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I’ve passed my mathematical life in discovering that something was
not necessary.

Commutative rings ⇒ Commutativity is not necessary! ⇒ For
noncommutative rings, a lot of new phenomena appear, for
instance Rn

R
∼= Rm

R for different positive integers n and m.

Commutative rings ⇒ The additive structure is not necessary! ⇒
For commutative monoids, a lot of interesting notions appear ⇒
Krull monoids.

Commutative rings ⇒ Rings themselves are not necessary! ⇒
Category theory.

Commutative rings ⇒ Topology is not necessary! ⇒ Spectra of
rings.
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Every time, like landing on a new planet



The problem

R any commutative ring with identity 7→ Spec(R).

This is a spectral topological space ( = sober, compact, the
intersection of two compact open sets is compact, and the
compact opens form a basis for the topology).

Any bounded distributive lattice L 7→ Spec(L). This is also a
spectral topological space (Stone spectrum of the distributive
lattice).

Commutative semiring with identity 7→ spectral space.

Commutative C ∗-algebra 7→ spectral space (Gelfand
spectrum).

Commutative monoids, abelian `-groups, prime spectrum of an
MV-algebra, Hofmann-Lawson spectrum of a continuous lattice,
Zariski-Riemann spaces,. . .
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On the ubiquity of spectral spaces

Always these strange, particular spaces,...

Sometimes a little less:

Commutative rings without identity 7→ an open subset of a
spectral space.

Noncommutative rings with identity 7→ “almost a spectral space”
(it is compact and sober, but the intersection of two compact open
sets is not necessarily compact, and the “open sets U(f )” are not
always compact.)

Why are spectral spaces so frequent in nature? Any deep reason?
Explanation?
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The problem is not extending the functor
Spec : CommRings→ Top

The problem is not extending the contravariant functor
Spec : CommRings→ Top from the category CommRings of
commutative rings to some other larger category, for instance to
the category Rings of (noncommutative) rings.

This is always
possible. For instance, the functor R 7→ Spec(R/[R,R]) is an
extension Rings→ Top of the functor Spec : CommRings→ Top.
The functor R 7→ { completely prime ideals of R } is also another,
different extension Rings→ Top of the functor
Spec : CommRings→ Top. In this setting, there is a wonderful
paper by Manny Reyes.
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A wonderful paper

M. Reyes, Obstructing extensions of the functor Spec to
noncommutative rings, Israel J. Math. 192 (2012), 667–698.

Then extended in

M. Ben-Zvi, A. Ma and M. Reyes, A Kochen-Specker theorem for
integer matrices and noncommutative spectrum functors,
J. Algebra 491 (2017), 280–313.
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A wonderful paper

Theorem
Let F be a contravariant functor from the category of rings to the
category Top whose restriction to the full subcategory of
commutative rings is naturally isomorphic to the functor Spec.
Then F assigns the empty topological space to the rings of
matrices Mn(R) for any ring R and any integer n ≥ 3.

Corollary

Let G : Rings→ CommRings be a covariant functor from the
category Rings of rings to the category CommRings of
commutative rings whose restriction to the full subcategory of
commutative rings is naturally isomorphic to the identity functor
CommRings→ CommRings. Then G assigns the zero ring to the
rings of matrices Mn(R) for any ring R and any integer n ≥ 3.
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The correct setting: lattices

A multiplicative lattice is a complete lattice L equipped with a
multiplication satisfying xy ≤ x ∧ y for all x , y ∈ L.

(No associativity, commutativity, identities, distributivity required.)

In all the previous examples, there is a multiplicative lattice around:
For commutative rings: the lattice of its ideal with multiplication
of ideals.
For noncommutative rings: the lattice of its two-sided ideal with
multiplication of ideals, or IJ + JI as a product, if you prefer.
For groups: the modular lattice of its normal subgroups with
commutator of two normal subgroups.
For lattices: the lattice itself with multiplication xy := x ∧ y .
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Multiplicative lattices

Multiplicative lattice are an algebraic structure to which little
attention has been devoted, but which already appear in Krull
(1924!), and has been studied by M. Ward (1937), Ward and
R.P. Dilworth (1937), D.D. Anderson (1974), E.W. Johnson, and
J.A. Johnson (1970), Hofmann and Keimel (1978), quantales,
frames, locales, . . .

In all these papers, further axioms are required: associativity or
commutativity of multiplication, distributivity with ∨, identity,
compatibility of multiplication and partial order, the multiplication
is the meet, . . .
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A multiplicative lattice L

For the rest of the talk, L will always be a complete multiplicative
lattice, with 0 and 1.

An element p 6= 1 is said to be prime if it satisfies the implication

xy ≤ p ⇒ (x ≤ p or y ≤ p).

Let Spec(L) be the set of all prime elements of L.
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The mapping V
(1) V transforms the multiplication in L into the union in
P(Spec(L)), that is, V is a magma morphism of the magma (L, ·)
into the magma (the commutative monoid) (P(Spec(L)),∪):

V (xy) = V (x) ∪ V (y) for every x , y ∈ L.

