Quasi-Baer module hulls and examples

(Joint work with Jae Keol Park, S. Tariq Rizvi, and Cosmin S. Roman) Dedicated to S. Tariq Rizvi

Gangyong Lee

Chungnam National University, Assistant Professor

NCRA VII 2021, Zoom, France July 06, 2021

- 1946 : Rickart studied C*-algebras (i.e, Banach algebras with an involution * such that $||xx^*|| = ||x||^2$) in which the right annihilator of any element is generated by a projection ($e^* = e, e^2 = e$). (named Rickart C*-algebras by Kaplansky later.)
- 1951 : Kaplansky defined AW^* -algebras: C^* -algebras in which the right annihilator of any subset is generated by a projection.
- 1955 : Kaplansky defined Baer*-rings and Baer rings: A Baer*-ring (resp. Baer ring) is a *-ring (resp. ring) in which the right annihilator of any subset is generated by a projection (resp. an idempotent).
- 1960 : Maeda defined Rickart rings (known as p.p. rings) Also, defined by Kaplansky, Hattori (1960): A ring is called right Rickart if the right annihilator of any single element is generated by an idempotent, equivalently, any principal right ideal is projective.
- 1967 : Clark defined quasi-Baer rings:A ring *R* is called quasi-Baer if the right annihilator of any 2-sided ideal is generated by an idempotent.

One application of quasi-Baer ring hulls of semiprime rings has been that these hulls establish useful connections of quasi-Baer rings to C^* -algebras in Functional Analysis.

Theorem (2009, Birkenmeier, Park, Rizvi)

A unital C^* -algebra R is boundedly centrally closed iff R is a quasi-AW*-algebra.

 \therefore the local multiplier algebra of a C^* -algebra is always a quasi-Baer ring. Consequently, a C^* -algebra whose local multiplier algebra is a C^* -direct product of prime C^* -algebras can be fully characterized.

Let *M* be a right *R*-module and $S = \text{End}_R(M)$.

Definition (2004, Rizvi, Roman)

A module M_R is called Baer module if for any left ideal I of S, $r_M(I) = fM$ for some $f^2 = f \in S$, where $r_M(I) = \{m \in M \mid Im = 0\}$. Equivalently, a module M_R is Baer if, for any $N_R \leq M_R$, there exists $e^2 = e \in S$ such that $\ell_S(N) = Se$, where $\ell_S(N) = \{f \in S \mid f(N) = 0\}$.

Definition (2007, Rizvi, Roman)

A module M_R is called a Rickart module if for each $\phi \in S$, $r_M(\phi) = \text{Ker}(\phi) = eM$ for some $e^2 = e \in S$.

Definition (2004, Rizvi, Roman)

A module M_R is called a quasi-Baer module if, for any ideal J of S, $r_M(J) = fM$ for some $f^2 = f \in S$. Equiv., M_R is quasi-Baer if, for each fully invariant submodule N of M, $\ell_S(N) = Se$ for some $e^2 = e \in S$.

It has been of interest to investigate finite dimensional algebras over an arbitrary algebraically closed field.

Clark initially defined a quasi-Baer ring to help characterize a finite dimensional algebra over an algebraically closed field to be a twisted semigroup algebra.

Historically, it is of interest to note that the Hamilton quaternion division algebra over the real number field \mathbb{R} is a twisted group algebra of the Klein four group V_4 over \mathbb{R} .

Definition (2013, Birkenmeier, Park, Rizvi)

Let M_R be a module. We fix an injective hull $E(M_R)$ of M_R . Let \mathfrak{M} be a class of modules. We call, when it exists, a module H_R the \mathfrak{M} hull of M_R if H_R is the smallest extension of M_R in $E(M_R)$ that belongs to \mathfrak{M} .

Notation We use qB(-), Ric(-), B(-), Ex(-), and FI(-) to denote the quasi-Baer module hull, the Rickart module hull, the Baer module hull, the extending module hull, and the FI-extending module hull of a module, respectively it they exist.

