Additive Codes

Steven T. Dougherty

Lens 2021

• R a finite Frobenius ring, ambient space R^n .

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• R a finite Frobenius ring, ambient space R^n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

► Linear code of length n - submodule of Rⁿ

• R a finite Frobenius ring, ambient space R^n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Linear code of length n – submodule of Rⁿ

$$\blacktriangleright [\mathbf{v}, \mathbf{w}] = \sum \mathbf{v}_i \mathbf{w}_i$$

• R a finite Frobenius ring, ambient space R^n .

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Linear code of length n submodule of Rⁿ
- $\blacktriangleright [\mathbf{v}, \mathbf{w}] = \sum \mathbf{v}_i \mathbf{w}_i$

$$\triangleright \ C^{\perp} = \{ \mathbf{v} \mid [\mathbf{v}, \mathbf{w}] = 0, \ \forall \mathbf{w} \in C \}$$

$$\blacktriangleright \mathcal{L}(C) = \{ \mathbf{v} \in R^n \mid [\mathbf{v}, \mathbf{c}] = 0, \forall \mathbf{c} \in C \}$$

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

$$\mathcal{L}(C) = \{ \mathbf{v} \in R^n \mid [\mathbf{v}, \mathbf{c}] = 0, \forall \mathbf{c} \in C \}$$
$$\mathcal{R}(C) = \{ \mathbf{v} \in R^n \mid [\mathbf{c}, \mathbf{v}] = 0, \forall \mathbf{c} \in C \}$$

- ▶ $\mathcal{L}(C) = {\mathbf{v} \in R^n \mid [\mathbf{v}, \mathbf{c}] = 0, \forall \mathbf{c} \in C}$
- $\blacktriangleright \ \mathcal{R}(C) = \{ \mathbf{v} \in R^n \mid [\mathbf{c}, \mathbf{v}] = 0, \forall \mathbf{c} \in C \}$
- Let C be a code, then L(C) is a left linear code and R(C) is a right linear code.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- ▶ $\mathcal{L}(C) = {\mathbf{v} \in R^n \mid [\mathbf{v}, \mathbf{c}] = 0, \forall \mathbf{c} \in C}$
- $\blacktriangleright \ \mathcal{R}(C) = \{ \mathbf{v} \in R^n \mid [\mathbf{c}, \mathbf{v}] = 0, \forall \mathbf{c} \in C \}$
- Let C be a code, then L(C) is a left linear code and R(C) is a right linear code.
- In the commutative case C[⊥] = L(C) = R(C) and is a linear code.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Lemma (Wood) If C is a left linear code over a finite Frobenius ring, then $|\mathcal{R}(C)||C| = |R|^n$. If C is a right linear code then $|\mathcal{L}(C)||C| = |R|^n$.

Lemma (Wood) If C is a left linear code over a finite Frobenius ring, then $|\mathcal{R}(C)||C| = |R|^n$. If C is a right linear code then $|\mathcal{L}(C)||C| = |R|^n$.

Commutative Case $|C||C^{\perp}| = |R|^n$ which generalizes classical case $dim(C) + dim(C^{\perp}) = n$.

Key points

• R is Frobenius (\hat{R} has a generating character).

Key points

- R is Frobenius (\hat{R} has a generating character).
- C linear (left, right), closed under addition and scalar multiplication.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Weight Enumerators

► For a code over an alphabet A = {a₀, a₁,..., a_{s-1}}, the complete weight enumerator is the following polynomial in commuting indeterminants:

$$cwe_{C}(x_{a_{0}}, x_{a_{1}}, \dots, x_{a_{s-1}}) = \sum_{\mathbf{c} \in C} \prod_{i=0}^{s-1} x_{a_{i}}^{n_{i}(\mathbf{c})}$$
 (1)

where there are $n_i(\mathbf{c})$ occurrences of a_i in the vector \mathbf{c} .

Weight Enumerators

► For a code over an alphabet A = {a₀, a₁,..., a_{s-1}}, the complete weight enumerator is the following polynomial in commuting indeterminants:

$$cwe_{C}(x_{a_{0}}, x_{a_{1}}, \dots, x_{a_{s-1}}) = \sum_{\mathbf{c} \in C} \prod_{i=0}^{s-1} x_{a_{i}}^{n_{i}(\mathbf{c})}$$
 (1)

where there are $n_i(\mathbf{c})$ occurrences of a_i in the vector \mathbf{c} .

The Hamming weight enumerator of a code C of length n is defined to be

$$W_C(x,y) = \sum_{\mathbf{c} \in C} x^{n-wt(\mathbf{c})} y^{wt(\mathbf{c})},$$

where $wt(\mathbf{c}) = |\{i \mid c_i \neq 0\}|$. It is immediate that $W_C(x, y) = cwe(x, y, y, \dots, y)$.

