S \subseteq R$ we define an ascending chain $S_{i} \subseteq R, i \geq 0$:

$$
S_{0}=S \quad \text { and, for } i>0, \quad S_{i}=\left\{a b \mid b a \in S_{i-1}\right\}
$$

We denote \bar{S} the union $\bar{S}=\bigcup_{i \geq 0} S_{i}$.
(2) For $x, y \in R$ we define: $x \sim y$ if and only if $y \in \overline{\{x\}}$
(3) For any $n \geq 0$, we also define $a \sim_{n} b$ if and only if $b \in\{a\}_{n}$.

- \bar{S} is the smallest C.C. subset of R containing S.
- $S^{U}=\left\{u s u^{-1} \mid u \in U(R), s \in S\right\} \subseteq S_{1}$.
- If R is a division ring and $S \subseteq R$ then $S^{U}=\bar{S}$

Remark

The set of commutatively closed subsets of R defines a topology on R.

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R, \varphi(\bar{X}) \subseteq \overline{\{\varphi(X)\}}$.

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R, \varphi(\bar{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If $T \subseteq S$ is commutatively closed in S, then $\varphi^{-1}(T)$ is a commutatively closed set in R.

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R, \varphi(\bar{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If $T \subseteq S$ is commutatively closed in S, then $\varphi^{-1}(T)$ is a commutatively closed set in R.
- If S is reversible, $\operatorname{ker}(\varphi)$ is commutatively closed.

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R, \varphi(\bar{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If $T \subseteq S$ is commutatively closed in S, then $\varphi^{-1}(T)$ is a commutatively closed set in R.
- If S is reversible, $\operatorname{ker}(\varphi)$ is commutatively closed.
- If S is Dedekind finite then $\varphi^{-1}(\{1\})$ is commutatively closed.

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R, \varphi(\bar{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If $T \subseteq S$ is commutatively closed in S, then $\varphi^{-1}(T)$ is a commutatively closed set in R.
- If S is reversible, $\operatorname{ker}(\varphi)$ is commutatively closed.
- If S is Dedekind finite then $\varphi^{-1}(\{1\})$ is commutatively closed.
- If φ is an isomorphism then for any $X \subseteq R$, we have $\overline{\varphi(X)}=\varphi(\bar{X})$.

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$
(2) For any $n \geq 1$ we have $(1+r(S))^{n} S \cup S(1+I(S))^{n} \subseteq S_{n}$.

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$
(2) For any $n \geq 1$ we have $(1+r(S))^{n} S \cup S(1+I(S))^{n} \subseteq S_{n}$.
(3) If $a=x y$, then $(y+r(x))^{n} x \in\{a\}_{n}$ and $y(x+I(y))^{n} \in\{a\}_{n}$

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$
(2) For any $n \geq 1$ we have $(1+r(S))^{n} S \cup S(1+I(S))^{n} \subseteq S_{n}$.
(3) If $a=x y$, then $(y+r(x))^{n} x \in\{a\}_{n}$ and $y(x+I(y))^{n} \in\{a\}_{n}$

Proposition

(1) Two idempotents $e=e^{2} \in R$ and $f=f^{2} \in R$ we have $e R \cong f R$ if and only if $f \in\{e\}_{1}$.

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$
(2) For any $n \geq 1$ we have $(1+r(S))^{n} S \cup S(1+I(S))^{n} \subseteq S_{n}$.
(3) If $a=x y$, then $(y+r(x))^{n} x \in\{a\}_{n}$ and $y(x+I(y))^{n} \in\{a\}_{n}$

Proposition

(1) Two idempotents $e=e^{2} \in R$ and $f=f^{2} \in R$ we have $e R \cong f R$ if and only if $f \in\{e\}_{1}$.
(2) For $a, x \in R, i, n \in \mathbb{N} \backslash\{0\}$ and $x \in\{a\}_{n}$, we have: $x^{i} \in\left\{a^{i}\right\}_{n} \quad$ and $\quad a^{n} \sim_{1} x^{n}$.

