von Neumann Regular and Related Elements in Commutative Rings

Ayman Badawi

Department of Mathematics \& Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
Co-Author: David F. Anderson
Department of Mathematics, The University of Tennessee, Knoxville, USA
Dedicated to Syed Tariq Rizvi

Let R be a commutative ring with nonzero identity. we define $a \in R$ to be a von Neumann regular element of R (or just von Neumann regular) if $a^{2} x=a$ for some $x \in R$. Similarly, we define $a \in R$ to be a π-regular element of R (or just π-regular) if $a^{2 n} x=a^{n}$ for some $x \in R$ and integer $n \geq 1$. Let $\operatorname{Idem}(R)=\left\{a \in R \mid a^{2}=a\right\}, \operatorname{vnr}(R)=\{a \in R \mid a$ is von Neumann regular $\}$, and $\pi-r(R)=\{a \in R \mid a$ is π-regular $\}$. Thus Idem $(R) \subseteq \operatorname{vnr}(R) \subseteq \pi-r(R)$ and R is a Boolean (resp., von Neumann regular, π-regular) ring if and only if $\operatorname{ldem}(R)=R($ resp., $\operatorname{vnr}(R)=R, \pi-r(R)=R)$.

Theorem

Let R be a commutative ring. Then the following statements are equivalent for $a \in R$.
(1) $a \in \operatorname{vnr}(R)$.
(2) $a^{2} u=a$ for some $u \in U(R)$.
(3) $a=u e$ for some $u \in U(R)$ and $e \in \operatorname{Idem}(R)$.
(4) $a b=0$ for some $b \in \operatorname{vnr}(R) \backslash\{a\}$ with $a+b \in U(R)$.
(5) $a b=0$ for some $b \in R$ with $a+b \in U(R)$.

Let $a \in \operatorname{vnr}(R)$. Then $a^{2} x=a$ for some $x \in R$. Note that x need not be unique since we may replace x by any $y \in x+\operatorname{ann}\left(a^{2}\right)$. The following result is well known for von Neumann regular rings.

Theorem

Let R be a commutative ring and $a \in \operatorname{vnr}(R)$. Then there is a unique $x \in R$ with $a^{2} x=a$ and $x^{2} a=x$.

Since $\operatorname{vnr}(R) \cap \operatorname{nil}(R)=\{0\}$, it is natural to ask when $R=\operatorname{vnr}(R) \cup \operatorname{nil}(R)$, i.e., when is every non-nilpotent element of R von Neumann regular?

Theorem

Let R be a commutative ring.
(1) $R=\operatorname{vnr}(R) \cup$ nil (R) if and only if either R is von Neumann regular or R is quasilocal with maximal ideal nil(R). In particular, if $R=\operatorname{vnr}(R) \cup$ nil (R), then R is a π-regular ring.
(2) $R=\operatorname{vnr}(R) \cup Z(R)$ if and only if $T(R)=R$.

We next show that if $\{0\} \subsetneq Z(R) \subseteq \operatorname{vnr}(R)$, then R is von Neumann regular. One consequence of the next result is that to check if a non-domain R is von Neumann regular, we need only show that each zero-divisor of R is von Neumann regular.

Theorem

Let R be a commmutative ring with $\{0\} \subsetneq Z(R)$. Then $Z(R) \subseteq \operatorname{vnr}(R)$ if and only if R is von Neumann regular.

Remark

D. D. Anderson and V. P. Camillo proved that $R=U(R) \cup \operatorname{Idem}(R)$ if and only if R is a Boolean ring,

Theorem

Let R be a commutative ring. Then $R=\operatorname{Idem}(R) \cup \operatorname{nil}(R)$ if and only if R is Boolean.

Theorem

Let R be a commmutative ring with $\{0\} \subsetneq Z(R)$. Then $Z(R) \subseteq \operatorname{Idem}(R)$ if and only if R is Boolean.

It seems natural to conjecture that $R=\operatorname{Idem}(R) \cup Z(R)$ if and only if R is a Boolean ring. We next give some evidence to support this conjecture.

