Additive Codes

Steven T. Dougherty

Lens 2021

(Semi)-Classical Situation

- R a finite Frobenius ring, ambient space R^{n}.

(Semi)-Classical Situation

- R a finite Frobenius ring, ambient space R^{n}.
- Linear code of length n - submodule of R^{n}

(Semi)-Classical Situation

- R a finite Frobenius ring, ambient space R^{n}.
- Linear code of length n - submodule of R^{n}
- $[\mathbf{v}, \mathbf{w}]=\sum \mathbf{v}_{i} \mathbf{w}_{i}$

(Semi)-Classical Situation

- R a finite Frobenius ring, ambient space R^{n}.
- Linear code of length n - submodule of R^{n}
- $[\mathbf{v}, \mathbf{w}]=\sum \mathbf{v}_{i} \mathbf{w}_{i}$
- $C^{\perp}=\{\mathbf{v} \mid[\mathbf{v}, \mathbf{w}]=0, \forall \mathbf{w} \in C\}$

Non-commutative rings

- $\mathcal{L}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{v}, \mathbf{c}]=0, \forall \mathbf{c} \in C\right\}$

Non-commutative rings

- $\mathcal{L}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{v}, \mathbf{c}]=0, \forall \mathbf{c} \in C\right\}$
- $\mathcal{R}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{c}, \mathbf{v}]=0, \forall \mathbf{c} \in C\right\}$

Non-commutative rings

- $\mathcal{L}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{v}, \mathbf{c}]=0, \forall \mathbf{c} \in C\right\}$
- $\mathcal{R}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{c}, \mathbf{v}]=0, \forall \mathbf{c} \in C\right\}$
- Let C be a code, then $\mathcal{L}(C)$ is a left linear code and $\mathcal{R}(C)$ is a right linear code.

Non-commutative rings

- $\mathcal{L}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{v}, \mathbf{c}]=0, \forall \mathbf{c} \in C\right\}$
- $\mathcal{R}(C)=\left\{\mathbf{v} \in R^{n} \mid[\mathbf{c}, \mathbf{v}]=0, \forall \mathbf{c} \in C\right\}$
- Let C be a code, then $\mathcal{L}(C)$ is a left linear code and $\mathcal{R}(C)$ is a right linear code.
- In the commutative case $C^{\perp}=\mathcal{L}(C)=\mathcal{R}(C)$ and is a linear code.

Orthogonal Cardinalities

Lemma (Wood) If C is a left linear code over a finite Frobenius ring, then $|\mathcal{R}(C)||C|=|R|^{n}$. If C is a right linear code then $|\mathcal{L}(C)||C|=|R|^{n}$.

Orthogonal Cardinalities

Lemma (Wood) If C is a left linear code over a finite Frobenius ring, then $|\mathcal{R}(C)||C|=|R|^{n}$. If C is a right linear code then $|\mathcal{L}(C)||C|=|R|^{n}$.

Commutative Case $|C|\left|C^{\perp}\right|=|R|^{n}$ which generalizes classical case $\operatorname{dim}(C)+\operatorname{dim}\left(C^{\perp}\right)=n$.

Key points

- R is Frobenius (\widehat{R} has a generating character).

Key points

- R is Frobenius (\widehat{R} has a generating character).
- C linear (left, right), closed under addition and scalar multiplication.

Weight Enumerators

- For a code over an alphabet $A=\left\{a_{0}, a_{1}, \ldots, a_{s-1}\right\}$, the complete weight enumerator is the following polynomial in commuting indeterminants:

$$
\begin{equation*}
\operatorname{cwe}_{C}\left(x_{a_{0}}, x_{a_{1}}, \ldots, x_{a_{s-1}}\right)=\sum_{\mathbf{c} \in C} \prod_{i=0}^{s-1} x_{a_{i}}^{n_{i}(\mathbf{c})} \tag{1}
\end{equation*}
$$

where there are $n_{i}(\mathbf{c})$ occurrences of a_{i} in the vector \mathbf{c}.