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$
(2) For any $n \geq 1$ we have $(1+r(S))^{n} S \cup S(1+I(S))^{n} \subseteq S_{n}$.
(3) If $a=x y$, then $(y+r(x))^{n} x \in\{a\}_{n}$ and $y(x+I(y))^{n} \in\{a\}_{n}$

Proposition

(1) Two idempotents $e=e^{2} \in R$ and $f=f^{2} \in R$ we have $e R \cong f R$ if and only if $f \in\{e\}_{1}$.
(2) For $a, x \in R, i, n \in \mathbb{N} \backslash\{0\}$ and $x \in\{a\}_{n}$, we have: $x^{i} \in\left\{a^{i}\right\}_{n} \quad$ and $\quad a^{n} \sim_{1} x^{n}$.
(3) If $a \in R$ is C.C. then $I(a)=r(a)$.

Theorem

Let S be a subset of a ring $R . r(S)(I(S))$ denotes the right (left) annihilator of S.
(1) $(1+r(S)) S \subseteq S_{1}$ and $S(1+I(S)) \subseteq S_{1}$
(2) For any $n \geq 1$ we have $(1+r(S))^{n} S \cup S(1+I(S))^{n} \subseteq S_{n}$.
(3) If $a=x y$, then $(y+r(x))^{n} x \in\{a\}_{n}$ and $y(x+I(y))^{n} \in\{a\}_{n}$

Proposition

(1) Two idempotents $e=e^{2} \in R$ and $f=f^{2} \in R$ we have $e R \cong f R$ if and only if $f \in\{e\}_{1}$.
(2) For $a, x \in R, i, n \in \mathbb{N} \backslash\{0\}$ and $x \in\{a\}_{n}$, we have: $x^{i} \in\left\{a^{i}\right\}_{n} \quad$ and $\quad a^{n} \sim_{1} x^{n}$.
(3) If $a \in R$ is C.C. then $I(a)=r(a)$.
(9) If $\{a, b\} \subseteq R$ is C.C. then $r(a) \cup I(b)=r(b) \cup I(a)$.

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.
(1) a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.
(1) a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.
(2) $I(a)=r(a)$

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.
(1) a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.
(2) $I(a)=r(a)$
(3) Every factor of a is a right and a left factor of a.

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.
(1) a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.
(2) $I(a)=r(a)$
(3) Every factor of a is a right and a left factor of a.
(9) If $a=0$ then R is reversible and hence Dedekind finite (i.e. $\{1\}=\{1\})$. In this case, R is abelian and we have,for any idempotent $e^{2}=e \in R$, that $\overline{\{e\}}=\{e\}$.

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.
(1) a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.
(2) $I(a)=r(a)$
(3) Every factor of a is a right and a left factor of a.
(9) If $a=0$ then R is reversible and hence Dedekind finite (i.e. $\{1\}=\{1\})$. In this case, R is abelian and we have,for any idempotent $e^{2}=e \in R$, that $\overline{\{e\}}=\{e\}$.
(5) If $a=e=e^{2}$ is an idempotent then e is central.

Proposition

Let $a \in R$ be such that $\overline{\{a\}}=\{a\}$.
(1) a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.
(2) $I(a)=r(a)$
(3) Every factor of a is a right and a left factor of a.
(9) If $a=0$ then R is reversible and hence Dedekind finite (i.e. $\{1\}=\{1\})$. In this case, R is abelian and we have,for any idempotent $e^{2}=e \in R$, that $\overline{\{e\}}=\{e\}$.
(5) If $a=e=e^{2}$ is an idempotent then e is central.
(0) If a is a right (or left) invertible element then a and all of its factors are units.

Regular elements

Theorem

Let $a=\operatorname{axa} \in \operatorname{Reg}(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:

Regular elements

Theorem

Let $a=\operatorname{axa} \in \operatorname{Reg}(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:
(1) $e=a x=x a$ is a central idempotent.

Regular elements

Theorem

Let $a=a x a \in \operatorname{Reg}(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:
(1) $e=a x=x a$ is a central idempotent.
(2) $a \in U(e R e)$ commutes with all units in eRe.

Regular elements

Theorem

Let $a=a x a \in \operatorname{Reg}(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:
(1) $e=a x=x a$ is a central idempotent.
(2) $a \in U(e R e)$ commutes with all units in eRe.
(3) eRe is a Dedekinf finite ring.

