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A heap is an algebraic system (H, [−,−,−]) consisting of a nonempty set H,

and a ternary operation

[−,−,−] : H ×H ×H → H, (x, y, z) 7→ [x, y, z]

satisfying

the heap associativity [[x, y, z], t, u] = [x, y, [z, t, u]], 6= [x, [y, z, t], u]

Mal’cev identities [x, x, y] = y = [y, x, x], 6= [x, y, x]

where x, y, z, t, u ∈ H. A heap (H, [−,−,−]) is abelian, if satisfies

the heap commutativity [x, y, z] = [z, y, x],

where x, y, z ∈ H.

A heap homomorphism is a function ϕ : (H, [−,−,−, ])→ (H̃, [−,−,−, ])

respecting the heap operations

ϕ([x, y, z]) = [ϕ(x), ϕ(y), ϕ(z)],

where x, y, z ∈ H.

3



Theorem. Given a group (G, ◦,1), let

[−,−,−]◦ : G×G×G→ G, [x, y, z]◦ := x ◦ y−1 ◦ z,
where x, y, z ∈ G. Then

(a) (G, [−,−,−]◦) is a heap.

Indeed, for any x, y, z, t, u ∈ G,

[[x, y, z]◦, t, u]◦ = (x ◦ y−1 ◦ z) ◦ t−1 ◦ u = x ◦ y−1 ◦ (z ◦ t−1 ◦ u) = [x, y, [z, t, u]◦]◦

[x, x, y]◦ = x ◦ x−1 ◦ y = y = y ◦ x−1 ◦ x = [y, x, x]◦.

(b) If (G, ◦,1) is an abelian group, then (G, [−,−,−]◦) is an abelian heap.

Indeed, for any x, y, z ∈ G,

[x, y, z]◦ = x ◦ y−1 ◦ z = z ◦ y−1 ◦ x = [z, y, x]◦.

(c) Every group homomorphism ϕ : (G, ◦,1)→ (G̃, ◦,1)

is an associated heap homomorphism ϕ : (G, [−,−,−]◦)→ (G̃, [−,−,−]◦).

Indeed, for any x, y, z ∈ G,

ϕ([x, y, z]◦) = ϕ(x ◦ y−1 ◦ z) = ϕ(x) ◦ ϕ(y)−1 ◦ ϕ(z) = [ϕ(x), ϕ(y), ϕ(z)]◦.
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Theorem. Given a heap (H, [−,−,−]) and e ∈ H, let

◦e : H ×H → H, x ◦e y := [x, e, y],

where x, y ∈ H. Then

(a) (H, ◦e, e) is a group, known as a retract of (H, [−,−,−]).

Indeed, for any x, y, z ∈ H,

(x ◦e y) ◦e z = [[x, e, y], e, z] = [x, e, [y, e, z]] = x ◦e (y ◦e z)

e ◦e x = [e, e, x] = x = [x, e, e] = x ◦e e
[e, x, e] ◦e x = [[e, x, e], e, x] = [e, x, [e, e, x]] = [e, x, x] = e =

= [x, x, e] = [[x, e, e], x, e] = [x, e, [e, x, e]] = x ◦e [e, x, e],

so x−1 = [e, x, e].

(b) If (H, [−,−,−]) is an abelian heap, then (H, ◦e, e) is an abelian group.

Indeed, for any x, y ∈ H,

x ◦e y = [x, e, y] = [y, e, x] = y ◦e x.
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(c) If ϕ : (H, [−,−,−])→ (H̃, [−,−,−]) is a heap homomorphism,

then for any e ∈ H, ẽ ∈ H̃, the functions

ϕ̂ : (H, ◦e, e)→ (H̃, ◦ẽ, ẽ), x 7→ [ϕ(x), ϕ(e), ẽ]

ϕ̂◦ : (H, ◦e, e)→ (H̃, ◦ẽ, ẽ), x 7→ [ẽ, ϕ(e), ϕ(x)]

are associated group homomorphisms.

Indeed, for any x, y ∈ H,

ϕ̂(x ◦e y) = [ϕ(x ◦e y), ϕ(e), ẽ] = [ϕ([x, e, y]), ϕ(e), ẽ] =

= [[ϕ(x), ϕ(e), ϕ(y)], ϕ(e), ẽ] = [ϕ(x), ϕ(e), [ϕ(y), ϕ(e), ẽ]] =

= [ϕ(x), ϕ(e), ϕ̂(y)] = [ϕ(x), ϕ(e), [ẽ, ẽ, ϕ̂(y)]] =

= [[ϕ(x), ϕ(e), ẽ], ẽ, ϕ̂(y)] = [ϕ̂(x), ẽ, ϕ̂(y)] = ϕ̂(x) ◦
ẽ
ϕ̂(y).

