Celebrating Walter Ferrer 70th birthday

Commutatively Closed Sets in Rings

Joint work with Mona Abdi and Dilshad Alghazzawi

Colloquium on Algebras and Representations Quantum 19

Montevideo, March 2019

R denotes an associative ring with unity. U(R) is the set of invertible elements and N(R) is the set of nilpotent elements. For $a \in R$, $r(a) = \{x \in R \mid ax = 0\}$.

• *R* is Dedekind finite iff $\forall a, b \in R$, $ab = 1 \Rightarrow ba = 1$.

- *R* is Dedekind finite iff $\forall a, b \in R$, $ab = 1 \Rightarrow ba = 1$.
- *R* is reversible iff $\forall a, b \in R$, $ab = 0 \Rightarrow ba = 0$.

- *R* is Dedekind finite iff $\forall a, b \in R$, $ab = 1 \Rightarrow ba = 1$.
- *R* is reversible iff $\forall a, b \in R$, $ab = 0 \Rightarrow ba = 0$.
- *R* is symmetric iff ∀a, b, c ∈ R, abc = 0 ⇒ acb = 0. Equivalently *R* is symmetric iff ∀a, b, c ∈ R we have bc ∈ r(a) ⇒ cb ∈ r(a).

- *R* is Dedekind finite iff $\forall a, b \in R$, $ab = 1 \Rightarrow ba = 1$.
- *R* is reversible iff $\forall a, b \in R$, $ab = 0 \Rightarrow ba = 0$.
- *R* is symmetric iff $\forall a, b, c \in R$, $abc = 0 \Rightarrow acb = 0$. Equivalently *R* is symmetric iff $\forall a, b, c \in R$ we have $bc \in r(a) \Rightarrow cb \in r(a)$.
- $\forall a, b \in R, ab \in 1 U(R) \Leftrightarrow ba \in 1 U(R).$

R denotes an associative ring with unity. U(R) is the set of invertible elements and N(R) is the set of nilpotent elements. For $a \in R$, $r(a) = \{x \in R \mid ax = 0\}$.

- *R* is Dedekind finite iff $\forall a, b \in R$, $ab = 1 \Rightarrow ba = 1$.
- *R* is reversible iff $\forall a, b \in R$, $ab = 0 \Rightarrow ba = 0$.
- *R* is symmetric iff $\forall a, b, c \in R$, $abc = 0 \Rightarrow acb = 0$. Equivalently *R* is symmetric iff $\forall a, b, c \in R$ we have $bc \in r(a) \Rightarrow cb \in r(a)$.
- $\forall a, b \in R, ab \in 1 U(R) \Leftrightarrow ba \in 1 U(R).$

Definition

R denotes an associative ring with unity. U(R) is the set of invertible elements and N(R) is the set of nilpotent elements. For $a \in R$, $r(a) = \{x \in R \mid ax = 0\}$.

- *R* is Dedekind finite iff $\forall a, b \in R$, $ab = 1 \Rightarrow ba = 1$.
- *R* is reversible iff $\forall a, b \in R$, $ab = 0 \Rightarrow ba = 0$.
- R is symmetric iff ∀a, b, c ∈ R, abc = 0 ⇒ acb = 0. Equivalently R is symmetric iff ∀a, b, c ∈ R we have bc ∈ r(a) ⇒ cb ∈ r(a).
- $\forall a, b \in R, ab \in 1 U(R) \Leftrightarrow ba \in 1 U(R).$

Definition

A subset $S \subseteq R$ is commutatively closed if and only if $ab \in S \Rightarrow ba \in S$

(日)

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings

æ

R is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).

▲ (日) ▶ ▲ (日)

э

- *R* is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).
- **2** U(R) 1 is always commutatively closed (Abbreviated CC).

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

- *R* is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).
- **2** U(R) 1 is always commutatively closed (Abbreviated CC).
- $N(R) = \{x \in R \mid \exists n \in \mathbb{N} : x^n = 0\}$ is always C.C..