We define the matrix T, where T is an |R| by |R| matrix given by:

$$(T)_{a,b} = (\chi(ab)) \tag{2}$$

where a and b are in R.

MacWilliams Relations

Theorem

(Wood) Let R be a Frobenius ring, with |R| = k + 1. Let x_i correspond to the *i*-th element of R. If C is a left submodule of R^n , then

$$cwe_C(x_0, x_1, \ldots, x_k) = \frac{1}{|\mathcal{R}(C)|} cwe_{\mathcal{R}(C)}(T^t \cdot (x_0, x_1, \ldots, x_k)).$$

If C is a right submodule of \mathbb{R}^n , then

$$cwe_{\mathcal{C}}(x_0, x_1, \ldots, x_k) = \frac{1}{|\mathcal{L}(\mathcal{C})|} cwe_{\mathcal{L}(\mathcal{C})}(\mathcal{T} \cdot (x_0, x_1, \ldots, x_k)).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

MacWilliams Relations

Theorem

(Wood) Let R be a Frobenius ring, with |R| = k + 1. Let x_i be the indeterminate that corresponds to the *i*-th element of R. If C is a left submodule of R^n , then

$$W_{\mathcal{C}}(x,y) = \frac{1}{|\mathcal{R}(\mathcal{C})|} W_{\mathcal{R}(\mathcal{C})}(x+(|\mathcal{R}|-1)y,x-y).$$

If C is a right submodule of R^n , then

$$W_{\mathcal{C}}(x,y) = \frac{1}{|\mathcal{L}(\mathcal{C})|} W_{\mathcal{L}(\mathcal{C})}(x+(|\mathcal{R}|-1)y,x-y).$$

Generating character

• χ highly non-unique.

Generating character

- > χ highly non-unique.
- *χ* is a generating character if and only if *ker*(*χ*) contains no non-trivial ideal.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Generating character

- > χ highly non-unique.
- *χ* is a generating character if and only if *ker*(*χ*) contains no non-trivial ideal.
- It is known how to construct χ, namely start with Socle and expand.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Additive Codes (So Far)

• Generally consider \mathbb{F}_p linearity in $\mathbb{F}_{p^e}^n$.

Additive Codes (So Far)

- Generally consider \mathbb{F}_p linearity in $\mathbb{F}_{p^e}^n$.
- ► Inner-product $[\mathbf{v}, \mathbf{w}] = \sum v_i w_i^2$ Important for quantum error correction.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► G a finite abelian group (often the additive group of a ring – commutative or non-commutative)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

► G a finite abelian group (often the additive group of a ring – commutative or non-commutative)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

• $\chi: \mathcal{G} \to \mathbb{C}$, χ a homomorphism, that is a character of \mathcal{G}

 G a finite abelian group (often the additive group of a ring – commutative or non-commutative)

\chi : *G* → C, *\chi* a homomorphism, that is a character of *G Ĝ* = {*\chi* | *\chi* a character of *G*}

 G a finite abelian group (often the additive group of a ring – commutative or non-commutative)

- \(\chi \): G → C, \(\chi \) a homomorphism, that is a character of G
 \(\heta \): G = {\(\chi \) | \(\chi \) a character of G} \)
- G and \widehat{G} are isomorphic but not canonically

• Choose an isomorphism $\psi: \mathcal{G} \to \widehat{\mathcal{G}}$.

- Choose an isomorphism $\psi: \mathcal{G} \to \widehat{\mathcal{G}}$.
- Fix a symmetric duality on the space Gⁿ. Namely, let χ_a = ψ(a) with χ_a(b) = χ_b(a).

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Choose an isomorphism $\psi: \mathcal{G} \to \widehat{\mathcal{G}}$.
- Fix a symmetric duality on the space Gⁿ. Namely, let χ_a = ψ(a) with χ_a(b) = χ_b(a).

The orthogonal depends on the given duality.

- Choose an isomorphism $\psi: G \to \widehat{G}$.
- Fix a symmetric duality on the space Gⁿ. Namely, let χ_a = ψ(a) with χ_a(b) = χ_b(a).

The orthogonal depends on the given duality.