In a similar manner, ϕ̂◦(x ◦e y) = ϕ̂◦(x) ◦
ẽ
ϕ̂◦(y).
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A group (G, ◦,1)

⇓

The heap (G, [−,−,−]◦) associated to the group (G, ◦,1),

where [x, y, z]◦ := x ◦ y−1 ◦ z

⇓

∀e ∈ G, The group (G, ◦e, e) associated to the heap (G, [−,−,−]◦),

where x ◦e y := [x, e, y]◦ = x ◦ e−1 ◦ y
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A heap (H, [−,−,−])

⇓

∀e ∈ H, The group (H, ◦e, e) associated to the heap (H, [−,−,−]),

where x ◦e y := [x, e, y]

⇓

The heap (H, [−,−,−]◦e) associated to the group (H, ◦e, e),

where [x, y, z]◦e := x ◦e y−1 ◦e z = [[x, e, y−1], e, z] = [[x, e, [e, y, e]], e, z]
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Theorem. Given a group (G, ◦,1) and e ∈ G,

let (G, [−,−,−]◦) be the heap associated to the group (G, ◦,1),

let (G, ◦e, e) be the group associated to the heap (G, [−,−,−]◦).

Then (G, ◦,1) ∼= (G, ◦e, e) as groups.

In particular, ◦ = ◦1.

Indeed, let ϕ : (G, ◦,1)→ (G, ◦e, e), x 7→ x ◦ e. Then for any x, y ∈ G,

ϕ(x ◦ y) = (x ◦ y) ◦ e = (x ◦ e) ◦ e−1 ◦ (y ◦ e) =

= ϕ(x) ◦ e−1 ◦ ϕ(y) = [ϕ(x), e, ϕ(y)]◦ = ϕ(x) ◦e ϕ(y).

Hence ϕ is a group isomorphism with the inverse ϕ−1 : (G, ◦e, e)→ (G, ◦,1), x 7→ x ◦ e−1.

x ◦ y = x ◦ 1−1 ◦ y = [x,1, y]◦ = x ◦1 y.
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Theorem. Given a heap (H, [−,−,−]) and e ∈ H,

let (H, ◦e, e) be the group associated to the heap (H, [−,−,−]),

let (H, [−,−,−]◦e) be the heap associated to the group (H, ◦e, e).

Then [−,−,−] = [−,−,−]◦e.

Indeed, for any x, y, z ∈ H,

[x, y, z] = [x, y, [e, e, z]] = [[x, y, e], e, z] =

= [[[x, e, e], y, e], e, z] = [[x, e, [e, y, e]], e, z] =

= [[x, e, y−1], e, z] = x ◦e y−1 ◦e z = [x, y, z]◦e.
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Theorem. Let (H, [−,−,−]) be a heap.

(a) For any e, x, y ∈ H, if [e, x, y] = e or [x, y, e] = e, then x = y.
Indeed, since

e = [e, x, y] = [e, x, y]◦e = e ◦e x−1 ◦e y = x−1 ◦e y or

e = [x, y, e] = [x, y, e]◦e = x ◦e y−1 ◦e e = x ◦e y−1,

it follows that x = y.

(b) For any x, y, z, t, u ∈ H,

[x, [y, z, t], u] = [x, t, [z, y, u]].

Indeed, for any e ∈ H,

[x, [y, z, t], u] = [x, [y, z, t]◦e, u]◦e = x ◦e (y ◦e z−1 ◦e t)−1 ◦e u =

= x ◦e t−1 ◦e z ◦e y−1 ◦e u = [x, t, [z, y, u]◦e]◦e = [x, t, [z, y, u]].
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(c) For any x, y, z ∈ H,

[x, y, [y, x, z]] = [x, [y, z, x], y] = [[z, x, y], y, x] = z.

Indeed, for any e ∈ H,

[x, y, [y, x, z]] = [x, y, [y, x, z]◦e]◦e = x ◦e y−1 ◦e y ◦e x−1 ◦e z = z

[x, [y, z, x], y] = [x, x, [z, y, y]] = [x, x, z] = z

[[z, x, y], y, x] = [[z, x, y]◦e, y, x]◦e = z ◦e x−1 ◦e y ◦e y−1 ◦e x = z.