Regular elements

Theorem

Let $a=a x a \in \operatorname{Reg}(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:
(1) $e=a x=x a$ is a central idempotent.
(2) $a \in U(e R e)$ commutes with all units in eRe.
(3) eRe is a Dedekinf finite ring.
(3) $(1-e) R(1-e)$ is a reversible ring.

Regular elements

Theorem

Let $a=a x a \in \operatorname{Reg}(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:
(1) $e=a x=x a$ is a central idempotent.
(2) $a \in U(e R e)$ commutes with all units in eRe.
(3) $e R e$ is a Dedekinf finite ring.
(9) $(1-e) R(1-e)$ is a reversible ring.

In particular, a is strongly regular and the idempotent ax is central.

Definition

For $a \in R, C(a):=\overline{\{a\}}$. $C(a)$ is a graph: $x, y \in C(a)$ are connected if $x \sim_{1} y$. We can also define a distance in $C(a): d(x, y)=n$ when $x \in\{y\}_{n}$ but $x \notin\{y\}_{n-1}$.

Definition

For $a \in R, C(a):=\overline{\{a\}}$.
$C(a)$ is a graph: $x, y \in C(a)$ are connected if $x \sim_{1} y$.
We can also define a distance in $C(a): d(x, y)=n$ when $x \in\{y\}_{n}$ but $x \notin\{y\}_{n-1}$.

Theorem

(1) For any $n \geq 1$ and $a, b \in R$, we have $a \sim_{n} b$ if and only if there exist $x_{1}, x_{2}, \ldots, x_{n} \in R$ and $y_{1}, y_{2}, \ldots, y_{n} \in R$ such that $a=x_{1} y_{1}, y_{1} x_{1}=x_{2} y_{2}, y_{2} x_{2}=x_{3} y_{3}, \ldots, y_{n} x_{n}=b$.

Definition

For $a \in R, C(a):=\overline{\{a\}}$.
$C(a)$ is a graph: $x, y \in C(a)$ are connected if $x \sim_{1} y$.
We can also define a distance in $C(a): d(x, y)=n$ when $x \in\{y\}_{n}$ but $x \notin\{y\}_{n-1}$.

Theorem

(1) For any $n \geq 1$ and $a, b \in R$, we have $a \sim_{n} b$ if and only if there exist $x_{1}, x_{2}, \ldots, x_{n} \in R$ and $y_{1}, y_{2}, \ldots, y_{n} \in R$ such that $a=x_{1} y_{1}, y_{1} x_{1}=x_{2} y_{2}, y_{2} x_{2}=x_{3} y_{3}, \ldots, y_{n} x_{n}=b$.
(2) If $a \sim_{n} b$, then $a-b$ is a finite sum of additive commutators.

Definition

For $a \in R, C(a):=\overline{\{a\}}$.
$C(a)$ is a graph: $x, y \in C(a)$ are connected if $x \sim_{1} y$.
We can also define a distance in $C(a): d(x, y)=n$ when $x \in\{y\}_{n}$ but $x \notin\{y\}_{n-1}$.

Theorem

(1) For any $n \geq 1$ and $a, b \in R$, we have $a \sim_{n} b$ if and only if there exist $x_{1}, x_{2}, \ldots, x_{n} \in R$ and $y_{1}, y_{2}, \ldots, y_{n} \in R$ such that $a=x_{1} y_{1}, y_{1} x_{1}=x_{2} y_{2}, y_{2} x_{2}=x_{3} y_{3}, \ldots, y_{n} x_{n}=b$.
(2) If $a \sim_{n} b$, then $a-b$ is a finite sum of additive commutators.
(3) If $a \sim_{n} b$ then there exist $x, y \in R$ such that $a x=x b$ and $y a=b y$. We then have $y x \in Z(b)$ and $x y \in Z(a)$, where, for $x \in R, Z(x)$ denotes the centralizer of x.

Examples

(1) Consider the algebra $k\left\langle X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\rangle / I$ where $I=I d I<Y_{1} X_{1}-X_{2} Y_{2}, Y_{2} X_{2}-X_{3} Y_{3}, \ldots Y_{n-1} X_{n-1}-X_{n} Y_{n}>$. We write x_{i}, y_{i} for $X_{i}+I, Y_{i}+I$. In $\overline{x_{1} y_{1}}$. We have that $d\left(x_{1} y_{1}, x_{n} y_{n}\right)=n$.

