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I Linear code of length n – submodule of Rn

I [v,w] =
∑

viwi

I C⊥ = {v | [v,w] = 0, ∀w ∈ C}
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Weight Enumerators

I For a code over an alphabet A = {a0, a1, . . . , as−1}, the
complete weight enumerator is the following polynomial in
commuting indeterminants:

cweC (xa0 , xa1 , . . . , xas−1) =
∑
c∈C

s−1∏
i=0

x
ni (c)
ai (1)

where there are ni (c) occurrences of ai in the vector c.

I The Hamming weight enumerator of a code C of length n is
defined to be

WC (x , y) =
∑
c∈C

xn−wt(c)ywt(c),

where wt(c) = |{i | ci 6= 0}|. It is immediate that
WC (x , y) = cwe(x , y , y , . . . , y).
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We define the matrix T , where T is an |R| by |R| matrix given by:

(T )a,b = (χ(ab)) (2)

where a and b are in R.



MacWilliams Relations

Theorem
(Wood) Let R be a Frobenius ring, with |R| = k + 1. Let xi
correspond to the i-th element of R.
If C is a left submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|R(C )|
cweR(C)(T

t · (x0, x1, . . . , xk)).

If C is a right submodule of Rn, then

cweC (x0, x1, . . . , xk) =
1

|L(C )|
cweL(C)(T · (x0, x1, . . . , xk)).



MacWilliams Relations

Theorem
(Wood) Let R be a Frobenius ring, with |R| = k + 1. Let xi be the
indeterminate that corresponds to the i-th element of R.
If C is a left submodule of Rn, then

WC (x , y) =
1

|R(C )|
WR(C)(x + (|R| − 1)y , x − y).

If C is a right submodule of Rn, then

WC (x , y) =
1

|L(C )|
WL(C)(x + (|R| − 1)y , x − y).



Generating character

I χ highly non-unique.

I χ is a generating character if and only if ker(χ) contains no
non-trivial ideal.

I It is known how to construct χ, namely start with Socle and
expand.
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I G a finite abelian group (often the additive group of a ring –
commutative or non-commutative)

I χ : G → C, χ a homomorphism, that is a character of G

I Ĝ = {χ | χ a character of G}
I G and Ĝ are isomorphic but not canonically
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I Choose an isomorphism ψ : G → Ĝ .

I Fix a symmetric duality on the space Gn. Namely, let
χa = ψ(a) with χa(b) = χb(a).

I The orthogonal depends on the given duality.

I C⊥ = {(g1, g2, . . . , gn)|
∏i=n

i=1 χgi (ci ) = 1 for all
(c1, . . . , cn) ∈ C}.
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MacWilliams Relations

Mαi ,αj = χαi (αj).

Theorem
Let Mαi ,αj = χαi (αj). Let C be an additive code over G, |G | = s,
with weight enumerator WC (x0, x1, . . . , xs−1) then the complete
weight enumerator of the orthogonal is given by:

WC⊥(x0, x1, . . . , xs−1) =
1

|C |
WC (M · (x0, x1, . . . , xs−1))

and

WC⊥(x , y) =
1

|C |
WC (x + (s − 1)y , x − y)



MacWilliams Relations

Mαi ,αj = χαi (αj).

Theorem
Let Mαi ,αj = χαi (αj). Let C be an additive code over G, |G | = s,
with weight enumerator WC (x0, x1, . . . , xs−1) then the complete
weight enumerator of the orthogonal is given by:

WC⊥(x0, x1, . . . , xs−1) =
1

|C |
WC (M · (x0, x1, . . . , xs−1))

and

WC⊥(x , y) =
1

|C |
WC (x + (s − 1)y , x − y)



Intuition

I When the ring is Frobenius, scalar multiplication “matches”
the duality when it is based on a generating character.

I Can be used when the ring is not Frobenius!

I Can be used when the codes are not linear.
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Examples

ME =


1 1 1 1
1 −1 −1 1
1 −1 1 −1
1 1 −1 −1

 (3)

MT =


1 1 1 1
1 1 −1 −1
1 −1 −1 1
1 −1 1 −1

 ,MTH =


1 1 1 1
1 1 −1 −1
1 −1 1 −1
1 −1 −1 1

 .
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Guide to Use

I Pick the duality that matches your particular application.

I In need not be just Fp linearity. Any additive subgroup will
work.
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Linearity Example

I The finite field Fq, q = pe , is a vector space over Fp of
dimension e, each element of Fq can be written as
a0 + a1ζ + a2ζ

2 + · · ·+ ae−1ζ
e−1 for some ζ.

I Ki = {a0 + a1ζ + a2ζ
2 + · · ·+ ae−1ζ

e−1 | aj = 0 if j > i − 1}.
I Then Ki is an additive subgroup of (Fq,+). Not necessarily

a subfield.
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Linearity Example

I 〈N〉pi is the span of N with coefficients from Ki . Let N be
any matrix with rows that are elements from Fn

q, q = pe , p
prime. Then the 〈N〉pi is a subgroup of Fn

q.

I

〈N〉p ⊆ 〈N〉p2 ⊆ · · · ⊆ 〈N〉pe .

〈N〉⊥pe ⊆ 〈N〉pe−1 ⊆ · · · ⊆ 〈N〉⊥p
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Questions

Questions

Merci André!!