(d) If (H, [−,−,−]) is an abelian heap, then for any x1, x2, . . . , z3 ∈ H,

[[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]] = [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]].

Indeed,

[[x1, x2, x3], [y1, y2, y3], [z1, z2, z3]] = [[x1, x2, x3]◦e, [y1, y2, y3]◦e, [z1, z2, z3]◦e]◦e =

= x1 ◦e x2
−1 ◦e x3 ◦e (y1 ◦e y2

−1 ◦e y3)−1 ◦e z1 ◦e z2
−1 ◦e z3 =

= x1 ◦e y1
−1 ◦e z1 ◦e (x2 ◦e y2

−1 ◦e z2)−1 ◦e x3 ◦e y3
−1 ◦e z3 =

= [[x1, y1, z1]◦e, [x2, y2, z2]◦e, [x3, y3, z3]◦e]◦e = [[x1, y1, z1], [x2, y2, z2], [x3, y3, z3]].
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Example. Let (G, ◦,1) be a group.

Assume that G has more than one element.

Let H 6= G be a subgroup of (G, ◦,1), and let x ∈ G \H.

Let (G, [−,−,−]◦) be the heap associated to the group (G, ◦,1).

Although the left coset xH is not a subgroup of (G, ◦,1),

it is a subheap (xH, [−,−,−]◦) of (G, [−,−,−]◦).

Indeed, for any a, b, c ∈ H,

[x ◦ a, x ◦ b, x ◦ c] = x ◦ a ◦ (x ◦ b)−1 ◦ x ◦ c = x ◦ a ◦ b−1 ◦ c ∈ xH.
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A truss is an algebraic system (T, [−,−,−], ·) consisting of a nonempty set T ,

a ternary operation

[−,−,−] : T × T × T → T, (x, y, z) 7→ [x, y, z],

and a binary operation

· : T × T → T, (x, y) 7→ x · y

such that

(T, [−,−,−]) is an abelian heap,

(T, ·) is a semigroup,

the truss distributivity x · [y, z, t] = [x · y, x · z, x · t],

[x, y, z] · t = [x · t, y · t, z · t] holds,

where x, y, z, t ∈ T .
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A truss (T, [−,−,−], ·) is commutative, if the semigroup (T, ·) is commutative.

A truss (T, [−,−,−], ·,1) is unital, if the semigroup (T, ·,1) is a monoid.

A trass homomorphism is a function ϕ : (T, [−,−,−, ], ·)→ (T̃ , [−,−,−, ], ·)

such that

ϕ : (T, [−,−,−, ])→ (T̃ , [−,−,−, ]) is a heap homomorphism,

ϕ : (T, ·)→ (T̃ , ·) is a semigroup homomorphism.
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A brace is an algebraic system (B,+, ·,0,1) consisting of a nonempty set B,

and binary operations

+: B ×B → B, (x, y) 7→ x+ y,

· : B ×B → B, (x, y) 7→ x · y

such that

(B,+,0) is an abelian group,

(B, ·,1) is a group,

the brace distributivity x · (y + z) = x · y − x+ x · z,

(x+ y) · z = x · z − z + y · z holds,

where x, y, z ∈ B.
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Theorem. In a brace (B,+, ·,0,1), 0 = 1.

This element will be denoted by θ.

Indeed, from the fact that 0 is the additive identity element

and that 1 is the multiplicative identity element,

it follows that 1 + 0 = 1 and 0 · 1 = 0.

Hence

0 · 1 = 0 · (1 + 0) = 0 · 1− 0 + 0 · 0 = 0− 0 + 0 · 0 = 0 · 0,

and since · is a group operation,

it follows that 1 = 0.
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Theorem. Given a brace (B,+, ·, θ),

let (B, [−,−,−, ]+) be the abelian heap associated to the abelian group
(B,+, θ).

Then (B, [−,−,−]+, ·, θ) is a unital truss.

Indeed, for any x, y, z, t ∈ B, since

x = x · θ = x · (z − z) = x · z − x+ x · (−z),

it follows that

x · (−z) = x− x · z + x,

and thus

x · [y, z, t]+ = x · (y − z + t) = x · y − x+ x · (−z)− x+ x · t =

= x · y − x+ (x− x · z + x)− x+ x · t =

= x · y − x · z + x · t = [x · y, x · z, x · t]+.

In a similar manner, [x, y, z]+ · t = [x · t, y · t, z · t]+.
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Theorem. Given a ring (R,+, ·,0),

let (R, [−,−,−, ]+) be the abelian heap associated to the abelian group

(R,+,0).

