A norm theorem for differential forms

Diksha Mukhija

Université d'Artois, France

Abstract

In this talk, we let F to be a field of characteristic 2. The bijectivity [2] between the Kato-Milne cohomology group $H_2^{n+1}(F)$ and the Witt group $W_q(F)$ enables us to translate certain results from the frame of quadratic forms to differential forms and vice verse. The cohomology group $H_2^{n+1}(F)$ is the cokernel of the Artin-Schreier operator $\wp: \Omega_F^n \to \Omega_F^n/\Omega_F^{n-1}$ given by $x \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n} \mapsto (x^2 - x) \frac{dx_1}{x_1} \wedge \cdots \wedge \frac{dx_n}{x_n} + d\Omega_F^{n-1}$, where Ω_F^n is the space of n- differential forms over F and $d\Omega_F^{n-1}$ is the group of exact differential forms. We call a differential form $w \in \Omega_F^n$ to be hyperbolic if $w \in d\Omega_F^{n-1} + \wp(\Omega_F^n)$ and $\alpha \in F^*$ a norm of ω if $w \wedge \frac{d\alpha}{\alpha}$ is hyperbolic. A recent work by Aravire, Laghribi and O'Ryan [1] invoked our interest to ask for an analogue of Knebush's norm theorem [3, Theorem 4.2] in the setting of differential forms. For this our inspiration being a recent result by Laghribi and Mukhija [4, Theorem 1.1] which completes the norm theorem for quadratic forms in characteristic 2 using Scharlau's transfer. Inspired from these results, we establish the norm theorem for differentials forms which states the following:

Theorem 1. Suppose that F is a field of characteristic 2. Let $w \in \Omega_F^m$, $\rho \in F[x_1, \ldots, x_n]$ be a normed irreducible inseparable polynomial and $K = F(x_1, \ldots, x_n)$. Then, the following two statements are equivalent:

- 1. w is hyperbolic over $F(\rho)$.
- 2. ρ is a norm of w_K .

In addition, we also prove the above theorem when $\rho(x) \in F[x]$ is an irreducible polynomial such that the extension $F(\rho)/F$ is Galois. In this talk, we will cover the basic terminologies and briefly give the sketch of proof when K/F is a purely inseparable simple extension.

References

- Aravire R., Laghribi A., O'Ryan M., Transfer for Kato-Milne cohomology over purely inseparable extensions, Preprint 2021.
- [2] Kato K., Symmetric bilinear forms, quadratic forms and Milnor K-theory in characteristic 2, Inventiones Math. 66 (1982), 493-510.
- [3] Knebusch M., Specialization of quadratic and symmetric bilinear forms, and a norm theorem, Acta Arith., 24 (1973), 279-299.
- [4] Laghribi A., Mukhija D., On the norm theorem for semisingular quadratic forms, J. Pure Appl. Algebra, 225 (2021)106601, 13 pp.