von Neumann Regular and Related Elements in Commutative Rings

Ayman Badawi

Department of Mathematics & Statistics, The American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates Co-Author: David F. Anderson Department of Mathematics, The University of Tennessee, Knoxville, USA **Dedicated to Syed Tariq Rizvi**

Let R be a commutative ring with nonzero identity. we define $a \in R$ to be a von Neumann regular element of R (or just von *Neumann regular*) if $a^2x = a$ for some $x \in R$. Similarly, we define $a \in R$ to be a π -regular element of R (or just π -regular) if $a^{2n}x = a^n$ for some $x \in R$ and integer n > 1. Let $Idem(R) = \{ a \in R \mid a^2 = a \}, vnr(R) = \{ a \in R \mid a \text{ is von} \}$ Neumann regular }, and π - $r(R) = \{ a \in R \mid a \text{ is } \pi$ -regular }. Thus $Idem(R) \subseteq vnr(R) \subseteq \pi$ -r(R) and R is a Boolean (resp., von Neumann regular, π -regular) ring if and only if Idem(R) = R (resp., vnr(R) = R, π -r(R) = R).

 $\begin{array}{c} {\rm Introduction} \\ \pi\mbox{-regular Elements} \\ {\rm von \ Neumann \ Local \ Rings} \\ {\rm Clean \ Elements} \end{array}$

Theorem

Let R be a commutative ring. Then the following statements are equivalent for $a \in R$.

(1)
$$a \in vnr(R)$$
.
(2) $a^2u = a$ for some $u \in U(R)$.
(3) $a = ue$ for some $u \in U(R)$ and $e \in Idem(R)$.
(4) $ab = 0$ for some $b \in vnr(R) \setminus \{a\}$ with $a + b \in U(R)$.
(5) $ab = 0$ for some $b \in R$ with $a + b \in U(R)$.

Let $a \in vnr(R)$. Then $a^2x = a$ for some $x \in R$. Note that x need not be unique since we may replace x by any $y \in x + ann(a^2)$. The following result is well known for von Neumann regular rings.

Ayman BadawiDepartment of Mathematics & Statistics, The von Neumann Regular and Related Elements in Commutative

 $\begin{array}{c} {\rm Introduction} \\ \pi\mbox{-regular Elements} \\ {\rm von Neumann Local Rings} \\ {\rm Clean Elements} \end{array}$

Theorem

Let R be a commutative ring and $a \in vnr(R)$. Then there is a unique $x \in R$ with $a^2x = a$ and $x^2a = x$.

Ayman BadawiDepartment of Mathematics & Statistics, The von Neumann Regular and Related Elements in Commutative I

イロン イヨン イヨン イヨン

2

Since $vnr(R) \cap nil(R) = \{0\}$, it is natural to ask when $R = vnr(R) \cup nil(R)$, i.e., when is every non-nilpotent element of R von Neumann regular?

Theorem

Let R be a commutative ring. (1) $R = vnr(R) \cup nil(R)$ if and only if either R is von Neumann regular or R is quasilocal with maximal ideal nil(R). In particular, if $R = vnr(R) \cup nil(R)$, then R is a π -regular ring. (2) $R = vnr(R) \cup Z(R)$ if and only if T(R) = R.

 $\begin{array}{c} \text{Introduction} \\ \pi\text{-regular Elements} \\ \text{von Neumann Local Rings} \\ \text{Clean Elements} \end{array}$

We next show that if $\{0\} \subsetneq Z(R) \subseteq vnr(R)$, then R is von Neumann regular. One consequence of the next result is that to check if a non-domain R is von Neumann regular, we need only show that each zero-divisor of R is von Neumann regular.

Theorem

Let R be a commutative ring with $\{0\} \subsetneq Z(R)$. Then $Z(R) \subseteq vnr(R)$ if and only if R is von Neumann regular.

Remark

D. D. Anderson and V. P. Camillo proved that $R = U(R) \cup Idem(R)$ if and only if R is a Boolean ring,

Ayman BadawiDepartment of Mathematics & Statistics, The von Neumann Regular and Related Elements in Commutative I

Theorem

Let R be a commutative ring. Then $R = Idem(R) \cup nil(R)$ if and only if R is Boolean.

Theorem

Let R be a commutative ring with $\{0\} \subseteq Z(R)$. Then $Z(R) \subset Idem(R)$ if and only if R is Boolean.