Examples

(1) Consider the algebra $k\left\langle X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\rangle / I$ where $I=I d I<Y_{1} X_{1}-X_{2} Y_{2}, Y_{2} X_{2}-X_{3} Y_{3}, \ldots Y_{n-1} X_{n-1}-X_{n} Y_{n}>$.
We write x_{i}, y_{i} for $X_{i}+I, Y_{i}+I$. In $\overline{x_{1} y_{1}}$. We have that $d\left(x_{1} y_{1}, x_{n} y_{n}\right)=n$.
(2) Let $R=K\langle x, y\rangle$ be free K-algebra. Since $x+y x^{\prime}=\left(1+y x^{I-1}\right) x \sim_{1} x\left(1+y x^{I-1}\right)=\left(1+x y x_{I-2}\right) x \sim_{1}$ $x\left(1+x y^{I-2}\right)=\left(1+x^{2} y x^{I-3}\right) x \sim_{1} \cdots \sim_{1} x\left(1+x^{I-1} y\right)$, so $d\left(x+y x^{\prime}, x+x^{\prime} y\right) \leq I$. In fact $d\left(x+y x^{\prime}, x+x^{\prime} y\right)=I$.

Examples

(1) Consider the algebra $k\left\langle X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\rangle / I$ where $I=I d I<Y_{1} X_{1}-X_{2} Y_{2}, Y_{2} X_{2}-X_{3} Y_{3}, \ldots Y_{n-1} X_{n-1}-X_{n} Y_{n}>$. We write x_{i}, y_{i} for $X_{i}+I, Y_{i}+I$. In $\overline{x_{1} y_{1}}$. We have that $d\left(x_{1} y_{1}, x_{n} y_{n}\right)=n$.
(2) Let $R=K\langle x, y\rangle$ be free K-algebra. Since $x+y x^{\prime}=\left(1+y x^{I-1}\right) x \sim_{1} x\left(1+y x^{I-1}\right)=\left(1+x y x_{I-2}\right) x \sim_{1}$ $x\left(1+x y^{\prime-2}\right)=\left(1+x^{2} y x^{I-3}\right) x \sim_{1} \cdots \sim_{1} x\left(1+x^{I-1} y\right)$, so $d\left(x+y x^{\prime}, x+x^{\prime} y\right) \leq I$. In fact $d\left(x+y x^{\prime}, x+x^{\prime} y\right)=I$.
(3) Let $a \in k$ where k is a field and $\sigma \in \operatorname{Aut}(k)$. In $R=k[t ; \sigma]$ we have $d\left(a t, \sigma^{n}(a) t\right)=n$.

Examples

(1) Consider the algebra $k\left\langle X_{1}, X_{2}, \ldots, X_{n}, Y_{1}, \ldots, Y_{n}\right\rangle / I$ where $I=I d I<Y_{1} X_{1}-X_{2} Y_{2}, Y_{2} X_{2}-X_{3} Y_{3}, \ldots Y_{n-1} X_{n-1}-X_{n} Y_{n}>$. We write x_{i}, y_{i} for $X_{i}+I, Y_{i}+I$. In $\overline{x_{1} y_{1}}$. We have that $d\left(x_{1} y_{1}, x_{n} y_{n}\right)=n$.
(2) Let $R=K\langle x, y\rangle$ be free K-algebra. Since $x+y x^{\prime}=\left(1+y x^{I-1}\right) x \sim_{1} x\left(1+y x^{I-1}\right)=\left(1+x y x_{I-2}\right) x \sim_{1}$ $x\left(1+x y^{\prime-2}\right)=\left(1+x^{2} y x^{I-3}\right) x \sim_{1} \cdots \sim_{1} x\left(1+x^{I-1} y\right)$, so $d\left(x+y x^{\prime}, x+x^{\prime} y\right) \leq I$. In fact $d\left(x+y x^{\prime}, x+x^{\prime} y\right)=I$.
(3) Let $a \in k$ where k is a field and $\sigma \in \operatorname{Aut}(k)$. In $R=k[t ; \sigma]$ we have $d\left(a t, \sigma^{n}(a) t\right)=n$.
(9) Let $a \in k$ where k is a field and $\sigma \in \operatorname{Aut}(k), n \in \mathbb{N}$. In $R=k[t ; \sigma]$ we have $t^{n}-1$ is C.C.

