The Gruenberg-Kegel graph of finite solvable cut groups

Ángel del Río ${ }^{1}$

Universidad de Murcia
July 2021

Non-Commutative Rings and Applications VII
${ }^{1}$ Joint with A. Bächle, A. Kiefer and S. Maheshwary.
Partially supported by the Spanish Government under Grant MTM2016-77445-P with "Fondos FEDER" and, by Fundación Séneca of Murcia under Grant 19880/GERM/15.

Group rings

R ring, G group,
$R G=\oplus_{g \in G} R g$, Group ring of G with coefficients in R.

Group rings

R ring, G group, $R G=\oplus_{g \in G} R g$, Group ring of G with coefficients in R.

$$
\left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g
$$

Group rings

R ring, G group, $R G=\oplus_{g \in G} R g$, Group ring of G with coefficients in R.

$$
\begin{gathered}
\left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g . \\
(a g)(b h)=(a b)(g h) \quad(a, b \in R, g, h \in G)
\end{gathered}
$$

Group rings

R ring, G group, $R G=\oplus_{g \in G} R g$, Group ring of G with coefficients in R.

$$
\begin{aligned}
& \left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g . \\
& (a g)(b h)=(a b)(g h) \quad(a, b \in R, g, h \in G) .
\end{aligned}
$$

Convention: Unless otherwise stated, G is a finite group.

Group rings

R ring, G group, $R G=\oplus_{g \in G} R g$, Group ring of G with coefficients in R.

$$
\begin{aligned}
& \left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g . \\
& (a g)(b h)=(a b)(g h) \quad(a, b \in R, g, h \in G) .
\end{aligned}
$$

Convention: Unless otherwise stated, G is a finite group. Object of study: Group of units of $\mathbb{Z} G$.

Group rings

R ring, G group, $R G=\oplus_{g \in G} R g$, Group ring of G with coefficients in R.

$$
\begin{aligned}
& \left(\sum_{g \in G} a_{g} g\right)+\left(\sum_{g \in G} b_{g} g\right)=\sum_{g \in G}\left(a_{g}+b_{g}\right) g . \\
& (a g)(b h)=(a b)(g h) \quad(a, b \in R, g, h \in G) .
\end{aligned}
$$

Convention: Unless otherwise stated, G is a finite group. Object of study: Group of units of $\mathbb{Z} G$.
Trivial units: $\pm G$.

cut groups

Definition

G is cut if every central unit of $\mathbb{Z} G$ is trivial.

cut groups

Definition

G is cut if every central unit of $\mathbb{Z} G$ is trivial.

Theorem

The following conditions are equivalent:
(1) G is cut.
(2) If $g \in G$ then every generator of $\langle g\rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].

cut groups

Definition

G is cut if every central unit of $\mathbb{Z} G$ is trivial.

Theorem

The following conditions are equivalent:
(1) G is cut.
(2) If $g \in G$ then every generator of $\langle g\rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
(3) The center of every simple epimorphic image of $\mathbb{Q} G$ is contained in an imaginary quadratic field [Ferraz, 2004].

cut groups

Definition

G is cut if every central unit of $\mathbb{Z} G$ is trivial.

Theorem

The following conditions are equivalent:
(1) G is cut.
(2) If $g \in G$ then every generator of $\langle g\rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
(3) The center of every simple epimorphic image of $\mathbb{Q} G$ is contained in an imaginary quadratic field [Ferraz,2004].
(9) For every $\chi \in \operatorname{lrr}(G)$, the field $\mathbb{Q}(\chi)=\mathbb{Q}(\chi(g): g \in G)$ is contained in an imaginary quadratic field [Ferraz].

cut groups

Definition

G is cut if every central unit of $\mathbb{Z} G$ is trivial.

Theorem

The following conditions are equivalent:
(1) G is cut.
(2) If $g \in G$ then every generator of $\langle g\rangle$ is conjugate to g or g^{-1} [Ritter-Sehgal, 2005].
(3) The center of every simple epimorphic image of $\mathbb{Q} G$ is contained in an imaginary quadratic field [Ferraz,2004].
(9) For every $\chi \in \operatorname{lrr}(G)$, the field $\mathbb{Q}(\chi)=\mathbb{Q}(\chi(g): g \in G)$ is contained in an imaginary quadratic field [Ferraz].
(6) For every $g \in G$, the field $\mathbb{Q}(\chi(g): \chi \in \operatorname{Irr}(G))$ is contained in an imaginary quadratic field. [Bächle-Caicedo-Jespers-Maheshwary, 2021].

cut groups versus rational groups

Definition

G is rational if the entries of the character table of G are rational.

cut groups versus rational groups

Definition

G is rational if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g\rangle$ is conjugate to g.

cut groups versus rational groups

Definition

G is rational if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g\rangle$ is conjugate to g.
- Every rational group is cut.

cut groups versus rational groups

Definition

G is rational if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g\rangle$ is conjugate to g.
- Every rational group is cut.
- Every symmetric group is rational.

cut groups versus rational groups

Definition

G is rational if the entries of the character table of G are rational.