Definition

For a given module M, the smallest quasi-Baer (resp., Rickart) overmodule of M in E(M) is called the quasi-Baer (resp., Rickart) module hull of M.

Definition (2013, Armendariz, Birkenmeier, Park)

A ring R is called ideal intrinsic over Cen(R)if $I \cap Cen(R) \neq 0$ for any $0 \neq I \trianglelefteq R$.

1. For a semiprime ring R which is ideal intrinsic over Cen(R), it is known that R is left (right) nonsingular by [1, Proposition 1.2].

2. If a ring R is semiprime PI, then R is ideal intrinsic over Cen(R) ([3, Theorem 1.17]).

Recall that a ring R is called a PI-ring if R satisfies a polynomial identity.

Note

(i) If a ring R is semiprime, then the ring RB(Q(R)) is the smallest quasi-Baer intermediate ring between R and Q(R).
(ii) If a ring R is reduced, then RB(Q(R)) is reduced, so RB(Q(R)) is a Baer ring since any reduced quasi-Baer ring is Baer.

Therefore, RB(Q(R)) is the smallest Baer ring between R and Q(R), that is, the Baer ring hull of R.

Theorem (2018, Lee, Park, Rizvi, Roman)

Let a ring R be semiprime and ideal intrinsic over Cen(R), n be a positive integer, and $e^2 = e \in End(R_R^{(n)})$. Then $\mathbf{qB}(eR_R^{(n)}) = eR\mathcal{B}(Q(R))_R^{(n)}$.

Therefore, any finitely generated projective module over R has a quasi-Baer hull.

Corollary

Let a ring R be semiprime and ideal intrinsic over Cen(R), and let P_R be a finitely generated projective module over R. Then $qB(P_R) = FI(P_R)$.

The following example illustrates that the previous results do not hold for the existence of the Baer hull or the Rickart hull of a finitely generated projective module over a ring R even when R is a commutative domain.

Example

Let *R* be a commutative domain and *n* an integer with n > 1. Then: (i) $R_R^{(n)}$ has a Baer hull if and only if *R* is a Prüfer domain. (ii) Similarly, $R_R^{(n)}$ has a Rickart hull if and only if *R* is a Prüfer domain. Hence $(\mathbb{Z}[x] \oplus \mathbb{Z}[x])_{\mathbb{Z}[x]}$ has no Rickart hull.

Recall that a commutative domain R is called Prüfer if R is semihereditary (i.e., every finitely generated ideal is projective).

Assume that A is a Boolean ring and $R = Mat_k(A)$, where k is a positive integer. Let P_R be a finitely generated projective module over R. Then: (i) P_R has a Baer hull.

(ii) P_R has an extending hull.

(iii) The quasi-Baer hull, the Baer hull, the injective hull,

the quasi-injective hull, the continuous hull, the quasi-continuous hull, the extending hull, and the FI-extending hull of P_R all exist and coincide.

Let A be a Boolean ring and $R = Mat_k(A)$, k a positive integer. Assume that P_R is a finitely generated projective module over R. In view of the above corollary, one may expect that $\mathbf{qB}(R_R) = \mathbf{Ric}(P_R)$?

Example

Let $A = \{(a_n) \in \prod_{n=1}^{\infty} \mathbb{Z}_2 \mid a_n \text{ is eventually constant}\}$. Then A is a Boolean ring. Put $R = \operatorname{Mat}_k(A)$, where k is any positive integer. We note that $Q(\operatorname{Mat}_k(A)) = \operatorname{Mat}_k(Q(A))$ and $Q(A) = \prod_{n=1}^{\infty} \mathbb{Z}_2$. $\therefore \mathbf{qB}(R_R) = \mathbf{B}(R_R) = \mathbf{Ex}(R_R) = \mathbf{FI}(R_R) = E(R_R) = \operatorname{Mat}_k(\prod_{n=1}^{\infty} \mathbb{Z}_2)$. Since A is a Boolean ring, R is von Neumann regular, so R_R is Rickart. Thus $\operatorname{Ric}(R_R) = R_R \neq E(R_R)$. Therefore $\mathbf{qB}(R_R) \neq \operatorname{Ric}(R_R)$