Weight Enumerators

- For a code over an alphabet $A=\left\{a_{0}, a_{1}, \ldots, a_{s-1}\right\}$, the complete weight enumerator is the following polynomial in commuting indeterminants:

$$
\begin{equation*}
\operatorname{cwe}_{C}\left(x_{a_{0}}, x_{a_{1}}, \ldots, x_{a_{s-1}}\right)=\sum_{\mathbf{c} \in C} \prod_{i=0}^{s-1} x_{a_{i}}^{n_{i}(\mathbf{c})} \tag{1}
\end{equation*}
$$

where there are $n_{i}(\mathbf{c})$ occurrences of a_{i} in the vector \mathbf{c}.

- The Hamming weight enumerator of a code C of length n is defined to be

$$
W_{C}(x, y)=\sum_{\mathbf{c} \in C} x^{n-w t(\mathbf{c})} y^{w t(\mathbf{c})}
$$

where $w t(\mathbf{c})=\left|\left\{i \mid c_{i} \neq 0\right\}\right|$. It is immediate that $W_{C}(x, y)=\operatorname{cwe}(x, y, y, \ldots, y)$.

We define the matrix T, where T is an $|R|$ by $|R|$ matrix given by:

$$
\begin{equation*}
(T)_{a, b}=(\chi(a b)) \tag{2}
\end{equation*}
$$

where a and b are in R.

MacWilliams Relations

Theorem

(Wood) Let R be a Frobenius ring, with $|R|=k+1$. Let x_{i} correspond to the i-th element of R. If C is a left submodule of R^{n}, then

$$
\operatorname{cwe}_{C}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\frac{1}{|\mathcal{R}(C)|} \operatorname{cwe}_{\mathcal{R}(C)}\left(T^{t} \cdot\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right)
$$

If C is a right submodule of R^{n}, then

$$
\operatorname{cwe}_{C}\left(x_{0}, x_{1}, \ldots, x_{k}\right)=\frac{1}{|\mathcal{L}(C)|} c w e_{\mathcal{L}(C)}\left(T \cdot\left(x_{0}, x_{1}, \ldots, x_{k}\right)\right)
$$

MacWilliams Relations

Theorem

(Wood) Let R be a Frobenius ring, with $|R|=k+1$. Let x_{i} be the indeterminate that corresponds to the i-th element of R. If C is a left submodule of R^{n}, then

$$
W_{C}(x, y)=\frac{1}{|\mathcal{R}(C)|} W_{\mathcal{R}(C)}(x+(|R|-1) y, x-y)
$$

If C is a right submodule of R^{n}, then

$$
W_{C}(x, y)=\frac{1}{|\mathcal{L}(C)|} W_{\mathcal{L}(C)}(x+(|R|-1) y, x-y)
$$

Generating character

- χ highly non-unique.

Generating character

- χ highly non-unique.
- χ is a generating character if and only if $\operatorname{ker}(\chi)$ contains no non-trivial ideal.

Generating character

- χ highly non-unique.
- χ is a generating character if and only if $\operatorname{ker}(\chi)$ contains no non-trivial ideal.
- It is known how to construct χ, namely start with Socle and expand.

Additive Codes (So Far)

- Generally consider \mathbb{F}_{p} linearity in $\mathbb{F}_{p^{e}}^{n}$.

Additive Codes (So Far)

- Generally consider \mathbb{F}_{p} linearity in $\mathbb{F}_{p^{e}}^{n}$.
- Inner-product $[\mathbf{v}, \mathbf{w}]=\sum v_{i} w_{i}^{2}$ Important for quantum error correction.