Theorem

Let R be a commutative ring.
(1) If $R=\operatorname{Idem}(R) \cup Z(R)$, then $U(R)=\{1\}$, $\operatorname{char}(R)=2, \operatorname{nil}(R)=\{0\}, J(R)=\{0\}$, and $T(R)=R$.
(2) If either $\operatorname{dim}(R)=0$ or R has only a finite number of maximal ideals, then $R=\operatorname{Idem}(R) \cup Z(R)$ if and only if R is Boolean.

It is well known that if R is a commutative von Neumann regular ring with $2 \in U(R)$, then every element of R is the sum of two units of R. G. Ehrlich proved that if aua $=a$ for some $u \in U(R)$, then a is the sum of two units of R. So this result extends to $\operatorname{vnr}(R)$.

Theorem

([15]) Let R be a commutative ring with $2 \in U(R)$. Then every $a \in \operatorname{vnr}(R)$ is the sum of two units of R.

Theorem

Let R be a commutative ring with $2 \in U(R)$. Then the following statements are equivalent.
(1) $\operatorname{vnr}(R)$ is a subring of R.
(2) The sum of any four units of R is a von Neumann regular element of R.
(3) Let $u, v, k, m \in U(R)$ with $k^{2}=m^{2}=1$. Then $u(1+k)+v(1+m) \in \operatorname{vnr}(R)$.

Recall that for a commutative ring R, we let $\pi-r(R)=\left\{a \in R \mid a^{2 n} x=a^{n}\right.$ for some $x \in R$ and integer
$n \geq 1\}$ be the set of π-regular elements of R. Thus R is π-regular if and only if $\pi-r(R)=R$, if and only if $\operatorname{dim}(R)=0$.

Theorem

Let R be a commutative ring. Then the following statements are equivalent for $a \in R$.
(1) $a \in \pi-r(R)$.
(2) $a^{n} \in \operatorname{vnr}(R)$ for some integer $n \geq 1$.
(3) $a^{n}=u e$ for some $u \in U(R), e \in \operatorname{Idem}(R)$, and integer $n \geq 1$.
(4) $a=b+w$ for some $b \in \operatorname{vnr}(R)$ and $w \in \operatorname{nil}(R)$.
(5) $a=u e+w$ for some $u \in U(R), e \in \operatorname{Idem}(R)$, and $w \in \operatorname{nil}(R)$.
(6) $a+\operatorname{nil}(R) \in \operatorname{vnr}(R / \operatorname{nil}(R))$.
(7) $a^{n} b=0$ for some $b \in R$ and integer $n \geq 1$ with $a^{n}+b \in U(R)$.
(8) $a b \in \operatorname{nil}(R)$ for some $b \in R$ with $a+b \in U(R)$.

It is natural to ask when $\pi-r(R)=\operatorname{vnr}(R) \cup \operatorname{nil}(R)$.

Theorem

Let R be a commutative ring.
(1) $\pi-r(R)=\operatorname{vnr}(R) \cup \operatorname{nil}(R)$ if and only if either $\operatorname{Idem}(R)=\{0,1\}$ or $\operatorname{nil}(R)=\{0\}$.
(2) $R=\pi-r(R) \cup Z(R)$ if and only if $T(R)=R$.

In the follwing result we show if a ring R with $\operatorname{nil}(R) \subsetneq Z(R)$ is π-regular, we only need check that the zero-divisors of R are all π-regular.

Theorem

Let R be a commutative ring with $\operatorname{nil}(R) \subsetneq Z(R)$. Then $Z(R) \subseteq \pi-r(R)$ if and only if R is π-regular.

Recall that $\operatorname{nil}(R)$ is of bounded index n if n is the least
positive integer such that $w^{n}=0$ for every $w \in \operatorname{nil}(R)$. A commutative ring R is said to be of bounded index n if n is the least positive integer such that $a^{n} \in \operatorname{vnr}(R)$ for every $a \in \pi-r(R)$. Note that a von Neumann regular ring is of bounded index 1 .

