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Let R be a commutative ring with nonzero identity. we define
a ∈ R to be a von Neumann regular element of R (or just von
Neumann regular) if a2x = a for some x ∈ R . Similarly, we
define a ∈ R to be a π-regular element of R (or just π-regular)
if a2nx = an for some x ∈ R and integer n ≥ 1. Let
Idem(R) = { a ∈ R | a2 = a }, vnr(R) = { a ∈ R | a is von
Neumann regular }, and π-r(R) = { a ∈ R | a is π-regular }.
Thus Idem(R) ⊆ vnr(R) ⊆ π-r(R) and R is a Boolean (resp.,
von Neumann regular, π-regular) ring if and only if
Idem(R) = R (resp., vnr(R) = R , π-r(R) = R).
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Theorem

Let R be a commutative ring. Then the following statements
are equivalent for a ∈ R .
(1) a ∈ vnr(R).
(2) a2u = a for some u ∈ U(R).
(3) a = ue for some u ∈ U(R) and e ∈ Idem(R).
(4) ab = 0 for some b ∈ vnr(R) \ {a} with a + b ∈ U(R).
(5) ab = 0 for some b ∈ R with a + b ∈ U(R).

Let a ∈ vnr(R). Then a2x = a for some x ∈ R . Note that x
need not be unique since we may replace x by any
y ∈ x + ann(a2). The following result is well known for von
Neumann regular rings.
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Theorem

Let R be a commutative ring and a ∈ vnr(R). Then there is a
unique x ∈ R with a2x = a and x2a = x .
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Since vnr(R) ∩ nil(R) = {0}, it is natural to ask when
R = vnr(R) ∪ nil(R), i.e., when is every non-nilpotent element
of R von Neumann regular?

Theorem

Let R be a commutative ring.
(1) R = vnr(R) ∪ nil(R) if and only if either R is von
Neumann regular or R is quasilocal with maximal ideal nil(R).
In particular, if R = vnr(R) ∪ nil(R), then R is a π-regular
ring.
(2) R = vnr(R) ∪ Z (R) if and only if T (R) = R .
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We next show that if {0} ( Z (R) ⊆ vnr(R), then R is von
Neumann regular. One consequence of the next result is that
to check if a non-domain R is von Neumann regular, we need
only show that each zero-divisor of R is von Neumann regular.

Theorem

Let R be a commmutative ring with {0} ( Z (R). Then
Z (R) ⊆ vnr(R) if and only if R is von Neumann regular.

Remark

D. D. Anderson and V. P. Camillo proved that
R = U(R) ∪ Idem(R) if and only if R is a Boolean ring,
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Theorem

Let R be a commutative ring. Then R = Idem(R) ∪ nil(R) if
and only if R is Boolean.

Theorem

Let R be a commmutative ring with {0} ( Z (R). Then
Z (R) ⊆ Idem(R) if and only if R is Boolean.

It seems natural to conjecture that R = Idem(R) ∪ Z (R) if
and only if R is a Boolean ring. We next give some evidence
to support this conjecture.
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Theorem

Let R be a commutative ring.
(1) If R = Idem(R) ∪ Z (R), then U(R) = {1},
char(R) = 2, nil(R) = {0}, J(R) = {0}, and T (R) = R .
(2) If either dim(R) = 0 or R has only a finite number of
maximal ideals, then R = Idem(R) ∪ Z (R) if and only if R is
Boolean.

It is well known that if R is a commutative von Neumann
regular ring with 2 ∈ U(R), then every element of R is the
sum of two units of R . G. Ehrlich proved that if aua = a for
some u ∈ U(R), then a is the sum of two units of R . So this
result extends to vnr(R).
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Theorem

([15]) Let R be a commutative ring with 2 ∈ U(R). Then
every a ∈ vnr(R) is the sum of two units of R .

Theorem

Let R be a commutative ring with 2 ∈ U(R). Then the
following statements are equivalent.
(1) vnr(R) is a subring of R .
(2) The sum of any four units of R is a von Neumann regular
element of R .
(3) Let u, v , k ,m ∈ U(R) with k2 = m2 = 1. Then
u(1 + k) + v(1 + m) ∈ vnr(R).

Recall that for a commutative ring R , we let
π-r(R) = { a ∈ R | a2nx = an for some x ∈ R and integer
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n ≥ 1 } be the set of π-regular elements of R . Thus R is
π-regular if and only if π-r(R) = R , if and only if dim(R) = 0.
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Theorem

Let R be a commutative ring. Then the following statements
are equivalent for a ∈ R .
(1) a ∈ π-r(R).
(2) an ∈ vnr(R) for some integer n ≥ 1.
(3) an = ue for some u ∈ U(R), e ∈ Idem(R), and integer
n ≥ 1.
(4) a = b + w for some b ∈ vnr(R) and w ∈ nil(R).
(5) a = ue + w for some u ∈ U(R), e ∈ Idem(R), and
w ∈ nil(R).
(6) a + nil(R) ∈ vnr(R/nil(R)).
(7) anb = 0 for some b ∈ R and integer n ≥ 1 with
an + b ∈ U(R).
(8) ab ∈ nil(R) for some b ∈ R with a + b ∈ U(R).
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It is natural to ask when π-r(R) = vnr(R) ∪ nil(R).

