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L(C)={veR"||v,c]=0,Vce C}
R(C)={veR"|[c,v]=0,Vce C}

Let C be a code, then £(C) is a left linear code and R(C) is
a right linear code.

In the commutative case C+ = £(C) = R(C) and is a linear
code.
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Lemma (Wood) If C is a left linear code over a finite Frobenius
ring, then |R(C)||C| = |R|". If C is a right linear code then
[L(O)ICl = [R|™

Commutative Case |C||C*| = |R|" which generalizes classical case
dim(C) + dim(C*) = n.
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» R is Frobenius (ﬁ has a generating character).

» C linear (left, right), closed under addition and scalar
multiplication.
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Weight Enumerators

» For a code over an alphabet A = {ag, a1,...,as—1}, the
complete weight enumerator is the following polynomial in
commuting indeterminants:

where there are nj(c) occurrences of a; in the vector c.

» The Hamming weight enumerator of a code C of length n is
defined to be

Welx,y) =Y x"He)ywe),

ceC

where wt(c) = [{i | ¢; # 0}|. It is immediate that
We(x,y) = cwe(x,y,y,...,¥).



We define the matrix T, where T is an |R| by |R| matrix given by:

(T)ap = (x(ab)) (2)

where a and b are in R.



MacWilliams Relations

Theorem

(Wood) Let R be a Frobenius ring, with |R| = k + 1. Let x;
correspond to the i-th element of R.

If C is a left submodule of R", then
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If C is a right submodule of R", then
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MacWilliams Relations

Theorem

(Wood) Let R be a Frobenius ring, with |R| = k + 1. Let x; be the
indeterminate that corresponds to the i-th element of R.

If C is a left submodule of R", then

1

We(x,y) = WWR(C)(X+ (IRl = 1)y, x —y).

If C is a right submodule of R", then

Wel.y) = 75 Wete)(x + (IR = y.x =),
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Generating character

» x highly non-unique.

> X is a generating character if and only if ker(x) contains no
non-trivial ideal.

> It is known how to construct y, namely start with Socle and
expand.
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Additive Codes (So Far)

> Generally consider I, linearity in IFp..

> Inner-product [v,w] = > v;w? Important for quantum error
correction.
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x : G — C, x a homomorphism, that is a character of G
G= {x | x a character of G}
» G and G are isomorphic but not canonically

v
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Choose an isomorphism v : G — G.

v
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Fix a symmetric duality on the space G". Namely, let
Xa = p(a) with xa(b) = x»(a).
The orthogonal depends on the given duality.

CJ_ = {(g17g27 oo 7gn)’ H:zn Xg,—(ci) =1 for all
(Cl,...,C,,) c C},

v

v
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» (CH)*t=C
» CL is additive
> [Cl|CH =G|
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MacWilliams Relations

Mai,aj = Xaj (O‘j)-

Theorem

Let My, o; = Xa;(j). Let C be an additive code over G, |G| =s,
with weight enumerator W¢(xo, x1, - - ., Xs—1) then the complete
weight enumerator of the orthogonal is given by:

1
Wei(x0, X1,y Xs—1) = EWC(M (X0, X1y vy Xs—1))

and

1
WCL(Xay) = mWC(X+(5_1)y,X_y)
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Intuition

» When the ring is Frobenius, scalar multiplication “matches”
the duality when it is based on a generating character.

» Can be used when the ring is not Frobenius!

» Can be used when the codes are not linear.
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Guide to Use

» Pick the duality that matches your particular application.



Guide to Use

» Pick the duality that matches your particular application.

» In need not be just I, linearity. Any additive subgroup will
work.
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Linearity Example

> The finite field IF5, g = p®, is a vector space over IF, of
dimension e, each element of Iy can be written as
ag+ a1C + ap(? + - + aec_1¢¢ ! for some .

» Ki={ao+ai{+a?+ - +a_1(t|a=0if j >i—1}.

» Then K; is an additive subgroup of (IFg, +). Not necessarily
a subfield.
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prime. Then the (N), is a subgroup of Ig.
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Merci André!!