(2) V transforms the ∨ in L into the intersection in P(Spec(L))
(more is true: it transforms an arbitrary

∨
in L into an arbitrary

intersection in P(Spec(L)), even in the infinite case):

V (
∨
i∈I

xi ) =
⋂
i∈I

V (xi ) for every subset { xi | i ∈ I } ⊆ L.

(3) The image V (L) of the mapping V satisfies the axioms for the
closed sets of a topology on Spec(L).

Spec(L) with this topology is called the Zariski spectrum of L.
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closed sets of a topology on Spec(L).

Spec(L) with this topology is called the Zariski spectrum of L.



Always a sober space

Lemma
Spec(L) is a sober space.



Irreducible topological spaces

A topological space X is said to be irreducible if X 6= ∅ and
A ∪ B ⊂ X for every pair A,B of proper closed subsets of X .

(1) If f : X → Y is continuous and E ⊆ X is an irreducible subset,
then f (X ) ⊆ Y is also irreducible.
(2) If E ⊆ X is an irreducible subset, so is its closure E in X . In
particular, for every x ∈ X , then the closure {x} is an irreducible
closed subset of X .

In general, if E ⊆ X is an irreducible closed subset, a point x ∈ E
such that E = {x} is called a generic point of E .

In the complete lattice of closed subsets of a topological space X ,
irreducible closed subsets are exactly the join-irreducible elements
of the lattice.
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Sober spaces

For every topological space X , there is a map x 7→ {x} from X to
the set of irreducible closed subsets of X . This map is injective if
and only if X is T0.

By definition, X is sober if this map is a
bijection.

For example, Spec(R) is sober: its irreducible closed subsets are
the subsets V (p) with p a prime ideal of R, that is, the closures
V (p) of the points p of Spec(R).

What is the advantage of working with sober spaces?

It is that, in some sense, sober spaces are (bounded distributive)
lattices, in the sense that the lattice Ω(X ) of open subsets of a
sober space X completely determines the underlying set X .
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The category MCL of multiplicative lattices

Objects: our multiplicative lattices. Morphisms?

Our multiplicative lattices are complete lattices, but it is better not
to consider them complete lattices, but complete join-semilattices.
What is the difference between complete lattices and complete
join-semilattices? None. They are exactly the same thing. But
morphisms are different: if L and M are complete lattices, their
morphisms as lattices are the mappings f : L→ M such that
f (x ∨ x ′) = f (x) ∨ f (x ′) and f (x ∧ x ′) = f (x) ∧ f (x ′) for every
x , x ′ ∈ L, and those as complete join-semilattices are the mappings
f : L→ M such that f (

∨
X ) =

∨
f (X ) for every subset X ⊆ L.

The category of complete join-semilattice is a nice symmetric
monoidal closed category.
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Monotone Galois connections

Let L and M be partially ordered sets.

Consider all monotone
Galois connections (f , u) : L→ M, that is, pairs of partially ordered
set morphisms f : L→ M, u : M → L, with f (x) ≤ y ⇔ x ≤ u(y)
for all x ∈ L and y ∈ M. (Considering L and M as categories, a
monotone Galois connection is exactly a pair of adjoint functors).

In particular, for L and M complete lattices:
(1) f preserves arbitrary joins, and, conversely, for any join
preserving map f : L→ M there exists a unique map u : M → L
such that (f , u) : L→ M is a monotone Galois connection;
(2) u preserves arbitrary meets, and, conversely, for any meet
preserving map u : M → L there exists a unique map f : L→ M
such that (f , u) : L→ M is a monotone Galois connection.



Monotone Galois connections

Let L and M be partially ordered sets. Consider all monotone
Galois connections (f , u) : L→ M,

that is, pairs of partially ordered
set morphisms f : L→ M, u : M → L, with f (x) ≤ y ⇔ x ≤ u(y)
for all x ∈ L and y ∈ M. (Considering L and M as categories, a
monotone Galois connection is exactly a pair of adjoint functors).

In particular, for L and M complete lattices:
(1) f preserves arbitrary joins, and, conversely, for any join
preserving map f : L→ M there exists a unique map u : M → L
such that (f , u) : L→ M is a monotone Galois connection;
(2) u preserves arbitrary meets, and, conversely, for any meet
preserving map u : M → L there exists a unique map f : L→ M
such that (f , u) : L→ M is a monotone Galois connection.



Monotone Galois connections

Let L and M be partially ordered sets. Consider all monotone
Galois connections (f , u) : L→ M, that is, pairs of partially ordered
set morphisms f : L→ M, u : M → L, with f (x) ≤ y ⇔ x ≤ u(y)
for all x ∈ L and y ∈ M.

(Considering L and M as categories, a
monotone Galois connection is exactly a pair of adjoint functors).

In particular, for L and M complete lattices:
(1) f preserves arbitrary joins, and, conversely, for any join
preserving map f : L→ M there exists a unique map u : M → L
such that (f , u) : L→ M is a monotone Galois connection;
(2) u preserves arbitrary meets, and, conversely, for any meet
preserving map u : M → L there exists a unique map f : L→ M
such that (f , u) : L→ M is a monotone Galois connection.