It seems natural to conjecture that $R = Idem(R) \cup Z(R)$ if and only if R is a Boolean ring. We next give some evidence to support this conjecture.

Ayman BadawiDepartment of Mathematics & Statistics, The

von Neumann Regular and Related Elements in Commutative I

 $\begin{array}{c} {\rm Introduction} \\ \pi\mbox{-regular Elements} \\ {\rm von \ Neumann \ Local \ Rings} \\ {\rm Clean \ Elements} \end{array}$

Theorem

Let R be a commutative ring. (1) If $R = Idem(R) \cup Z(R)$, then $U(R) = \{1\}$, char(R) = 2, $nil(R) = \{0\}$, $J(R) = \{0\}$, and T(R) = R. (2) If either dim(R) = 0 or R has only a finite number of maximal ideals, then $R = Idem(R) \cup Z(R)$ if and only if R is Boolean.

It is well known that if R is a commutative von Neumann regular ring with $2 \in U(R)$, then every element of R is the sum of two units of R. G. Ehrlich proved that if aua = a for some $u \in U(R)$, then a is the sum of two units of R. So this result extends to vnr(R).

Ayman BadawiDepartment of Mathematics & Statistics, The von Neumann Regular and Related Elements in Commutative

Theorem

([15]) Let R be a commutative ring with $2 \in U(R)$. Then every $a \in vnr(R)$ is the sum of two units of R.

Theorem

Let *R* be a commutative ring with $2 \in U(R)$. Then the following statements are equivalent.

(1) vnr(R) is a subring of R.

(2) The sum of any four units of R is a von Neumann regular element of R.

(3) Let
$$u, v, k, m \in U(R)$$
 with $k^2 = m^2 = 1$. Then $u(1+k) + v(1+m) \in vnr(R)$.

Recall that for a commutative ring R, we let π - $r(R) = \{ a \in R \mid a^{2n}x = a^n \text{ for some } x \in R \text{ and integer} \}$

Ayman BadawiDepartment of Mathematics & Statistics, The von Neumann Regular and Related Elements in Commutative

 $n \ge 1$ be the set of π -regular elements of R. Thus R is π -regular if and only if π -r(R) = R, if and only if dim(R) = 0.

Theorem

Let R be a commutative ring. Then the following statements are equivalent for $a \in R$.

(1)
$$a \in \pi - r(R)$$
.
(2) $a^n \in vnr(R)$ for some integer $n \ge 1$.
(3) $a^n = ue$ for some $u \in U(R)$, $e \in Idem(R)$, and integer $n \ge 1$.
(4) $a = b + w$ for some $b \in vnr(R)$ and $w \in nil(R)$.
(5) $a = ue + w$ for some $u \in U(R)$, $e \in Idem(R)$, and $w \in nil(R)$.
(6) $a + nil(R) \in vnr(R/nil(R))$.
(7) $a^n b = 0$ for some $b \in R$ and integer $n \ge 1$ with $a^n + b \in U(R)$.
(8) $ab \in nil(R)$ for some $b \in R$ with $a + b \in U(R)$.

イロト イヨト イヨト イヨト

It is natural to ask when π - $r(R) = vnr(R) \cup nil(R)$.

Theorem

Let R be a commutative ring.
(1)
$$\pi$$
-r(R) = vnr(R) \cup nil(R) if and only if either
Idem(R) = {0,1} or nil(R) = {0}.
(2) R = π -r(R) \cup Z(R) if and only if T(R) = R.

In the following result we show if a ring R with $nil(R) \subsetneq Z(R)$ is π -regular, we only need check that the zero-divisors of R are all π -regular.

Theorem

Let R be a commutative ring with $nil(R) \subsetneq Z(R)$. Then $Z(R) \subseteq \pi$ -r(R) if and only if R is π -regular.

Recall that nil(R) is of bounded index n if n is the least a = n

Ayman BadawiDepartment of Mathematics & Statistics, The von Neumann Regular and Related Elements in Commutative

positive integer such that $w^n = 0$ for every $w \in nil(R)$. A commutative ring R is said to be of bounded index n if n is the least positive integer such that $a^n \in vnr(R)$ for every $a \in \pi - r(R)$. Note that a von Neumann regular ring is of bounded index 1.

Theorem

Let R be a commutative ring and n a positive integer. Then R is of bounded index n if and only if nil(R) is of bounded index n.