Then (R, [−,−,−]+, ·,0) is a truss.

Indeed, for any x, y, z, t ∈ R,

x · [y, z, t]+ = x · (y − z + t) = x · y − x · z + x · t = [x · y, x · z, x · t]+.

In a similar manner, [x, y, z]+ · t = [x · t, y · t, z · t]+.
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Theorem. Given a truss (T, [−,−,−], ·) and e ∈ T ,

let (T,+e, e) be the abelian group associated to the abelian heap (T, [−,−,−]).

Then (T,+e, ·, e) is a ring iff

e · x = e = x · e for any x ∈ T.
An element e ∈ T with this property is called an absorber.

If an absorber exists, then it is unique.

Indeed, if (T,+e, ·, e) is a ring, then since e is the zero element,

it follows that e · x = e = x · e for any x ∈ T .

If e is an absorber in the truss (T, [−,−,−], ·), then for any x, y, z ∈ T ,

x · (y +e z) = x · [y, e, z] = [z · y, x · e, x · z] = [z · y, e, x · z] = x · y +e x · z.

In a similar manner, (x+e y) · z = x · z +e y · z.

If e, f are absorbers in the truss (T, [−,−,−], ·), then e = e · f = f .
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Example. Let (H, [−,−,−]) be an abelian heap.

Assume that H has more than one element. Let

· : H ×H → H, x · y := x,

where x, y ∈ H. Then

(a) (H, [−,−,−], ·) is a noncommutative truss.

Indeed, for any x, y, z, t ∈ H,

x · (y · z) = x = x · z = (x · y) · z

x · [y, z, t] = x = [x, x, x] = [x · y, x · z, x · t]

[x, y, z] · t = [x, y, z] = [x · t, y · t.z · t]

x · y = x 6= y = y · x as long as x 6= y.
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(b) (H, [−,−,−], ·) is nonunital,

and hence (H, [−,−,−], ·) is not arrising from any brace.
Indeed, if the truss (H, [−,−,−], ·) was unital,

the operation · would need to have the identity element, say 1.

But for any x ∈ H, if x 6= 1 then 1 · x = 1 6= x.

Thus 1 cannot be the identity element.

(c) (H, [−,−,−], ·) has no absorbers,

and hence (H, [−,−,−], ·) is not arrising from any ring.
Indeed, if the truss (H, [−,−,−], ·) was arrising from a ring,

it would need to have the absorber, say 0.

But for any x ∈ H, if x 6= 0 then x · 0 = x 6= 0.

Thus 0 cannot be the absorber.
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Example. Let (Z,+, ·,0,1) be the ring of integer numbers,

and let (Z, [−,−,−]+, ·) be the truss associated to the ring (Z,+, ·,0,1).

Although the set of odd integer numbers 2Z+1 is not a subring of (Z,+, ·,0,1),

it is a subtruss (2Z + 1, [−,−,−]+, ·) of (Z, [−,−,−]+, ·).
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Theorem. Let (H, [−,−,−]) be a heap, and let S ⊆ H be a nonempty subset.

Then the following statements are equivalent

(a) S is a subheap (S, [−,−,−]) of (H, [−,−,−]).

(b) For every e ∈ S,

S is a subgroup (S, ◦e, e) of the associated group (H, ◦e, e).

Indeed, for (a)⇒(b), let s, t ∈ S. Then

s ◦e t−1 = [s, e, [e, t, e]] = [[s, e, e], t, e] = [s, t, e] ∈ S.

(c) For some e ∈ S,

S is a subgroup (S, ◦e, e) of the associated group (H, ◦e, e).

Indeed, for (c)⇒(a), let s, t, u ∈ S. Then

[s, t, u] = [s, t, u]◦e = s ◦e t−1 ◦e u ∈ S.
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A subheap S of a heap (H, [−,−,−]) is normal, if

∃e ∈ S ∀s ∈ S ∀x ∈ H ∃t ∈ S, [x, e, s] = [t, e, x].

Theorem. Let (H, [−,−,−]) be a heap, and let S ⊆ H be a nonempty subset.

Then the following statements are equivalent

(a) S is a normal subheap (S, [−,−,−]) of (H, [−,−,−]).

(b) ∀e, s ∈ S ∀x ∈ H ∃t ∈ S, [x, e, s] = [t, e, x].

Indeed, for (a)⇒(b), let e ∈ S be such that

∀s ∈ S ∀x ∈ H ∃t ∈ S, [x, e, s] = [t, e, x].