Periodic elements

Definition

An element $x \in R$ is a-periodic $(a \in Z(R))$ if there exist nonzero natural numbers $n, m \in \mathbb{N}, n \neq m$, such that $x^{n}=a x^{m}$. If $a=1$ we just say that x is periodic. The 0 -periodic elements are the nilpotent elements.

Periodic elements

Definition

An element $x \in R$ is a-periodic $(a \in Z(R))$ if there exist nonzero natural numbers $n, m \in \mathbb{N}, n \neq m$, such that $x^{n}=a x^{m}$. If $a=1$ we just say that x is periodic. The 0 -periodic elements are the nilpotent elements.

Lemma

An element x of a ring R is periodic if there exists $s \in \mathbb{N}$ such that x^{s} is an idempotent.

Periodic elements

Definition

An element $x \in R$ is a-periodic $(a \in Z(R))$ if there exist nonzero natural numbers $n, m \in \mathbb{N}, n \neq m$, such that $x^{n}=a x^{m}$. If $a=1$ we just say that x is periodic. The 0 -periodic elements are the nilpotent elements.

Lemma

An element x of a ring R is periodic if there exists $s \in \mathbb{N}$ such that x^{5} is an idempotent.

Proposition

If $a \in Z(R)$ and $b \sim a$ then b is a-periodic. The set of a-periodic elements is commutatively closed. The class $\overline{\{1\}}$ is contained in the class of periodic elements.

Example

Let $R=M_{2}\left(\mathbb{F}_{2}\right)$. We describe the different classes:

$$
\overline{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} .
$$

Example

Let $R=M_{2}\left(\mathbb{F}_{2}\right)$. We describe the different classes:

$$
\begin{aligned}
& \overline{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} . \\
& \overline{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

Example

Let $R=M_{2}\left(\mathbb{F}_{2}\right)$. We describe the different classes:

$$
\begin{aligned}
& \overline{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} . \\
& \overline{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} . \\
& \overline{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} .
\end{aligned}
$$

Example

Let $R=M_{2}\left(\mathbb{F}_{2}\right)$. We describe the different classes:

$$
\begin{aligned}
\overline{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)} & =\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} \\
\overline{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)} & =\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} \\
\overline{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)} & =\left\{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} . \\
\hline\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right) & =\left\{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\} .
\end{aligned}
$$

Example

Let $R=M_{2}\left(\mathbb{F}_{2}\right)$. We describe the different classes:

$$
\begin{aligned}
& \overline{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\right\} . \\
& \overline{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\right\} . \\
& -\overline{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right)}=\left\{\left(\begin{array}{ll}
0 & 1 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 0
\end{array}\right)\right\} . \\
& \left.-\frac{\left(\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right)}{=\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)}=\left\{\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\right\} . \\
& \left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 1
\end{array}\right),\left(\begin{array}{ll}
1 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 1
\end{array}\right)\right\} .
\end{aligned}
$$

Matrix rings over a field

Lemma

Let k be a field and let $A, B \in R=M_{n}(k)$ be two square matrices such that $A \sim B$, then the characteristic polynomials of A and B are equal.

Matrix rings over a field

Lemma

Let k be a field and let $A, B \in R=M_{n}(k)$ be two square matrices such that $A \sim B$, then the characteristic polynomials of A and B are equal.

Proposition

Let k be a commutative field and $n \in \mathbb{N}$, the class $\overline{\{0\}}$ in $M_{n}(k)$ is the set of nilpotent matrices, moreover $\operatorname{diam}(\overline{\{0\}})=n-1$.

Proposition

Let $U T_{n}(R)$ denote the ring of upper triangular matrices having 1 's on the diagonal. Then $\overline{\{0\}}$ is the set of nilpotent elements.