Recall (M. Contessa),)that a commutative ring R is a von Neumann local ring if either $a \in vnr(R)$ or $1 - a \in vnr(R)$ for every $a \in R$. This concept have been further studied by E. Abu Osba, M. Henrikson, O. Alkam, and F. A. Smith We define $vnl(R) = \{ a \in R \mid a \in vnr(R) \text{ or } 1 - a \in vnr(R) \}$ to a source

Ayman BadawiDepartment of Mathematics & Statistics, The 🚽 von Neumann Regular and Related Elements in Commutative I

be the set of von Neumann local elements of R. Thus R is a von Neumann local ring if and only if vnl(R) = R.

Theorem

Let R be a commutative rings. Then (1) $vnl(R) = vnr(R) \cup (1 + vnr(R)) = \{0, 1\} + vnr(R)$. In particular, $\{0, 1\} + U(R) = U(R) \cup (1 + U(R)) \subseteq vnl(R)$. (2) Let $a \in R$. Then $a \in vnl(R)$ if and only if there is a $u \in U(R)$ and $e \in Idem(R)$ such that either a = ue or a = 1 + ue. $nil(R) \subset J(R) \subset vnl(R)$. Thus $U(R) \cup J(R) \subset vnl(R)$. (3) (4) $vnl(R) = U(R) \cup (1 + U(R))$ if and only if $Idem(R) = \{0, 1\}$. In particular, $vnl(R) = U(R) \cup (1 + U(R))$ when R is either an integral domain or quasilocal (note that vnl(R) = R when R is qusailocal).

Recall ()W. K. Nicholson) that a commutative ring R is a clean ring if for every $a \in R$, a = u + e for some $u \in U(R)$ and $e \in Idem(R)$. We define $cln(R) = \{a \in R \mid a = u + e \text{ for some } u \in U(R) \text{ and } e \in Idem(R)\} = U(R) + Idem(R) \text{ to be the set of clean elements of } R$. Thus R is a clean ring if and only if cln(R) = R.

・ロト ・回ト ・ヨト ・ヨト … ヨ

Theorem

Let R be commutative ring. Then (1) $Idem(R) \subseteq vnr(R) \subseteq vnl(R) \subseteq cln(R)$. In particular, a Boolean ring, a von Neumann regular ring, or a von Neumann local ring is a clean ring. (2) $\operatorname{vnr}(R) \subseteq \pi$ -r(R) $\subseteq \operatorname{cln}(R)$. In particular, a π -regular ring is a clean ring. (3) $U(R) \cup J(R) \subset U(R) \cup (1 + U(R)) \subset cln(R)$. (4) If $Idem(R) = \{0, 1\}$, then cln(R) = vnl(R). In particular, cln(R) = vnl(R) when R is either an integral domain or quasilocal (note that cln(R) = vnl(R) = R when R is quasilocal). (7) If $2 \in U(R)$, then every $a \in cln(R)$ is the sum of three units of R. (8) If vnl(R) is multiplicatively closed, then cln(R) = vnl(R). $\begin{array}{c} {\rm Introduction} \\ \pi\mbox{-regular Elements} \\ {\rm von Neumann Local Rings} \\ {\rm Clean Elements} \end{array}$

Theorem

Let R be a commutative ring, and consider the following statements.

(a)
$$vnl(R) = U(R) \cup nil(R)$$
.
(b) $cln(R) = U(R) \cup nil(R)$.
(c) $vnl(R) = vnr(R) \cup nil(R)$.
(d) $cln(R) = vnr(R) \cup nil(R)$.
Then (1) (a) \Leftrightarrow (b), (c) \Leftrightarrow (d), and (a) \Rightarrow (c).
(2) If any of the four statements holds, then
 $\tau - r(R) = vnl(R) = cln(R)$.
(3) If (a) or (b) holds, then $ldem(R) = \{0, 1\}$.
(4) If (c) or (d) holds, then either $ldem(R) = \{0, 1\}$ or
 $nil(R) = \{0\}$.

イロト イヨト イヨト イヨト

臣

To get the full paper free of charge, click here http://ayman-badawi.com/Publication.html

・ 同 ト イ ヨ ト イ ヨ ト

- E. Abu Osba, M. Henrikson, and O. Alkam, Combing local and von Neumann regular rings, Comm. Algebra 32(2004), 2639-2653.
- E. Abu Osba, M. Henrikson, O. Alkam, and F. A. Smith, The maximal regular ideal of some commutative rings, Comment. Math. Univ. Carolin. 47(2006), 1-10.
- M. S. Ahn and D. D. Anderson, Weakly clean rings and almost clean rings, Rocky Mountain J. Math. 30(2006), 783-798.
- D. D. Anderson and M. Winders, *Idealization of a module*, J. Commutative Algebra 1(2009), 3-56.