Theorem

Let R be a commutative ring and n a positive integer. Then R is of bounded index n if and only if nil (R) is of bounded index n.

Recall (M. Contessa),)that a commutative ring R is a von Neumann local ring if either $a \in \operatorname{vnr}(R)$ or $1-a \in \operatorname{vnr}(R)$ for every $a \in R$. This concept have been further studied by E . Abu Osba, M. Henrikson, O. Alkam, and F. A. Smith We define $\operatorname{vnl}(R)=\{a \in R \mid a \in \operatorname{vnr}(R)$ or $1-a \in \operatorname{vnr}(R)\}$ to
be the set of von Neumann local elements of R. Thus R is a von Neumann local ring if and only if $v n l(R)=R$.

Theorem

Let R be a commutative rings. Then
(1) $\operatorname{vnl}(R)=\operatorname{vnr}(R) \cup(1+\operatorname{vnr}(R))=\{0,1\}+\operatorname{vnr}(R)$. In particular, $\{0,1\}+U(R)=U(R) \cup(1+U(R)) \subseteq v n l(R)$. (2) Let $a \in R$. Then $a \in v n l(R)$ if and only if there is a $u \in U(R)$ and $e \in \operatorname{Idem}(R)$ such that either $a=u e$ or $a=1+u e$.
(3) $\operatorname{nil}(R) \subseteq J(R) \subseteq \operatorname{vnl}(R)$. Thus $U(R) \cup J(R) \subseteq \operatorname{vnl}(R)$.
(4) $\operatorname{vnl}(R)=U(R) \cup(1+U(R))$ if and only if $\operatorname{Idem}(R)=\{0,1\}$. In particular, $\operatorname{vnI}(R)=U(R) \cup(1+U(R))$ when R is either an integral domain or quasilocal (note that $v n l(R)=R$ when R is qusailocal).

Recall ()W. K. Nicholson) that a commutative ring R is a clean ring if for every $a \in R, a=u+e$ for some $u \in U(R)$ and $e \in \operatorname{ldem}(R)$. We define $\operatorname{cln}(R)=\{a \in R \mid a=u+e$ for some $u \in U(R)$ and $e \in \operatorname{Idem}(R)\}=U(R)+\operatorname{Idem}(R)$ to be the set of clean elements of R. Thus R is a clean ring if and only if $\operatorname{cln}(R)=R$.

Theorem

Let R be commutative ring. Then
(1) $\operatorname{Idem}(R) \subseteq \operatorname{vnr}(R) \subseteq v n l(R) \subseteq c \ln (R)$. In particular, a Boolean ring, a von Neumann regular ring, or a von Neumann local ring is a clean ring.
(2) $\operatorname{vnr}(R) \subseteq \pi-r(R) \subseteq c \ln (R)$. In particular, a π-regular ring is a clean ring.
(3) $U(R) \cup J(R) \subseteq U(R) \cup(1+U(R)) \subseteq c \ln (R)$.
(4) If Idem $(R)=\{0,1\}$, then $\operatorname{cln}(R)=v n l(R)$. In particular, $\operatorname{cln}(R)=\operatorname{vnl}(R)$ when R is either an integral domain or quasilocal (note that $\operatorname{cln}(R)=\operatorname{vnl}(R)=R$ when R is quasilocal).
(7) If $2 \in U(R)$, then every $a \in \operatorname{cln}(R)$ is the sum of three units of R.
(8) If $v n l(R)$ is multiplicatively closed, then $\operatorname{cln}(R)=v n I(R)$.

Theorem

Let R be a commutative ring, and consider the following statements.
(a) $\operatorname{vnl}(R)=U(R) \cup \operatorname{nil}(R)$.
(b) $\quad \ln (R)=U(R) \cup \operatorname{nil}(R)$.

(d) $\operatorname{cln}(R)=\operatorname{vnr}(R) \cup \operatorname{nil}(R)$.

