A classification of two-generated cyclic-by-abelian finite p-groups

D. García

Universidad de Murcia, Spain
a joint work with

O. Broche ${ }^{1}$ \& Á. del Río ${ }^{2}$.
${ }^{1}$ Universidade Federal de Lavras, Brazil
${ }^{2}$ Universidad de Murcia, Spain

Abstract

A fundamental problem in group theory is to classify up to isomorphism groups satisfying certain conditions in terms of some group invariants. A relevant family is that of finite p-groups. However, a quotation attributed to P. Hall states that "there is not apparent limit to the complication of a prime-power group". Despite that one should expect that the literature contains classifications of some families of p-groups satisfying some strong conditions. Our initial motivation was to study the Modular Isomorphism Problem, which states that the isomorphism type of the group algebra of a p-group over a field of characteristic p determines the isomorphism type of the group, in the family of groups with cyclic derived subgroups. The special case when G is 2 -generated of the class of G at most 2 was solved recently [2]. We expected that at least for 2-generated such groups a classification must be available in the literature. However this is not the case in general unless stronger conditions are imposed $[1,3,4]$. We fill this gap. More precisely we give a complete classification for the two generated cyclic-by-abelian finite groups of prime power order, associating to each one of such groups a tuple of 12 numerical invariants.

Keywords

Finite p-groups.

References

[1] A. Ahmad, A. Magidin, and R.F. Morse, Two generator p-groups of nilpotency class 2 and their conjugacy classes, Publ. Math. Debrecen 81 (2012), no. 1-2, 145-166. MR 2957506.
[2] O. Broche and Á. del Río, The modular isomorphism problem for 2generated groups of class 2, Indian Journal of Pure and Applied Mathematics.
[3] R. J. Miech, On p-groups with a cyclic commutator subgroup, J. Austral. Math. Soc. 20 (1975), no. 2, 178-198. MR 0404441.
[4] Q. Song, Finite two-generator p-groups with cyclic derived group, Communications in Algebra 41 (2013), no. 4, 1499-1513.