< 同 > < 三 > < 三 >

- *R* is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).
- 2 U(R) 1 is always commutatively closed (Abbreviated CC).
- $N(R) = \{x \in R \mid \exists n \in \mathbb{N} : x^n = 0\}$ is always C.C..
- **③** $S = Reg(R) = \{r \in R \mid \exists x \in R : r = rxr\}$ (resp.
 - S = Ureg(R) or $S = S_{\pi}Reg(R)$) then S 1 is C.C..

► < ∃ ►</p>

- *R* is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).
- 2 U(R) 1 is always commutatively closed (Abbreviated CC).
- $N(R) = \{x \in R \mid \exists n \in \mathbb{N} : x^n = 0\}$ is always C.C..
- $S = Reg(R) = \{r \in R \mid \exists x \in R : r = rxr\}$ (resp. S = Ureg(R) or $S = S_{\pi}Reg(R)$) then S - 1 is C.C..
- **5** M_R a right *R*-module, $\{u \in R \mid ann_M(u-1) \neq 0\}$ is C.C..
- In particular $Z_r(R) + 1$ is CC.

< 同 > < 三 > < 三 >

- *R* is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).
- 2 U(R) 1 is always commutatively closed (Abbreviated CC).
- $N(R) = \{x \in R \mid \exists n \in \mathbb{N} : x^n = 0\}$ is always C.C..
- $S = Reg(R) = \{r \in R \mid \exists x \in R : r = rxr\}$ (resp. S = Ureg(R) or $S = S_{\pi}Reg(R)$) then S - 1 is C.C..
- **3** M_R a right *R*-module, $\{u \in R \mid ann_M(u-1) \neq 0\}$ is C.C..
- In particular $Z_r(R) + 1$ is CC.
- (Gurgun) The set of strongly clean elements $Scl(R) = \{x \in R \mid \exists u \in U(R), e \in Idem(R) : x = e + u, ue = eu\}$ is C.C..

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

- *R* is Dedekind finite (resp. reversible) iff {1} (resp. {0} is commutatively closed).
- 2 U(R) 1 is always commutatively closed (Abbreviated CC).
- $N(R) = \{x \in R \mid \exists n \in \mathbb{N} : x^n = 0\}$ is always C.C..
- $S = Reg(R) = \{r \in R \mid \exists x \in R : r = rxr\}$ (resp. S = Ureg(R) or $S = S_{\pi}Reg(R)$) then S - 1 is C.C..
- **9** M_R a right *R*-module, $\{u \in R \mid ann_M(u-1) \neq 0\}$ is C.C..
- In particular $Z_r(R) + 1$ is CC.
- (Gurgun) The set of strongly clean elements $Scl(R) = \{x \in R \mid \exists u \in U(R), e \in Idem(R) : x = e + u, ue = eu\}$ is C.C..

くロ と く 同 と く ヨ と 一

э

(Cline) The set of Drazin invertible elements is also C.C..

() For $S \subseteq R$ we define an ascending chain $S_i \subseteq R$, $i \ge 0$:

First Page

 $S_0 = S$ and, for i > 0, $S_i = \{ab \mid ba \in S_{i-1}\}$

We denote \overline{S} the union $\overline{S} = \bigcup_{i \ge 0} S_i$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

For S ⊆ R we define an ascending chain S_i ⊆ R, i ≥ 0:
S₀ = S and, for i > 0, S_i = {ab | ba ∈ S_{i-1}}
We denote S the union S = U_{i≥0} S_i.
For x, y ∈ R we define: x ~ y if and only if y ∈ {x}

First Page

伺 ト イヨ ト イヨ ト

э

For S ⊆ R we define an ascending chain S_i ⊆ R, i ≥ 0: S₀ = S and, for i > 0, S_i = {ab | ba ∈ S_{i-1}} We denote S̄ the union S̄ = ⋃_{i≥0} S_i.
For x, y ∈ R we define: x ~ y if and only if y ∈ {x}
For any n ≥ 0, we also define a ~_n b if and only if b ∈ {a}_n.

First Page

.