Theorem

Let R be a commutative ring.
(1) π-r(R) = vnr(R) ∪ nil(R) if and only if either
Idem(R) = {0, 1} or nil(R) = {0}.
(2) R = π-r(R) ∪ Z (R) if and only if T (R) = R .

In the follwing result we show if a ring R with nil(R) ( Z (R)
is π-regular, we only need check that the zero-divisors of R are
all π-regular.

Theorem

Let R be a commutative ring with nil(R) ( Z (R). Then
Z (R) ⊆ π-r(R) if and only if R is π-regular.

Recall that nil(R) is of bounded index n if n is the least
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positive integer such that wn = 0 for every w ∈ nil(R). A
commutative ring R is said to be of bounded index n if n is
the least positive integer such that an ∈ vnr(R) for every
a ∈ π-r(R). Note that a von Neumann regular ring is of
bounded index 1.

Theorem

Let R be a commutative ring and n a positive integer. Then R
is of bounded index n if and only if nil(R) is of bounded index
n.

Recall (M. Contessa), )that a commutative ring R is a von
Neumann local ring if either a ∈ vnr(R) or 1− a ∈ vnr(R) for
every a ∈ R . This concept have been further studied by E.
Abu Osba, M. Henrikson, O. Alkam, and F. A. Smith We
define vnl(R) = { a ∈ R | a ∈ vnr(R) or 1− a ∈ vnr(R) } to
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be the set of von Neumann local elements of R . Thus R is a
von Neumann local ring if and only if vnl(R) = R .

Theorem

Let R be a commutative rings. Then
(1) vnl(R) = vnr(R) ∪ (1 + vnr(R)) = {0, 1}+ vnr(R). In
particular, {0, 1}+ U(R) = U(R) ∪ (1 + U(R)) ⊆ vnl(R).
(2) Let a ∈ R . Then a ∈ vnl(R) if and only if there is a
u ∈ U(R) and e ∈ Idem(R) such that either a = ue or
a = 1 + ue.
(3) nil(R) ⊆ J(R) ⊆ vnl(R). Thus U(R) ∪ J(R) ⊆ vnl(R).
(4) vnl(R) = U(R) ∪ (1 + U(R)) if and only if
Idem(R) = {0, 1}. In particular, vnl(R) = U(R) ∪ (1 + U(R))
when R is either an integral domain or quasilocal (note that
vnl(R) = R when R is qusailocal).
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Recall ()W. K. Nicholson) that a commutative ring R is a
clean ring if for every a ∈ R , a = u + e for some u ∈ U(R) and
e ∈ Idem(R). We define cln(R) = { a ∈ R | a = u + e for
some u ∈ U(R) and e ∈ Idem(R)} = U(R) + Idem(R) to be
the set of clean elements of R . Thus R is a clean ring if and
only if cln(R) = R .
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Theorem

Let R be commutative ring. Then
(1) Idem(R) ⊆ vnr(R) ⊆ vnl(R) ⊆ cln(R). In particular, a
Boolean ring, a von Neumann regular ring, or a von Neumann
local ring is a clean ring.
(2) vnr(R) ⊆ π-r(R) ⊆ cln(R). In particular, a π-regular ring
is a clean ring.
(3) U(R) ∪ J(R) ⊆ U(R) ∪ (1 + U(R)) ⊆ cln(R).
(4) If Idem(R) = {0, 1}, then cln(R) = vnl(R). In particular,
cln(R) = vnl(R) when R is either an integral domain or
quasilocal (note that cln(R) = vnl(R) = R when R is
quasilocal).
(7) If 2 ∈ U(R), then every a ∈ cln(R) is the sum of three
units of R .
(8) If vnl(R) is multiplicatively closed, then cln(R) = vnl(R).
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Theorem

Let R be a commutative ring, and consider the following
statements.

(a) vnl(R) = U(R) ∪ nil(R).
(b) cln(R) = U(R) ∪ nil(R).
(c) vnl(R) = vnr(R) ∪ nil(R).
(d) cln(R) = vnr(R) ∪ nil(R).

Then (1) (a) ⇔ (b), (c) ⇔ (d), and (a) ⇒ (c).
(2) If any of the four statements holds, then
π-r(R) = vnl(R) = cln(R).
(3) If (a) or (b) holds, then Idem(R) = {0, 1}.
(4) If (c) or (d) holds, then either Idem(R) = {0, 1} or
nil(R) = {0}.
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