•
$$C^{\perp} = \{(g_1, g_2, \dots, g_n) | \prod_{i=1}^{i=n} \chi_{g_i}(c_i) = 1 \text{ for all } (c_1, \dots, c_n) \in C \}.$$

•
$$(C^{\perp})^{\perp} = C$$

$$|C||C^{\perp}| = |G|^n.$$

MacWilliams Relations

$$M_{lpha_i,lpha_j} = \chi_{lpha_i}(lpha_j).$$

Theorem

Let $M_{\alpha_i,\alpha_j} = \chi_{\alpha_i}(\alpha_j)$. Let C be an additive code over G, |G| = s, with weight enumerator $W_C(x_0, x_1, \dots, x_{s-1})$ then the complete weight enumerator of the orthogonal is given by:

$$W_{C^{\perp}}(x_0, x_1, \ldots, x_{s-1}) = \frac{1}{|C|} W_C(M \cdot (x_0, x_1, \ldots, x_{s-1}))$$

and

MacWilliams Relations

$$M_{lpha_i,lpha_j} = \chi_{lpha_i}(lpha_j).$$

Theorem

Let $M_{\alpha_i,\alpha_j} = \chi_{\alpha_i}(\alpha_j)$. Let C be an additive code over G, |G| = s, with weight enumerator $W_C(x_0, x_1, \dots, x_{s-1})$ then the complete weight enumerator of the orthogonal is given by:

$$W_{C^{\perp}}(x_0, x_1, \ldots, x_{s-1}) = \frac{1}{|C|} W_C(M \cdot (x_0, x_1, \ldots, x_{s-1}))$$

and

$$W_{C^{\perp}}(x,y) = \frac{1}{|C|} W_C(x+(s-1)y,x-y)$$

Intuition

When the ring is Frobenius, scalar multiplication "matches" the duality when it is based on a generating character.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Intuition

When the ring is Frobenius, scalar multiplication "matches" the duality when it is based on a generating character.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Can be used when the ring is not Frobenius!

Intuition

When the ring is Frobenius, scalar multiplication "matches" the duality when it is based on a generating character.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Can be used when the ring is not Frobenius!
- Can be used when the codes are not linear.

Examples

(3)

Examples

<□ > < @ > < E > < E > E のQ @

Guide to Use

Pick the duality that matches your particular application.

Guide to Use

- Pick the duality that matches your particular application.
- In need not be just 𝔽_p linearity. Any additive subgroup will work.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

The finite field 𝔽_q, q = p^e, is a vector space over 𝔽_p of dimension e, each element of 𝔽_q can be written as a₀ + a₁ζ + a₂ζ² + ··· + a_{e-1}ζ^{e-1} for some ζ.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

The finite field F_q, q = p^e, is a vector space over F_p of dimension e, each element of F_q can be written as a₀ + a₁ζ + a₂ζ² + ··· + a_{e-1}ζ^{e-1} for some ζ.

•
$$K_i = \{a_0 + a_1\zeta + a_2\zeta^2 + \dots + a_{e-1}\zeta^{e-1} \mid a_j = 0 \text{ if } j > i-1\}.$$

- The finite field 𝔽_q, q = p^e, is a vector space over 𝔽_p of dimension e, each element of 𝔽_q can be written as a₀ + a₁ζ + a₂ζ² + ··· + a_{e-1}ζ^{e-1} for some ζ.
- $K_i = \{a_0 + a_1\zeta + a_2\zeta^2 + \dots + a_{e-1}\zeta^{e-1} \mid a_j = 0 \text{ if } j > i-1\}.$
- ► Then K_i is an additive subgroup of (𝔽_q, +). Not necessarily a subfield.

▶ $\langle N \rangle_{p^i}$ is the span of N with coefficients from K_i . Let N be any matrix with rows that are elements from \mathbb{F}_q^n , $q = p^e$, pprime. Then the $\langle N \rangle_{p^i}$ is a subgroup of \mathbb{F}_q^n .

►

▶ $\langle N \rangle_{p^i}$ is the span of N with coefficients from K_i . Let N be any matrix with rows that are elements from \mathbb{F}_q^n , $q = p^e$, p prime. Then the $\langle N \rangle_{p^i}$ is a subgroup of \mathbb{F}_q^n .

$$\langle N \rangle_p \subseteq \langle N \rangle_{p^2} \subseteq \cdots \subseteq \langle N \rangle_{p^e}.$$

▶ $\langle N \rangle_{p^i}$ is the span of N with coefficients from K_i . Let N be any matrix with rows that are elements from \mathbb{F}_q^n , $q = p^e$, p prime. Then the $\langle N \rangle_{p^i}$ is a subgroup of \mathbb{F}_q^n .

$$\langle N \rangle_p \subseteq \langle N \rangle_{p^2} \subseteq \cdots \subseteq \langle N \rangle_{p^e}.$$

$$\langle N \rangle_{p^e}^{\perp} \subseteq \langle N \rangle_{p^{e-1}} \subseteq \cdots \subseteq \langle N \rangle_{p}^{\perp}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Questions

Questions

Merci André!!