For S ⊆ R we define an ascending chain S_i ⊆ R, i ≥ 0: S₀ = S and, for i > 0, S_i = {ab | ba ∈ S_{i-1}} We denote S̄ the union S̄ = U_{i≥0} S_i.
For x, y ∈ R we define: x ~ y if and only if y ∈ {x}
For any n ≥ 0, we also define a ~_n b if and only if b ∈ {a}_n.

• \overline{S} is the smallest C.C. subset of R containing S.

First Page

For S ⊆ R we define an ascending chain S_i ⊆ R, i ≥ 0: S₀ = S and, for i > 0, S_i = {ab | ba ∈ S_{i-1}} We denote S̄ the union S̄ = U_{i≥0} S_i.
For x, y ∈ R we define: x ~ y if and only if y ∈ {x}
For any n ≥ 0, we also define a ~_n b if and only if b ∈ {a}_n.

• \overline{S} is the smallest C.C. subset of R containing S.

First Page

• $S^U = {usu^{-1} \mid u \in U(R), s \in S} \subseteq S_1.$

伺 ト イヨ ト イヨト

For S ⊆ R we define an ascending chain S_i ⊆ R, i ≥ 0: S₀ = S and, for i > 0, S_i = {ab | ba ∈ S_{i-1}} We denote S̄ the union S̄ = ⋃_{i≥0} S_i.
For x, y ∈ R we define: x ~ y if and only if y ∈ {x}
For any n ≥ 0, we also define a ~_n b if and only if b ∈ {a}_n.

• \overline{S} is the smallest C.C. subset of R containing S.

First Page

- $S^U = {usu^{-1} \mid u \in U(R), s \in S} \subseteq S_1.$
- If R is a division ring and $S \subseteq R$ then $S^U = \overline{S}$

伺 ト イヨト イヨト

For S ⊆ R we define an ascending chain S_i ⊆ R, i ≥ 0: S₀ = S and, for i > 0, S_i = {ab | ba ∈ S_{i-1}} We denote S̄ the union S̄ = ⋃_{i≥0} S_i.
For x, y ∈ R we define: x ~ y if and only if y ∈ {x}
For any n ≥ 0, we also define a ~_n b if and only if b ∈ {a}_n.

• \overline{S} is the smallest C.C. subset of R containing S.

First Page

•
$$S^U = \{usu^{-1} \mid u \in U(R), s \in S\} \subseteq S_1.$$

• If R is a division ring and $S \subseteq R$ then $S^U = \overline{S}$

Remark

The set of commutatively closed subsets of R defines a topology on R.

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings

イロト イヨト イヨト イヨト

э

Morphisms

Proposition

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

• For any $X \subseteq R$, $\varphi(\overline{X}) \subseteq \overline{\{\varphi(X)\}}$.

▲ 同 ▶ ▲ 三

If $\varphi : R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R$, $\varphi(\overline{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If T ⊆ S is commutatively closed in S, then φ⁻¹(T) is a commutatively closed set in R.

If $\varphi : R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R$, $\varphi(\overline{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If T ⊆ S is commutatively closed in S, then φ⁻¹(T) is a commutatively closed set in R.
- If S is reversible, $ker(\varphi)$ is commutatively closed.

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R$, $\varphi(\overline{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If T ⊆ S is commutatively closed in S, then φ⁻¹(T) is a commutatively closed set in R.
- If S is reversible, $ker(\varphi)$ is commutatively closed.
- If S is Dedekind finite then $\varphi^{-1}(\{1\})$ is commutatively closed.

If $\varphi: R \longrightarrow S$ is a ring homomorphism, then

- For any $X \subseteq R$, $\varphi(\overline{X}) \subseteq \overline{\{\varphi(X)\}}$.
- If T ⊆ S is commutatively closed in S, then φ⁻¹(T) is a commutatively closed set in R.
- If S is reversible, ker(φ) is commutatively closed.
- If S is Dedekind finite then $\varphi^{-1}(\{1\})$ is commutatively closed.

• If φ is an isomorphism then for any $X \subseteq R$, we have $\overline{\varphi(X)} = \varphi(\overline{X})$.