Proposition

Let R be a field that is not Dedekind finite, then $\operatorname{diam}(R)=\infty$.

Proof.

Sketch: The proof is based on the fact that if $a b=1$ but $b a \neq 1$ then, for $i, j \in \mathbb{N}$

$$
e_{i j}:=b^{i}(1-b a) a^{j} \text { are such that } e_{i j} e k l=\delta_{j k} e_{i, l}
$$

Then for any $n \in \mathbb{N}$ consider $a_{n}:=e_{12}+e_{23}+\cdots+e_{n-1, n}$ this element is nilpotent and $d\left(a_{n}, 0\right)=n-1$.

2-primal rings

R is 2-primal if its set of nilpotent elements coincides with the prime radical.

2-primal rings

R is 2-primal if its set of nilpotent elements coincides with the prime radical. A ring is 2-primal if and only if its minimal prime ideals are completely prime (Shin).

2-primal rings

R is 2-primal if its set of nilpotent elements coincides with the prime radical. A ring is 2 -primal if and only if its minimal prime ideals are completely prime (Shin).

Proposition

(a) Let R be a ring such that $\{0\}_{1}$ is contained in the center $Z(R)$. Then R is 2-primal.

2-primal rings

R is 2-primal if its set of nilpotent elements coincides with the prime radical. A ring is 2-primal if and only if its minimal prime ideals are completely prime (Shin).

Proposition

(a) Let R be a ring such that $\{0\}_{1}$ is contained in the center $Z(R)$. Then R is 2-primal.
(b) The prime radical $P(R)$ of a ring R is commutatively closed if and only if R is 2-primal.

Example

The converse of (a) in the above proposition is not true. If k is a field, the ring $R=k[x][t ; \sigma] /\left(t^{2}\right)$, where σ is the k-algebra map defined by $\sigma(x)=0$, is easily seen to be 2-primal but $x t+\left(t^{2}\right) \in\{0\}_{1}$ and is not central.

Definition

For a subset $E \subseteq R$ the commutative depth of E, denoted $\operatorname{Cd}(E)$, is defined to be the smallest $I \in \mathbb{N}$ such that $E_{I}=E_{I+1}$ when such an / exists. If no such integer / exists then we put $\operatorname{Cd}(E)=\infty$.

Definition

For a subset $E \subseteq R$ the commutative depth of E, denoted $\operatorname{Cd}(E)$, is defined to be the smallest $I \in \mathbb{N}$ such that $E_{I}=E_{I+1}$ when such an / exists. If no such integer / exists then we put $\operatorname{Cd}(E)=\infty$.

Examples

(1) E is commutatively closed if and only if $\operatorname{Cd}(E)=0$

Definition

For a subset $E \subseteq R$ the commutative depth of E, denoted $\operatorname{Cd}(E)$, is defined to be the smallest $I \in \mathbb{N}$ such that $E_{I}=E_{I+1}$ when such an / exists. If no such integer / exists then we put $\operatorname{Cd}(E)=\infty$.

Examples

(1) E is commutatively closed if and only if $\operatorname{Cd}(E)=0$
(2) If R is the upper triangular matrix ring over \mathbb{F}_{2} then $\operatorname{Cd}(R)=1$.

Definition

For a subset $E \subseteq R$ the commutative depth of E, denoted $\operatorname{Cd}(E)$, is defined to be the smallest $I \in \mathbb{N}$ such that $E_{I}=E_{I+1}$ when such an / exists. If no such integer / exists then we put $\operatorname{Cd}(E)=\infty$.

Examples

(1) E is commutatively closed if and only if $\operatorname{Cd}(E)=0$
(2) If R is the upper triangular matrix ring over \mathbb{F}_{2} then $\operatorname{Cd}(R)=1$.
(3) For subsets E and F of a ring R, we have $C d(E \cup F) \leq \max \{C d(E), C d(F)\}$

Open problems

Question 1: Characterize the rings R such that $\operatorname{diam}(R)=1$.

Open problems

Question 1: Characterize the rings R such that $\operatorname{diam}(R)=1$. Question 2: Let k be a field, compute $\operatorname{Diam}\left(M_{n}(k)\right)$.

THANK YOU! Happy birthday
 Walter!