Lemma

Let R be a Dedekind domain which is not a field. Assume that M is an R-module such that $Ann_R(M) \neq 0$, and $\{K_i \mid i \in \Lambda\}$ is a set of nonzero submodules of F_R , where F is the field of fractions of R. Put $N_R = M_R \oplus (\bigoplus_{i \in \Lambda} K_i)_R$. Then we have the following. (i) If N_R has a quasi-Baer or a Rickart essential extension, then M_R is semisimple. (ii) $M_R \oplus E[(\bigoplus_{i \in \Lambda} K_i)_R]$ is a (quasi-)Baer module if and only if $M_R \oplus E[(\bigoplus_{i \in \Lambda} K_i)_R]$ is a Rickart module if and only if M_R is semisimple.

Theorem (2018, Lee, Park, Rizvi, Roman)

Let *R* be a Dedekind domain. Assume that *M* is an *R*-module such that $I := Ann_R(M) \neq 0$, and $\{K_i \mid i \in \Lambda\}$ is a set of nonzero submodules of F_R , where *F* is the field of fractions of *R*. Then the following are equivalent. (*i*) $M_R \oplus (\bigoplus_{i \in \Lambda} K_i)_R$ has a quasi-Baer hull. (*ii*) M_R is semisimple. In this case, $\mathbf{qB}(M_R \oplus (\bigoplus_{i \in \Lambda} K_i)_R) = M_R \oplus (\bigoplus_{i \in \Lambda} K_i T(I))_R$, where T(I) is the Nagata transform of I. Further, $T(I) = R[q_1, q_2, ..., q_n]$, where $1 = \sum_{k=1}^n a_k q_k$ with $a_k \in I$ and $q_k \in I^{-1}$, $1 \leq k \leq n$. Assume that *R* is a commutative domain with the field of fractions *F*. Let *B* be a nonzero ideal of *R*. We put $B^0 = R$. For each $0 \le \ell$, let $[R : B^{\ell}] = (B^{\ell})^{-1} = \{q \in F \mid qB^{\ell} \subset R\}$. We take $T(B) = \bigcup_{\ell \ge 0} [R : B^{\ell}]$. Then

$$T(B) = \sum_{\ell \ge 0} [R : B^{\ell}] = \sum_{\ell \ge 0} (B^{\ell})^{-1}$$

since $R = [R : B^0] \subseteq [R : B] \subseteq [R : B^2] \subseteq ...$. T(B) is an intermediate domain between R and the field of fractions of R. T(B) is called the Nagata transform (or ideal transform) of B(see [13, p.490] and [15, p.325]). For an invertible ideal I of R, let $I^{-2} = I^{-1}I^{-1}$, $I^{-3} = I^{-1}I^{-1}I^{-1}$, and so on.

Let R be a Dedekind domain. Assume that N is an R-module with N/t(N) projective and $Ann_R(t(N)) \neq 0$. Then the following are equivalent. (i) N has a quasi-Baer hull. (ii) t(N) is semisimple.

Let *R* be a semiprime PI-ring and *P_R* be a finitely generated projective module. Then $qB(P_R) = FI(P_R)$ from the previous result.

However, these two hulls do not coincide for the case of finitely generated modules over $\mathbb{Z}.$

Example

Let $N = \mathbb{Z}_p \oplus \mathbb{Z}$, where *p* is a prime integer. Then $\mathbf{FI}(N) = N$ because *N* itself is an FI-extending \mathbb{Z} -module. However, $\mathbf{qB}(N) = \mathbb{Z}_p \oplus \mathbb{Z}[1/p]$. So *N* is finitely generated, but $\mathbf{qB}(N) \neq \mathbf{FI}(N)$.