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

• $(1+r(S))S \subseteq S_1$ and $S(1+l(S)) \subseteq S_1$

→ < ∃ →</p>

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

- $(1+r(S))S \subseteq S_1$ and $S(1+l(S)) \subseteq S_1$
- 3 For any $n \ge 1$ we have $(1 + r(S))^n S \cup S(1 + l(S))^n \subseteq S_n$.

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

- $(1+r(S))S \subseteq S_1$ and $S(1+I(S)) \subseteq S_1$
- **2** For any $n \ge 1$ we have $(1 + r(S))^n S \cup S(1 + l(S))^n \subseteq S_n$.
- **3** If a = xy, then $(y + r(x))^n x \in \{a\}_n$ and $y(x + l(y))^n \in \{a\}_n$

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

•
$$(1+r(S))S \subseteq S_1$$
 and $S(1+I(S)) \subseteq S_1$

- **2** For any $n \ge 1$ we have $(1 + r(S))^n S \cup S(1 + l(S))^n \subseteq S_n$.
- **3** If a = xy, then $(y + r(x))^n x \in \{a\}_n$ and $y(x + l(y))^n \in \{a\}_n$

Proposition

• Two idempotents $e = e^2 \in R$ and $f = f^2 \in R$ we have $eR \cong fR$ if and only if $f \in \{e\}_1$.

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

•
$$(1+r(S))S \subseteq S_1$$
 and $S(1+I(S)) \subseteq S_1$

- 3 For any $n \ge 1$ we have $(1 + r(S))^n S \cup S(1 + l(S))^n \subseteq S_n$.
- **3** If a = xy, then $(y + r(x))^n x \in \{a\}_n$ and $y(x + l(y))^n \in \{a\}_n$

Proposition

- Two idempotents e = e² ∈ R and f = f² ∈ R we have eR ≅ fR if and only if f ∈ {e}₁.
- **②** For $a, x \in R$, $i, n \in \mathbb{N} \setminus \{0\}$ and $x \in \{a\}_n$, we have: $x^i \in \{a^i\}_n$ and $a^n \sim_1 x^n$.

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

•
$$(1+r(S))S \subseteq S_1$$
 and $S(1+I(S)) \subseteq S_1$

- 3 For any $n \ge 1$ we have $(1 + r(S))^n S \cup S(1 + l(S))^n \subseteq S_n$.
- **3** If a = xy, then $(y + r(x))^n x \in \{a\}_n$ and $y(x + l(y))^n \in \{a\}_n$

Proposition

- Two idempotents e = e² ∈ R and f = f² ∈ R we have eR ≅ fR if and only if f ∈ {e}₁.
- Solution For $a, x \in R$, $i, n \in \mathbb{N} \setminus \{0\}$ and $x \in \{a\}_n$, we have: $x^i \in \{a^i\}_n$ and $a^n \sim_1 x^n$.

3 If
$$a \in R$$
 is C.C. then $l(a) = r(a)$.

Let S be a subset of a ring R. r(S) (I(S)) denotes the right (left) annihilator of S.

•
$$(1+r(S))S \subseteq S_1$$
 and $S(1+I(S)) \subseteq S_1$

- 3 For any $n \ge 1$ we have $(1 + r(S))^n S \cup S(1 + l(S))^n \subseteq S_n$.
- **3** If a = xy, then $(y + r(x))^n x \in \{a\}_n$ and $y(x + l(y))^n \in \{a\}_n$

Proposition

- Two idempotents $e = e^2 \in R$ and $f = f^2 \in R$ we have $eR \cong fR$ if and only if $f \in \{e\}_1$.
- So For $a, x \in R$, $i, n \in \mathbb{N} \setminus \{0\}$ and $x \in \{a\}_n$, we have: $x^i \in \{a^i\}_n$ and $a^n \sim_1 x^n$.

3 If
$$a \in R$$
 is C.C. then $l(a) = r(a)$.

• If $\{a, b\} \subseteq R$ is C.C. then $r(a) \cup l(b) = r(b) \cup l(a)$.

Let $a \in R$ be such that $\overline{\{a\}} = \{a\}$.