Monotone Galois connections

Let L and M be partially ordered sets. Consider all monotone
Galois connections (f , u) : L→ M, that is, pairs of partially ordered
set morphisms f : L→ M, u : M → L, with f (x) ≤ y ⇔ x ≤ u(y)
for all x ∈ L and y ∈ M. (Considering L and M as categories, a
monotone Galois connection is exactly a pair of adjoint functors).

In particular, for L and M complete lattices:
(1) f preserves arbitrary joins, and, conversely, for any join
preserving map f : L→ M there exists a unique map u : M → L
such that (f , u) : L→ M is a monotone Galois connection;
(2) u preserves arbitrary meets, and, conversely, for any meet
preserving map u : M → L there exists a unique map f : L→ M
such that (f , u) : L→ M is a monotone Galois connection.



Monotone Galois connections

Let L and M be partially ordered sets. Consider all monotone
Galois connections (f , u) : L→ M, that is, pairs of partially ordered
set morphisms f : L→ M, u : M → L, with f (x) ≤ y ⇔ x ≤ u(y)
for all x ∈ L and y ∈ M. (Considering L and M as categories, a
monotone Galois connection is exactly a pair of adjoint functors).

In particular, for L and M complete lattices:
(1) f preserves arbitrary joins, and, conversely, for any join
preserving map f : L→ M there exists a unique map u : M → L
such that (f , u) : L→ M is a monotone Galois connection;

(2) u preserves arbitrary meets, and, conversely, for any meet
preserving map u : M → L there exists a unique map f : L→ M
such that (f , u) : L→ M is a monotone Galois connection.



Monotone Galois connections

Let L and M be partially ordered sets. Consider all monotone
Galois connections (f , u) : L→ M, that is, pairs of partially ordered
set morphisms f : L→ M, u : M → L, with f (x) ≤ y ⇔ x ≤ u(y)
for all x ∈ L and y ∈ M. (Considering L and M as categories, a
monotone Galois connection is exactly a pair of adjoint functors).

In particular, for L and M complete lattices:
(1) f preserves arbitrary joins, and, conversely, for any join
preserving map f : L→ M there exists a unique map u : M → L
such that (f , u) : L→ M is a monotone Galois connection;
(2) u preserves arbitrary meets, and, conversely, for any meet
preserving map u : M → L there exists a unique map f : L→ M
such that (f , u) : L→ M is a monotone Galois connection.



The category MCL of multiplicative lattices

In the category MCL, whose objects are our complete
multiplicative lattices (L, ·), morphisms L→ M are monotone
Galois connections (f , u) : L→ M such that f (x)f (x ′) ≤ f (xx ′) for
every x , x ′ ∈ L. (Hence, morphisms in MCL = morphisms in the
category of complete join-semilattices such that f (x)f (x ′) ≤ f (xx ′)
for every x , x ′ ∈ L.)

Composition in MCL is defined by (f ′, u′) ◦ (f , u) = (f ′ ◦ f , u ◦ u′)
for every pair of morphisms (f , u) : L→ L′ and (f ′, u′) : L′ → L′′.
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The category of multiplicative lattices

Proposition

There is a contravariant functor Spec : MCL→ Top.

(For every morphism (f , u) : L→ L′, one proves that
u(Spec(M)) ⊆ Spec(L), and the restriction of u : M → L to
Spec(M)→ Spec(L) is continuous.)

Proposition

There is a covariant functor CommRings→ MCL that associates
to every commutative ring R with identity the multiplicative lattice
L(R) of its ideals.

Clearly, the composite functor of the two functors

CommRings→ MCL and Spec : MCL→ Top

is the usual contravariant functor Spec from the category of
commutative rings with identity to the category Top of topological
spaces.
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Spec is a right adjoint

The functor Spec : MCLop → { sober spaces } is a right adjoint of
the functor { sober spaces } → MCLop, that maps any sober space
X to the complete lattice Ω(X ) of its open subsets, with
multiplication the intersection: xy = x ∧ y for every x , y ∈ Ω(X ).



Objections we have received

“I don’t like those multiplicative lattices. Arent’ lattices sufficient?
You just call an element p of a lattice L prime if
x ∧ y ≤ p ⇒ (x ≤ p or y ≤ p).” Ok, by this doesn’t even cover the
first original examples of commutative rings with identity. If you
take a DVR, with this definition of prime, all proper ideals of R
would be prime, not only 0 and the maximal ideal of R as we want!
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Spectrum of a bounded distributive lattice

Let D be a bounded distributive lattice, and let X := Spec(D)
denote the set of prime ideals of D.

There is a duality

Spec : {bounded distributive lattices} → {topol. spectral spaces}!

Its inverse is

K ◦(−) : {topol. spectral spaces} → {bounded distributive lattices},

X 7→ K ◦(X ).
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Conclusions. Solution of our problem

To develop the standard properties of the Zariski spectrum of any
algebraic structure

Input: a multiplicative lattice.

Output: a bounded distributive lattice. Their category is
equivalent to the category of spectral spaces.
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