- G is rational if and only if for every $g \in G$ every generator of $\langle g\rangle$ is conjugate to g.
- Every rational group is cut.
- Every symmetric group is rational.
- While only 0.57% of all groups up to order 512 are rational, 86.62% are cut

The Gruenberg-Kegel graph

Gruenberg-Kegel graph $=$ GK-graph $=$ Prime graph:
G non-necessarily finite group.
$\Gamma_{\mathrm{GK}}(G):\left\{\begin{array}{l}\text { Vertices: } \pi(G)=\{|g|: g \in G,|g| \text { prime }\} ; \\ \text { Edges: } p-q \text { with } p \neq q, p q=|g| \text { for some } g \in G .\end{array}\right.$

Gruenberg-Kegel graph $=$ GK-graph $=$ Prime graph:
G non-necessarily finite group.
$\Gamma_{\mathrm{GK}}(G):\left\{\begin{array}{l}\text { Vertices: } \pi(G)=\{|g|: g \in G,|g| \text { prime }\} ; \\ \text { Edges: } p-q \text { with } p \neq q, p q=|g| \text { for some } g \in G .\end{array}\right.$
(1) Every graph is the GK-graph of some group.

Gruenberg-Kegel graph $=$ GK-graph $=$ Prime graph:
G non-necessarily finite group.
$\Gamma_{\mathrm{GK}}(G):\left\{\begin{array}{l}\text { Vertices: } \pi(G)=\{|g|: g \in G,|g| \text { prime }\} ; \\ \text { Edges: } p-q \text { with } p \neq q, p q=|g| \text { for some } g \in G .\end{array}\right.$
(1) Every graph is the GK-graph of some group.
(2) If G is a finite group then $\Gamma_{G K}(G)$ has at most 6 connected components [Williams 81, Kondrat'ev 90].

Gruenberg-Kegel graph $=$ GK-graph $=$ Prime graph:
G non-necessarily finite group.
$\Gamma_{\mathrm{GK}}(G):\left\{\begin{array}{l}\text { Vertices: } \pi(G)=\{|g|: g \in G,|g| \text { prime }\} ; \\ \text { Edges: } p-q \text { with } p \neq q, p q=|g| \text { for some } g \in G .\end{array}\right.$
(1) Every graph is the GK-graph of some group.
(2) If G is a finite group then $\Gamma_{\mathrm{GK}}(G)$ has at most 6 connected components [Williams 81, Kondrat'ev 90].
(3) Classification of GK-graphs of finite solvable groups [Gruber-Keller-Lewis, 2015].

The Prime Graph Question
$V(\mathbb{Z} G)=\{$ Units of $\mathbb{Z} G$ with augmentation 1$\}$.

The Prime Graph Question

$$
V(\mathbb{Z} G)=\{U \text { nits of } \mathbb{Z} G \text { with augmentation } 1\} .
$$

The Prime Graph Question (PQ) (Kimmerle)

$$
\Gamma_{\mathrm{GK}}(G)=\Gamma_{\mathrm{GK}}(V(\mathcal{U} G)) ?
$$

The Prime Graph Question

$$
V(\mathbb{Z} G)=\{\text { Units of } \mathbb{Z} G \text { with augmentation } 1\} .
$$

The Prime Graph Question (PQ) (Kimmerle)

$$
\Gamma_{G K}(G)=\Gamma_{G K}(V(\mathcal{U} G)) ?
$$

Theorem (Kimmerle, 2006)

(PQ) holds for solvable groups.

The Prime Graph Question

$$
V(\mathbb{Z} G)=\{U \text { nits of } \mathbb{Z} G \text { with augmentation } 1\} .
$$

The Prime Graph Question (PQ) (Kimmerle)

$$
\Gamma_{G K}(G)=\Gamma_{G K}(V(\mathcal{U} G)) ?
$$

Theorem (Kimmerle, 2006)

$(P Q)$ holds for solvable groups.

Theorem (Kimmerle-Konovalov, 2015)

(PQ) holds for G if and only if it holds for every almost simple epimorphic image of G.

The Prime Graph Question

$$
V(\mathbb{Z} G)=\{U \text { nits of } \mathbb{Z} G \text { with augmentation } 1\} .
$$

The Prime Graph Question (PQ) (Kimmerle)

$$
\Gamma_{G K}(G)=\Gamma_{G K}(V(\mathcal{U} G)) ?
$$

Theorem (Kimmerle, 2006)

$(P Q)$ holds for solvable groups.