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings

イロト イボト イヨト イヨト

æ

Let $a \in R$ be such that $\overline{\{a\}} = \{a\}$.

Let $a \in R$ be such that $\overline{\{a\}} = \{a\}$.

- a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.
- **2** l(a) = r(a)

Proposition

Let $a \in R$ be such that $\overline{\{a\}} = \{a\}$.

 a commutes with its factors and with units. If 2 is not a zero divisor then a commutes with every idempotent elements.

Severy factor of a is a right and a left factor of a.

Proposition

Let $a \in R$ be such that $\{a\} = \{a\}$.

$$(a) = r(a)$$

- Severy factor of a is a right and a left factor of a.

Proposition

Let $a \in R$ be such that $\{a\} = \{a\}$.

$$(a) = r(a)$$

- Severy factor of a is a right and a left factor of a.
- **5** If $a = e = e^2$ is an idempotent then e is central.

Proposition

Let $a \in R$ be such that $\{a\} = \{a\}$.

- Severy factor of a is a right and a left factor of a.
- **(**) If $a = e = e^2$ is an idempotent then e is central.
- If a is a right (or left) invertible element then a and all of its factors are units.

Let $a = axa \in Reg(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:

• e = ax = xa is a central idempotent.

- e = ax = xa is a central idempotent.
- 2 $a \in U(eRe)$ commutes with all units in eRe.

- e = ax = xa is a central idempotent.
- 2 $a \in U(eRe)$ commutes with all units in eRe.
- **③** eRe is a Dedekinf finite ring.

- e = ax = xa is a central idempotent.
- 2 $a \in U(eRe)$ commutes with all units in eRe.
- eRe is a Dedekinf finite ring.
- (1-e)R(1-e) is a reversible ring.

Let $a = axa \in Reg(R)$ be a regular element of a ring R. Then a is commutatively closed if and only if the following conditions are satisfied:

- e = ax = xa is a central idempotent.
- 2 $a \in U(eRe)$ commutes with all units in eRe.
- **③** eRe is a Dedekinf finite ring.
- (1-e)R(1-e) is a reversible ring.

In particular, a is strongly regular and the idempotent ax is central.

For $a \in R$, $C(a) := \overline{\{a\}}$. C(a) is a graph: $x, y \in C(a)$ are connected if $x \sim_1 y$. We can also define a distance in C(a): d(x, y) = n when $x \in \{y\}_n$ but $x \notin \{y\}_{n-1}$.

For $a \in R$, $C(a) := \overline{\{a\}}$. C(a) is a graph: $x, y \in C(a)$ are connected if $x \sim_1 y$. We can also define a distance in C(a): d(x, y) = n when $x \in \{y\}_n$ but $x \notin \{y\}_{n-1}$.

Theorem

• For any $n \ge 1$ and $a, b \in R$, we have $a \sim_n b$ if and only if there exist $x_1, x_2, \ldots, x_n \in R$ and $y_1, y_2, \ldots, y_n \in R$ such that $a = x_1y_1, y_1x_1 = x_2y_2, y_2x_2 = x_3y_3, \ldots, y_nx_n = b$.

For $a \in R$, $C(a) := \overline{\{a\}}$. C(a) is a graph: $x, y \in C(a)$ are connected if $x \sim_1 y$. We can also define a distance in C(a): d(x, y) = n when $x \in \{y\}_n$ but $x \notin \{y\}_{n-1}$.

Theorem

• For any $n \ge 1$ and $a, b \in R$, we have $a \sim_n b$ if and only if there exist $x_1, x_2, \ldots, x_n \in R$ and $y_1, y_2, \ldots, y_n \in R$ such that $a = x_1y_1, y_1x_1 = x_2y_2, y_2x_2 = x_3y_3, \ldots, y_nx_n = b$.

2 If $a \sim_n b$, then a - b is a finite sum of additive commutators.

For $a \in R$, $C(a) := \overline{\{a\}}$. C(a) is a graph: $x, y \in C(a)$ are connected if $x \sim_1 y$. We can also define a distance in C(a): d(x, y) = n when $x \in \{y\}_n$ but $x \notin \{y\}_{n-1}$.