Additive Codes (as I see it)

- G a finite abelian group (often the additive group of a ring commutative or non-commutative)

Additive Codes (as I see it)

- G a finite abelian group (often the additive group of a ring commutative or non-commutative)
- $\chi: G \rightarrow \mathbb{C}, \chi$ a homomorphism, that is a character of G

Additive Codes (as I see it)

- G a finite abelian group (often the additive group of a ring commutative or non-commutative)
- $\chi: G \rightarrow \mathbb{C}, \chi$ a homomorphism, that is a character of G
- $\widehat{G}=\{\chi \mid \chi$ a character of $G\}$

Additive Codes (as I see it)

- G a finite abelian group (often the additive group of a ring commutative or non-commutative)
- $\chi: G \rightarrow \mathbb{C}, \chi$ a homomorphism, that is a character of G
- $\widehat{G}=\{\chi \mid \chi$ a character of $G\}$
- G and \widehat{G} are isomorphic but not canonically

Additive Codes (as I see it)

- Choose an isomorphism $\psi: G \rightarrow \widehat{G}$.

Additive Codes (as I see it)

- Choose an isomorphism $\psi: G \rightarrow \widehat{G}$.
- Fix a symmetric duality on the space G^{n}. Namely, let $\chi_{a}=\psi(a)$ with $\chi_{a}(b)=\chi_{b}(a)$.

Additive Codes (as I see it)

- Choose an isomorphism $\psi: G \rightarrow \widehat{G}$.
- Fix a symmetric duality on the space G^{n}. Namely, let $\chi_{a}=\psi(a)$ with $\chi_{a}(b)=\chi_{b}(a)$.
- The orthogonal depends on the given duality.

Additive Codes (as I see it)

- Choose an isomorphism $\psi: G \rightarrow \widehat{G}$.
- Fix a symmetric duality on the space G^{n}. Namely, let $\chi_{a}=\psi(a)$ with $\chi_{a}(b)=\chi_{b}(a)$.
- The orthogonal depends on the given duality.
- $C^{\perp}=\left\{\left(g_{1}, g_{2}, \ldots, g_{n}\right) \mid \prod_{i=1}^{i=n} \chi_{g_{i}}\left(c_{i}\right)=1\right.$ for all $\left.\left(c_{1}, \ldots, c_{n}\right) \in C\right\}$.

Additive Codes (As I see it)

- $\left(C^{\perp}\right)^{\perp}=C$

Additive Codes (As I see it)

- $\left(C^{\perp}\right)^{\perp}=C$
- C^{\perp} is additive

Additive Codes (As I see it)

- $\left(C^{\perp}\right)^{\perp}=C$
- C^{\perp} is additive
$-|C|\left|C^{\perp}\right|=|G|^{n}$.

MacWilliams Relations

$$
M_{\alpha_{i}, \alpha_{j}}=\chi_{\alpha_{i}}\left(\alpha_{j}\right) .
$$

Theorem
Let $M_{\alpha_{i}, \alpha_{j}}=\chi_{\alpha_{i}}\left(\alpha_{j}\right)$. Let C be an additive code over $G,|G|=s$, with weight enumerator $W_{C}\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)$ then the complete weight enumerator of the orthogonal is given by:

$$
W_{C \perp}\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)=\frac{1}{|C|} W_{C}\left(M \cdot\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)\right)
$$

and

MacWilliams Relations

$$
M_{\alpha_{i}, \alpha_{j}}=\chi_{\alpha_{i}}\left(\alpha_{j}\right) .
$$

Theorem
Let $M_{\alpha_{i}, \alpha_{j}}=\chi_{\alpha_{i}}\left(\alpha_{j}\right)$. Let C be an additive code over $G,|G|=s$, with weight enumerator $W_{C}\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)$ then the complete weight enumerator of the orthogonal is given by:

$$
W_{C^{\perp}}\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)=\frac{1}{|C|} W_{C}\left(M \cdot\left(x_{0}, x_{1}, \ldots, x_{s-1}\right)\right)
$$

and

$$
W_{C^{\perp}}(x, y)=\frac{1}{|C|} W_{C}(x+(s-1) y, x-y)
$$

Intuition

- When the ring is Frobenius, scalar multiplication "matches" the duality when it is based on a generating character.

Intuition

- When the ring is Frobenius, scalar multiplication "matches" the duality when it is based on a generating character.
- Can be used when the ring is not Frobenius!