Theorem (Kimmerle-Konovalov, 2015)

(PQ) holds for G if and only if it holds for every almost simple epimorphic image of G.
(PQ) has been proved for many almost simple groups including symmetric and alternating groups and several sporadic simple groups [Bächle, Margolis, Konovalov, Bovdi, ...].

Aims

Problems

- Classify the GK-graph of solvable cut groups and solvable rational groups.
- Study (PQ) for cut groups and rational groups.

Aims

Problems

- Classify the GK-graph of solvable cut groups and solvable rational groups.
- Study (PQ) for cut groups and rational groups.

Known facts

- If G is a rational and solvable then $\pi(G) \subseteq\{2,3,5\}$ [Gow, 1976].

Aims

Problems

- Classify the GK-graph of solvable cut groups and solvable rational groups.
- Study (PQ) for cut groups and rational groups.

Known facts

- If G is a rational and solvable then $\pi(G) \subseteq\{2,3,5\}$ [Gow, 1976].
- If G is a cut and solvable then $\pi(G) \subseteq\{2,3,5,7\}$ [Bachle, 2018].

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

GK-graphs of non-trivial solvable cut groups with at most 3 vertices:

	(A) $2 \bullet$	(B) ${ }^{\bullet} 3$	
(C) $2 \cdot 3$	(D) $2 \bullet-3$	$\begin{aligned} & \hline 2 \bullet \\ &(E) 5 \bullet \\ & \hline \end{aligned}$	$\begin{array}{lr} \hline 2 \bullet 3 \\ 5 \bullet & (G) \bullet 7 \end{array}$
$\begin{aligned} & 2 \bullet-\bullet 3 \\ & \text { (H) } 5 \bullet \end{aligned}$	(I) $2 \bullet-\quad 3$ $5 \bullet$	$\begin{aligned} & 2 \bullet \bullet \\ & \text { (J) } 5 \bullet \end{aligned}$	$\begin{aligned} & 2 \quad \bullet \bullet 3 \\ & (K) \quad 5 \bullet \end{aligned}$
(L) $\begin{array}{r}2 \bullet- \\ \hline\end{array} \quad \bullet 3$	(M) $\begin{array}{rr}2 \bullet- \\ \\ \\ \\ \\ \bullet\end{array}$		(O)

GK-graphs of finite solvable cut groups: More than 3 vertices

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

Possible GK-graphs of finite solvable cut groups with more than 3 vertices.

Verified	$\begin{array}{lllll}2 \bullet-\bullet 3 & 2 & \bullet-3 & 2 & \bullet-\bullet 3 \\ (P) \\ 5 & \bullet & (Q) \\ 5 & \bullet \bullet 7 & (R) \\ 5 & \bullet-7\end{array}$
Possible	

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

Possible GK-graphs of non-trivial solvable rational groups:

Verified	(A) $2 \bullet$ (C) $2 \bullet \bullet 3$ (D) $2 \bullet-\bullet 3$ $\begin{array}{llll}2 \bullet & 2 \bullet & 2 \bullet-3 \\ \text { (E) } 5 \bullet & \text { (F) } 5 \bullet & \text { (K) } 5 \bullet\end{array}$
Possible	(I) $2!-3$

Application 1: GK-graphs of supersolvable rational groups

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)

The following are equivalent for a graph Γ.
(1) $\Gamma=\Gamma_{\mathrm{GK}}(G)$ for some non-trivial metacyclic rational group G.
(2) $\Gamma=\Gamma_{G K}(G)$ for some non-trivial metabelian rational group G.
(3) $\Gamma=\Gamma_{G K}(G)$ for some non-trivial supersolvable rational group G.
(9) $\Gamma=\Gamma_{\mathrm{GK}}(G)$ for some non-trivial nilpotent-by-abelian rational group G.
(0) 「 is one of the graphs (A), (C) or (D).

Application 2: GK-graphs of supersolvable cut groups

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)
The following are equivalent for a graph Γ.
(1) $\Gamma=\Gamma_{\mathrm{GK}}(G)$ for some non-trivial metacyclic cut group G.
(2) $\Gamma=\Gamma_{G K}(G)$ for some non-trivial metabelian cut group G.
(3) $\Gamma=\Gamma_{G K}(G)$ for some non-trivial supersolvable cut group G.
(9) $\Gamma=\Gamma_{\mathrm{GK}}(G)$ for some non-trivial nilpotent-by-abelian cut group G.
(6) Γ is one of the graphs $(A)-(G)$ or $(J)-(O)$.

In a Monster-Free World

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)
(PQ) holds for cut groups without an epimorphism image isomorphic to the monster group.

In a Monster-Free World

Theorem (Bächle-Kiefer-Maheshwary-dR, 2021)
(PQ) holds for cut groups without an epimorphism image isomorphic to the monster group.

Corollary

(PQ) holds for rational groups.

Thanks for your attention! Merci pour votre attention! llginiz için teșekkürler ¡Gracias por su atención!