- D. D. Anderson and V. P. Camillo, Commutative rings whose elements are a sum of a unit and an idempotent, Comm. Algebra 30(2002), 3327-3336.
- D. F. Anderson, M. C. Axtell, and J. A. Stickles, Zero-divisor graphs in commutative rings, in Recent Developments in Commutative Algebra, Noetherian and Non-Noetherian Perspectives (M. Fontana, S.-E. Kabbaj, B. Olberding, I. Swanson, Eds.), Springer-Verlag, New York, 2011, 23-45.
- D. F. Anderson and A. Badawi, Divisibility conditions in commutative rings with zero-divisors, Comm. Algebra 30(2002), 4031-4047.

 $\begin{array}{c} \text{Introduction} \\ \pi\text{-regular Elements} \\ \text{von Neumann Local Rings} \\ \hline \text{Clean Elements} \end{array}$

- D. F. Anderson and A. Badawi, *On the zero-divisor graph of a ring*, Comm. Algebra 36(2008), 3073-3092.
- D. F. Anderson, R. Levy, and J. Shapiro, Zero-divisor graphs, von Neumann regular rings, and Boolean algebra, J. Pure Appl. Algebra 180(2003), 221-241.
- D. F. Anderson and P. S. Livingston, The zero-divisor graph of a commutative ring, J. Algebra 217(1999), 434-447.
- M. Contessa, *On certain classes of MP rings*, Comm. Algebra 12(1984), 1447-1469.
- M. D'Anna and M. Fontana, An amalgamated duplication of a ring along an ideal: the basic properties, J. Algebra Appl. 6(2007), 443-459.

- M. D'Anna and and M. Fontana, The amalgamated duplication of a ring along a multiplicative-canonical ideal, Ark. Mat. 45(2007), 241-252.
- R. Diestel, *Graph Theory*, Springer, New York, 1997.
- G. Ehrlich, *Unit-regular rings*, Portugal. Math. 27(1968), 209-212.
- J. W. Fisher and R. L. Synder, *Rings generated by their units*, J. Algebra 42(1976), 363-368.
- R. Gilmer, *Multiplicative Ideal Theory*, Marcel Dekker, New York/Basel, 1972.
- J. Han and W. K. Nicholson, *Extensions of clean rings*, Comm. Algebra 29(2001), 2589-2595.

 $\begin{array}{c} \text{Introduction} \\ \pi\text{-regular Elements} \\ \text{von Neumann Local Rings} \\ \hline \text{Clean Elements} \end{array}$

- J. A. Huckaba, *Commutative Rings with Zero Divisors*, Marcel Dekker, New York/Basel, 1988.
- K. N. Kyun and L. Yang *On right quasi-duo rings which are* π *-regular*, Bull. Korean Math. Soc. 37(2000), 217-227.
- J. D. LaGrange, *Complemented zero-divisor graphs and Boolean rings*, J. Algebra 315(2007), 600-611.
- J. D. LaGrange, *On realizing zero-divisor graphs*, Comm. Algebra 36(2008), 4509-4520.
- J. D. LaGrange, *Characterizations of three classes of zero-divisor graphs*, Canad. Math. Bull., to appear.

T. Y. Lam, *Exercises in Classical Ring Theory*, Springer, New York, 2003.

 $\begin{array}{c} \text{Introduction} \\ \pi\text{-regular Elements} \\ \text{von Neumann Local Rings} \\ \hline \text{Clean Elements} \end{array}$

- J. Lambek, *Lectures on Rings and Modules*, Blaisdell Publishing Company, Waltham/Toronto/London, 1966.
- R. Levy and J. Shapiro, *The zero-divisor graph of von Neumann regular rings*, Comm. Algebra 30(2002), 745-750.
- W. K. Nicholson, *Lifting idempotents and exchange rings*, Trans. Amer. Math. Soc. 229(1977), 269-278.
- R. Raphael, Some remarks on regular and strongly regular rings. Canad. Math. Bull. 17(1975), 709-712.