Theorem

- For any $n \ge 1$ and $a, b \in R$, we have $a \sim_n b$ if and only if there exist $x_1, x_2, \ldots, x_n \in R$ and $y_1, y_2, \ldots, y_n \in R$ such that $a = x_1y_1, y_1x_1 = x_2y_2, y_2x_2 = x_3y_3, \ldots, y_nx_n = b$.
- 2 If $a \sim_n b$, then a b is a finite sum of additive commutators.
- If a ~_n b then there exist x, y ∈ R such that ax = xb and ya = by. We then have yx ∈ Z(b) and xy ∈ Z(a), where, for x ∈ R, Z(x) denotes the centralizer of x.

< ロ > < 同 > < 三 > < 三 >

Examples

• Consider the algebra $k \langle X_1, X_2, ..., X_n, Y_1, ..., Y_n \rangle / I$ where $I = IdI < Y_1X_1 - X_2Y_2, Y_2X_2 - X_3Y_3, ..., Y_{n-1}X_{n-1} - X_nY_n >$. We write x_i, y_i for $X_i + I, Y_i + I$. In $\overline{x_1y_1}$. We have that $d(x_1y_1, x_ny_n) = n$.

Examples

- Consider the algebra $k \langle X_1, X_2, ..., X_n, Y_1, ..., Y_n \rangle / I$ where $I = IdI < Y_1X_1 - X_2Y_2, Y_2X_2 - X_3Y_3, ..., Y_{n-1}X_{n-1} - X_nY_n >$. We write x_i, y_i for $X_i + I, Y_i + I$. In $\overline{x_1y_1}$. We have that $d(x_1y_1, x_ny_n) = n$.
- ② Let $R = K \langle x, y \rangle$ be free *K*-algebra. Since $x + yx^{l} = (1 + yx^{l-1})x \sim_{1} x(1 + yx^{l-1}) = (1 + xyx_{l-2})x \sim_{1} x(1 + xy^{l-2}) = (1 + x^{2}yx^{l-3})x \sim_{1} \cdots \sim_{1} x(1 + x^{l-1}y)$, so $d(x + yx^{l}, x + x^{l}y) \leq l$. In fact $d(x + yx^{l}, x + x^{l}y) = l$.

Examples

- Consider the algebra $k \langle X_1, X_2, ..., X_n, Y_1, ..., Y_n \rangle / I$ where $I = IdI < Y_1X_1 - X_2Y_2, Y_2X_2 - X_3Y_3, ..., Y_{n-1}X_{n-1} - X_nY_n > .$ We write x_i, y_i for $X_i + I, Y_i + I$. In $\overline{x_1y_1}$. We have that $d(x_1y_1, x_ny_n) = n.$
- ② Let $R = K \langle x, y \rangle$ be free *K*-algebra. Since $x + yx^{l} = (1 + yx^{l-1})x \sim_{1} x(1 + yx^{l-1}) = (1 + xyx_{l-2})x \sim_{1} x(1 + xy^{l-2}) = (1 + x^{2}yx^{l-3})x \sim_{1} \cdots \sim_{1} x(1 + x^{l-1}y)$, so $d(x + yx^{l}, x + x^{l}y) \leq l$. In fact $d(x + yx^{l}, x + x^{l}y) = l$.
- So Let $a \in k$ where k is a field and $\sigma \in Aut(k)$. In $R = k[t; \sigma]$ we have $d(at, \sigma^n(a)t) = n$.