Intuition

- When the ring is Frobenius, scalar multiplication "matches" the duality when it is based on a generating character.
- Can be used when the ring is not Frobenius!
- Can be used when the codes are not linear.

Examples

$$
M_{E}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \tag{3}\\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right)
$$

Examples

$$
\begin{gather*}
M_{E}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1 \\
1 & 1 & -1 & -1
\end{array}\right) \tag{3}\\
M_{T}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & -1 & 1 \\
1 & -1 & 1 & -1
\end{array}\right), M_{T H}=\left(\begin{array}{cccc}
1 & 1 & 1 & 1 \\
1 & 1 & -1 & -1 \\
1 & -1 & 1 & -1 \\
1 & -1 & -1 & 1
\end{array}\right) . \tag{4}
\end{gather*}
$$

Guide to Use

- Pick the duality that matches your particular application.

Guide to Use

- Pick the duality that matches your particular application.
- In need not be just \mathbb{F}_{p} linearity. Any additive subgroup will work.

Linearity Example

- The finite field $\mathbb{F}_{q}, q=p^{e}$, is a vector space over \mathbb{F}_{p} of dimension e, each element of \mathbb{F}_{q} can be written as $a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{e-1} \zeta^{e-1}$ for some ζ.

Linearity Example

- The finite field $\mathbb{F}_{q}, q=p^{e}$, is a vector space over \mathbb{F}_{p} of dimension e, each element of \mathbb{F}_{q} can be written as $a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{e-1} \zeta^{e-1}$ for some ζ.
- $K_{i}=\left\{a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{e-1} \zeta^{e-1} \mid a_{j}=0\right.$ if $\left.j>i-1\right\}$.

Linearity Example

- The finite field $\mathbb{F}_{q}, q=p^{e}$, is a vector space over \mathbb{F}_{p} of dimension e, each element of \mathbb{F}_{q} can be written as $a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{e-1} \zeta^{e-1}$ for some ζ.
- $K_{i}=\left\{a_{0}+a_{1} \zeta+a_{2} \zeta^{2}+\cdots+a_{e-1} \zeta^{e-1} \mid a_{j}=0\right.$ if $\left.j>i-1\right\}$.
- Then K_{i} is an additive subgroup of $\left(\mathbb{F}_{q},+\right)$. Not necessarily a subfield.

Linearity Example

- $\langle N\rangle_{p^{i}}$ is the span of N with coefficients from K_{i}. Let N be any matrix with rows that are elements from $\mathbb{F}_{q}^{n}, q=p^{e}, p$ prime. Then the $\langle N\rangle_{p^{i}}$ is a subgroup of \mathbb{F}_{q}^{n}.

Linearity Example

- $\langle N\rangle_{p^{i}}$ is the span of N with coefficients from K_{i}. Let N be any matrix with rows that are elements from $\mathbb{F}_{q}^{n}, q=p^{e}, p$ prime. Then the $\langle N\rangle_{p^{i}}$ is a subgroup of \mathbb{F}_{q}^{n}.

$$
\langle N\rangle_{p} \subseteq\langle N\rangle_{p^{2}} \subseteq \cdots \subseteq\langle N\rangle_{p^{e}}
$$

Linearity Example

- $\langle N\rangle_{p^{i}}$ is the span of N with coefficients from K_{i}. Let N be any matrix with rows that are elements from $\mathbb{F}_{q}^{n}, q=p^{e}, p$ prime. Then the $\langle N\rangle_{p^{i}}$ is a subgroup of \mathbb{F}_{q}^{n}.

$$
\begin{aligned}
& \langle N\rangle_{p} \subseteq\langle N\rangle_{p^{2}} \subseteq \cdots \subseteq\langle N\rangle_{p^{e}} . \\
& \langle N\rangle_{p^{e}}^{\perp} \subseteq\langle N\rangle_{p^{e-1}} \subseteq \cdots \subseteq\langle N\rangle_{p}^{\perp}
\end{aligned}
$$

Questions

Questions

Merci André!!