Then (1) (a) \Leftrightarrow (b), (c) \Leftrightarrow (d), and (a) \Rightarrow (c).
(2) If any of the four statements holds, then $\pi-r(R)=v n l(R)=\operatorname{cln}(R)$.
(3) If (a) or (b) holds, then Idem $(R)=\{0,1\}$.
(4) If (c) or (d) holds, then either Idem $(R)=\{0,1\}$ or $\operatorname{nil}(R)=\{0\}$.

To get the full paper free of charge, click here http://ayman-badawi.com/Publication.html

围 E. Abu Osba, M. Henrikson, and O. Alkam, Combing local and von Neumann regular rings, Comm. Algebra 32(2004), 2639-2653.

E- E. Abu Osba, M. Henrikson, O. Alkam, and F. A. Smith, The maximal regular ideal of some commutative rings, Comment. Math. Univ. Carolin. 47(2006), 1-10.

固 M. S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 30(2006), 783-798.
D. D. Anderson and M. Winders, Idealizaion of a module, J. Commutative Algebra 1(2009), 3-56.
: D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and an idempotent, Comm. Algebra 30(2002), 3327-3336.
: D. F. Anderson, M. C. Axtell, and J. A. Stickles, Zero-divisor graphs in commutative rings, in Recent Developments in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, 2011, 23-45.
葍 D. F. Anderson and A. Badawi, Divisibility conditions in commutative rings with zero-divisors, Comm. Algebra 30(2002), 4031-4047.

囯 D．F．Anderson and A．Badawi，On the zero－divisor graph of a ring，Comm．Algebra 36（2008），3073－3092．

R D．F．Anderson，R．Levy，and J．Shapiro，Zero－divisor graphs，von Neumann regular rings，and Boolean algebra， J．Pure Appl．Algebra 180（2003），221－241．

围 D．F．Anderson and P．S．Livingston，The zero－divisor graph of a commutative ring，J．Algebra 217（1999）， 434－447．

囯 M．Contessa，On certain classes of MP rings，Comm． Algebra 12（1984），1447－1469．
（iv．M．D＇Anna and and M．Fontana，An amalgamated duplication of a ring along an ideal：the basic properties， J．Algebra Appl．6（2007），443－459．
© M．D＇Anna and and M．Fontana，The amalgamated duplication of a ring along a multiplicative－canonical ideal， Ark．Mat．45（2007），241－252．

R R．Diestel，Graph Theory，Springer，New York， 1997.
© G．Ehrlich，Unit－regular rings，Portugal．Math．27（1968）， 209－212．

目 J．W．Fisher and R．L．Synder，Rings generated by their units，J．Algebra 42（1976），363－368．

國 R．Gilmer，Multiplicative Ideal Theory，Marcel Dekker， New York／Basel， 1972.

囦 J．Han and W．K．Nicholson，Extensions of clean rings， Comm．Algebra 29（2001），2589－2595．

囦 J．A．Huckaba，Commutative Rings with Zero Divisors， Marcel Dekker，New York／Basel， 1988.

囲 K．N．Kyun and L．Yang On right quasi－duo rings which are π－regular，Bull．Korean Math．Soc．37（2000），217－227．
（ie J．D．LaGrange，Complemented zero－divisor graphs and Boolean rings，J．Algebra 315（2007），600－611．

击 J．D．LaGrange，On realizing zero－divisor graphs，Comm． Algebra 36（2008），4509－4520．

R－J．D．LaGrange，Characterizations of three classes of zero－divisor graphs，Canad．Math．Bull．，to appear．

嗇 T．Y．Lam，Exercises in Classical Ring Theory，Springer， New York， 2003.

R J. Lambek, Lectures on Rings and Modules, Blaisdell Publishing Company, Waltham/Toronto/London, 1966.

R R. Levy and J. Shapiro, The zero-divisor graph of von Neumann regular rings, Comm. Algebra 30(2002), 745-750.

囯 W. K. Nicholson, Lifting idempotents and exchange rings, Trans. Amer. Math. Soc. 229(1977), 269-278.

R R. Raphael, Some remarks on regular and strongly regular rings. Canad. Math. Bull. 17(1975), 709-712.