Theorem (2018, Lee, Park, Rizvi, Roman)

Let R be a Dedekind domain. Assume that M is an R-module with $I := Ann_R(M) \neq 0$, and let $\{K_i \mid i \in \Lambda\}$ be a set of nonzero fractional ideals of R. We put $N_R = M_R \oplus (\bigoplus_{i \in \Lambda} K_i)_R$. Then the following are equivalent. (i) N has a quasi-Baer hull. (ii) N has a Rickart hull. (iii) M is semisimple. (iv) $M_R \oplus E[(\bigoplus_{i \in \Lambda} K_i)_R]$ is a Baer module. In this case, $\mathbf{qB}(N_R) = \mathbf{Ric}(N_R) = M_R \oplus (\bigoplus_{i \in \Lambda} K_i T(I))_R$, where T(I) is the Nagata transform of I. Further, $T(I) = R[q_1, q_2, \ldots, q_n]$, where $1 = \sum_{k=1}^n a_k q_k$ with $a_k \in I$ and $q_k \in I^{-1}$, $1 \le k \le n$.

Theorem (2018, Lee, Park, Rizvi, Roman)

Let R be a Dedekind domain. Assume that N is an R-module with N/t(N) projective and $Ann_R(t(N)) \neq 0$. Then the following are equivalent. (i) N has a quasi-Baer hull. (ii) N has a Rickart hull. (iii) t(N) is semisimple. (iv) $t(N) \oplus E(N/t(N))$ is a Baer module. In this case, $\mathbf{qB}(N_R) = \mathbf{Ric}(N_R) \cong t(N) \bigoplus (N/t(N))T(I) \cong$ $(\bigoplus_{i\in\Gamma} R/P_i)_R \oplus (\bigoplus_{i\in\Lambda} K_i T(I))_R,$ where T(I) is the Nagata transform of $I := Ann_{R}(t(N))$. Further, $T(I) = R[q_1, q_2, ..., q_n]$, where $1 = \sum_{k=1}^{n} a_k q_k$ with $a_k \in I$ and $q_k \in I^{-1}$, $1 \leq k \leq n$.

Let *R* be a commutative PID. Assume that *M* is an *R*-module with $Ann_R(M) \neq 0$, and Λ is any set. Put $N = M_R \oplus R_R^{(\Lambda)}$. Then the following are equivalent. (i) *N* has a quasi-Baer hull. (ii) *N* has a Rickart hull. (iii) *M* is semisimple. (iv) $M \oplus E(N/t(N))$ is a Baer module. In this case, $qB(N_R) = Ric(N_R) = M_R \oplus R[1/a]_R^{(\Lambda)}$, where $Ann_R(M) = aR$.

Let R be a Dedekind domain. Assume that N is an R-module with N/t(N) finitely generated and $Ann_R(t(N)) \neq 0$. Then the following are equivalent. (i) N has a quasi-Baer hull. (ii) N has a Rickart hull (iii) N has a Baer hull. (iv) t(N) is semisimple. (v) $t(N) \oplus E(N/t(N))$ is a Baer module. In this case, qB(N) = Ric(N) = B(N). The following example illustrates the previous results.

Example

Let Γ_i , i = 1, 2, 3, are nonempty sets, and let $M = \mathbb{Z}_2^{(\Gamma_1)} \oplus \mathbb{Z}_3^{(\Gamma_2)} \oplus \mathbb{Z}_5^{(\Gamma_3)}$. (i) For any positive integer m, let $V_m = M \oplus \mathbb{Z}^{(m)}$. Then $\mathbf{qB}(V_m) = \mathbf{Ric}(V_m) = \mathbf{B}(N) = M \oplus \mathbb{Z}[1/30]^{(m)}$ as $\operatorname{Ann}_{\mathbb{Z}}(M) = 30\mathbb{Z}$. (ii) For any nonempty set Ω , let $N_\Omega = M \oplus \mathbb{Z}^{(\Omega)}$. Then $\mathbf{qB}(N_\Omega) = \mathbf{Ric}(N_\Omega) = M \oplus \mathbb{Z}[1/30]^{(\Omega)}$ as $\operatorname{Ann}_{\mathbb{Z}}(M) = 30\mathbb{Z}$.