э

Examples

- Consider the algebra $k \langle X_1, X_2, ..., X_n, Y_1, ..., Y_n \rangle / I$ where $I = IdI < Y_1X_1 - X_2Y_2, Y_2X_2 - X_3Y_3, ..., Y_{n-1}X_{n-1} - X_nY_n > .$ We write x_i, y_i for $X_i + I, Y_i + I$. In $\overline{x_1y_1}$. We have that $d(x_1y_1, x_ny_n) = n.$
- ② Let $R = K \langle x, y \rangle$ be free *K*-algebra. Since $x + yx^{l} = (1 + yx^{l-1})x \sim_{1} x(1 + yx^{l-1}) = (1 + xyx_{l-2})x \sim_{1} x(1 + xy^{l-2}) = (1 + x^{2}yx^{l-3})x \sim_{1} \cdots \sim_{1} x(1 + x^{l-1}y)$, so $d(x + yx^{l}, x + x^{l}y) \leq l$. In fact $d(x + yx^{l}, x + x^{l}y) = l$.
- So Let $a \in k$ where k is a field and $\sigma \in Aut(k)$. In $R = k[t; \sigma]$ we have $d(at, \sigma^n(a)t) = n$.

・ 同 ト ・ ヨ ト ・ ヨ ト …

э

• Let $a \in k$ where k is a field and $\sigma \in Aut(k)$, $n \in \mathbb{N}$. In $R = k[t; \sigma]$ we have $t^n - 1$ is C.C.

Periodic elements

Definition

An element $x \in R$ is a-periodic $(a \in Z(R))$ if there exist nonzero natural numbers $n, m \in \mathbb{N}$, $n \neq m$, such that $x^n = ax^m$. If a = 1 we just say that x is periodic. The 0-periodic elements are the nilpotent elements.

Periodic elements

Definition

An element $x \in R$ is a-periodic $(a \in Z(R))$ if there exist nonzero natural numbers $n, m \in \mathbb{N}$, $n \neq m$, such that $x^n = ax^m$. If a = 1 we just say that x is periodic. The 0-periodic elements are the nilpotent elements.

Lemma

An element x of a ring R is periodic if there exists $s \in \mathbb{N}$ such that x^s is an idempotent.

Periodic elements

Definition

An element $x \in R$ is a-periodic $(a \in Z(R))$ if there exist nonzero natural numbers $n, m \in \mathbb{N}$, $n \neq m$, such that $x^n = ax^m$. If a = 1 we just say that x is periodic. The 0-periodic elements are the nilpotent elements.

Lemma

An element x of a ring R is periodic if there exists $s \in \mathbb{N}$ such that x^s is an idempotent.

Proposition

If $a \in Z(R)$ and $b \sim a$ then b is a-periodic. The set of a-periodic elements is commutatively closed. The class $\overline{\{1\}}$ is contained in the class of periodic elements.

▲ □ ▶ ▲ □ ▶ ▲

Let $R = M_2(\mathbb{F}_2)$. We describe the different classes:

First Page

•
$$\overline{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

Let $R = M_2(\mathbb{F}_2)$. We describe the different classes:

First Page

•
$$\overline{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

•
$$\overline{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

Let $R = M_2(\mathbb{F}_2)$. We describe the different classes:

First Page

•
$$\overline{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

•
$$\overline{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

•
$$\overline{\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings

Let $R = M_2(\mathbb{F}_2)$. We describe the different classes:

First Page

•
$$\overline{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$

• $\overline{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$
• $\overline{\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$
• $\overline{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings

Let $R = M_2(\mathbb{F}_2)$. We describe the different classes:

First Page

•
$$\overline{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \right\}.$$
•
$$\overline{\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$
•
$$\overline{\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}} = \left\{ \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \right\}.$$
•
$$\overline{\begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}} = \left\{ \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ 1 & 1 \end{pmatrix} \right\}.$$
•
$$\overline{\begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}} = \left\{ \begin{pmatrix} 1 & 0 \\ 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 0 & 1 \end{pmatrix} \right\}.$$

Joint work with Mona Abdi and Dilshad Alghazzawi

Matrix rings over a field

Lemma

Let k be a field and let $A, B \in R = M_n(k)$ be two square matrices such that $A \sim B$, then the characteristic polynomials of A and B are equal.

Matrix rings over a field

Lemma

Let k be a field and let $A, B \in R = M_n(k)$ be two square matrices such that $A \sim B$, then the characteristic polynomials of A and B are equal.

Proposition

Let k be a commutative field and $n \in \mathbb{N}$, the class $\overline{\{0\}}$ in $M_n(k)$ is the set of nilpotent matrices, moreover diam $(\overline{\{0\}}) = n - 1$.

Let $UT_n(R)$ denote the ring of upper triangular matrices having 1's on the diagonal. Then $\overline{\{0\}}$ is the set of nilpotent elements.

Proposition

Let R be a field that is not Dedekind finite, then $diam(R) = \infty$.

Proof.

Sketch: The proof is based on the fact that if ab=1 but ba
eq 1 then, for $i,j\in\mathbb{N}$

$$e_{ij} := b^i (1 - ba) a^j$$
 are such that $e_{ij} e_k k l = \delta_{jk} e_{i,l}$

A (1) < A (1) < A (1) </p>

Then for any $n \in \mathbb{N}$ consider $a_n := e_{12} + e_{23} + \cdots + e_{n-1,n}$ this element is nilpotent and $d(a_n, 0) = n - 1$.

R is 2-primal if its set of nilpotent elements coincides with the prime radical.

R is 2-primal if its set of nilpotent elements coincides with the prime radical. A ring is 2-primal if and only if its minimal prime ideals are completely prime (Shin).

R is 2-primal if its set of nilpotent elements coincides with the prime radical. A ring is 2-primal if and only if its minimal prime ideals are completely prime (Shin).

Proposition

(a) Let R be a ring such that $\{0\}_1$ is contained in the center Z(R). Then R is 2-primal.

R is 2-primal if its set of nilpotent elements coincides with the prime radical. A ring is 2-primal if and only if its minimal prime ideals are completely prime (Shin).

Proposition

- (a) Let R be a ring such that $\{0\}_1$ is contained in the center Z(R). Then R is 2-primal.
- (b) The prime radical P(R) of a ring R is commutatively closed if and only if R is 2-primal.

Example

The converse of (a) in the above proposition is not true. If k is a field, the ring $R = k[x][t; \sigma]/(t^2)$, where σ is the k-algebra map defined by $\sigma(x) = 0$, is easily seen to be 2-primal but $xt + (t^2) \in \{0\}_1$ and is not central.

For a subset $E \subseteq R$ the commutative depth of E, denoted Cd(E), is defined to be the smallest $I \in \mathbb{N}$ such that $E_I = E_{I+1}$ when such an I exists. If no such integer I exists then we put $Cd(E) = \infty$.

For a subset $E \subseteq R$ the commutative depth of E, denoted Cd(E), is defined to be the smallest $I \in \mathbb{N}$ such that $E_I = E_{I+1}$ when such an I exists. If no such integer I exists then we put $Cd(E) = \infty$.

Examples

• E is commutatively closed if and only if Cd(E) = 0

For a subset $E \subseteq R$ the commutative depth of E, denoted Cd(E), is defined to be the smallest $I \in \mathbb{N}$ such that $E_I = E_{I+1}$ when such an I exists. If no such integer I exists then we put $Cd(E) = \infty$.

Examples

- E is commutatively closed if and only if Cd(E) = 0
- If R is the upper triangular matrix ring over 𝑘₂ then Cd(R) = 1.

→ < Ξ → <</p>

For a subset $E \subseteq R$ the commutative depth of E, denoted Cd(E), is defined to be the smallest $I \in \mathbb{N}$ such that $E_I = E_{I+1}$ when such an I exists. If no such integer I exists then we put $Cd(E) = \infty$.

Examples

- E is commutatively closed if and only if Cd(E) = 0
- If R is the upper triangular matrix ring over 𝔽₂ then Cd(R) = 1.
- For subsets *E* and *F* of a ring *R*, we have $Cd(E \cup F) \le max\{Cd(E), Cd(F)\}$

Open problems

Question 1: Characterize the rings R such that diam(R) = 1.

177 ▶ ▲ 3

э

Open problems

Question 1: Characterize the rings R such that diam(R) = 1. Question 2: Let k be a field, compute $Diam(M_n(k))$.

THANK YOU ! Happy birthday Walter !

Joint work with Mona Abdi and Dilshad Alghazzawi Commutatively Closed Sets in Rings