Example

Assume that $M = \bigoplus_{i=1}^{n} \mathbb{Z}_{p_i}$, where *n* is a positive integer, and all p_i are prime integers. Say p_1, p_2, \ldots, p_s are all the distinct prime integers in $\{p_1, p_2, \ldots, p_n\}$. Let $a = p_1 p_2 \cdots p_s$. Then there exists a set Λ (necessarily infinite) such that: (i) $M \oplus \mathbb{Z}[1/a]^{(\Lambda)}$ is not a Baer \mathbb{Z} -module. (ii) $M \oplus \mathbb{Z}^{(\Lambda)}$ has no Baer hull.

In contrast to (i) and (ii), we have the following. (iii) $\mathbf{qB}(M \oplus \mathbb{Z}^{(\Lambda)}) = \mathbf{Ric}(M \oplus \mathbb{Z}^{(\Lambda)}) = M \oplus \mathbb{Z}[1/a]^{(\Lambda)}$.

Furthermore, the quasi-Baer (resp., Rickart) module hull of a direct sum of two modules is not isomorphic to the direct sum of their quasi-Baer (resp., Rickart) module hulls (if each hull exists).

(iv) $qB(M \oplus \mathbb{Z}^{(\Lambda)}) \ncong qB(M) \oplus qB(\mathbb{Z}^{(\Lambda)})$ and $Ric(M \oplus \mathbb{Z}^{(\Lambda)}) \ncong Ric(M) \oplus Ric(\mathbb{Z}^{(\Lambda)}).$

Theorem

Let R be a Dedekind domain and N be a finitely generated R-module. Then the following are equivalent. (i) N is quasi-Baer. (ii) N is Rickart. (iii) N is Baer. (iv) N is semisimple or torsion-free.

Theorem

Let R be a Dedekind domain and N be a direct sum of finitely generated R-modules. Then the following are equivalent. (i) N is quasi-Baer. (ii) N is Rickart. (iii) N is semisimple or torsion-free.

Thank you

- P. Ara, Centers of maximal quotient rings, Arch. Math., 1988 50, 342–347
- P. Ara; M. Mathieu, Local Multipliers of C*-Algebras, Monographs in Math., Springer-Verlag, London (2003)
- E.P. Armendariz; G.F. Birkenmeier; J.K. Park, Ideal intrinsic extensions with connections to PI-rings, J. Pure Appl. Algebra, 2009 213, 1756–1776, Corrigendum 2011 215, 99–100
- G.F. Birkenmeier; J.K. Park; S.T. Rizvi, The structure of rings of quotients, J. Algebra, **2009** *321*, 2545–2566
- G.F. Birkenmeier; J.K. Park; S.T. Rizvi, Hulls of semiprime rings with applications to *C**-algebras, J. Algebra, **2009** *322*, 327–352
- G.F. Birkenmeier; J.K. Park; S.T. Rizvi, *Extensions of Rings and Modules*, Research Monograph, Birkhäuser/Springer, New York-Heidelberg-Dordrecht-London (2013)
- W.E. Clark, Twisted matrix units semigroup algebras, Duke Math. J., **1967** *34*, 417–423

- I. Kaplansky, *Rings of operators*, W. A. Benjamin, Inc., New York-Amsterdam (1968)
- G. Lee; J.K. Park; S.T. Rizvi; C.S. Roman, Quasi-Baer module hulls and applications, J. Pure Appl. Algebra, **2018** *222(9)*, 2427–2455
- G. Lee; S.T. Rizvi; C.S. Roman, Rickart modules, Comm. Algebra, **2010** *38(11)*, 4005–4027
- G. Lee; S.T. Rizvi, Direct sums of quasi-Baer modules, J. Algebra, **2016** *456*, 76–92
- S.T. Rizvi; C.S. Roman, Baer and quasi-Baer modules, Comm. Algebra, **2004** *32(1)*, 103–123