Then for any f, s ∈ S, x ∈ H and for some u ∈ S, since [x, e, [e, f, s]] = [u, e, x],

it follows that [[x, e, e], f, s] = [u, e, [f, f, x]],

and thus [x, f, s] = [[u, e, f ], f, x], where [u, e, f ] ∈ S.
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(c) ∀e, s ∈ S ∀x ∈ H, [[x, e, s], x, e] ∈ S.

Indeed, for (b)⇒(c), let e, s ∈ S, x ∈ H,

and let t ∈ S be such that [x, e, s] = [t, e, x]. Then

[[x, e, s], x, e] = [[t, e, x], x, e] = [t, e, [x, x, e]] = [t, e, e] = t ∈ S.

For (c)⇒(a), let e, s ∈ S x ∈ H,

and let t ∈ S be such that [[x, e, s], x, e] = t.

Then since [[[x, e, s], x, e], e, x] = [t, e, x],

it follows that [x, e, s] = [t, e, x].

(d) For every e ∈ S,

S is a normal subgroup (S, ◦e, e) of the associated group (H, ◦e, e).

Indeed, for (b)⇒(d), let e, s ∈ S, x ∈ H,

and let t ∈ S be such that [x, e, s] = [t, e, x].

Then since x ◦e s = t ◦e x,

it follows that x ◦e s ◦e x−1 = t ∈ S.
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(e) For some e ∈ S,

S is a normal subgroup (S, ◦e, e) of the associated group (H, ◦e, e).

Indeed, for (e)⇒(a), let s ∈ S, x ∈ H,

and let t ∈ S be such that x ◦e s ◦e x−1 = t.

Then since x ◦e s = t ◦e x,

it follows that [x, e, s] = [t, e, x].
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Given a subheap S of a heap (H, [−,−,−]),

let the subheap relation ∼S on H be defined as

x ∼S y :⇔ for some s ∈ S, [x, y, s] ∈ S.

In the associated group (H, ◦s, s), this means that

x ◦s y−1 = x ◦s y−1 ◦s s = [x, y, s]◦s = [x, y, s] ∈ S.

Theorem. Let S be a subheap (S, [−,−,−]) of a heap (H, [−,−,−]). Then

(a) x ∼S y ⇔ for every s ∈ S, [x, y, s] ∈ S.

Indeed, let x ∼S y, and let s ∈ S be such that [x, y, s] ∈ S.

Then for any t ∈ S,

[x, y, t] = [x, y, [s, s, t]] = [[x, y, s], s, t] ∈ S.
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(b) ∼S is an equivalence relation on (H, [−,−,−]).

Indeed, for any x, y, z ∈ H, s ∈ S,

since [x, x, s] = s ∈ S, it follows that x ∼S x.

If x ∼S y, then since [x, y, s] ∈ S, it follows that [y, x, [x, y, s]] = s ∈ S, and thus y ∼S x.

If x ∼S y and y ∼S z, then since [x, y, S] ⊆ S and [y, z, s] ∈ S, it follows that

[x, z, s] = [[x, y, y], z, s] = [x, y, [y, z, s]] ∈ S, and thus x ∼S z.

The equivalence class with respect to the subheap relation ∼S will be denoted
by

x : =
{
x′ ∈ H | for some s ∈ S, [x′, x, s] ∈ S

}
=

=
{
x′ ∈ H | for every s ∈ S, [x′, x, s] ∈ S

}
.

(c) For every s ∈ S, s = S.

Indeed, for any x ∈ H, from the fact that [x, s, s] = x,

it follows that x ∈ s if and only if x ∈ S.

30



(d) For every x ∈ H, x is a subheap (x, [−,−,−]) of (H, [−,−,−]).

Indeed, for any y, z, t ∈ x, s ∈ S, since y ∈ z,

it follows that [[y, z, t], x, s] = [y, z, [t, x, s]] ∈ S,

and thus [y, z, t] ∈ x.

(e) For any x, y ∈ H, the function

τxy : (H, [−,−,−])→ (H, [−,−,−]), τxy (z) := [z, y, x]

is a heap automorphism with the inverse (τxy )−1 = τ
y
x .

Indeed, for any z, t, u ∈ H,

[τxy (z), τxy (t), τxy (u)] = [[z, y, x], τxy (t), τxy (u)] = [z, y, [x, [t, y, x], τxy (u)]] =

= [z, y, [x, x, [y, t, τxy (u)]]] = [z, y, [y, t, τxy (u)]] =

= [[z, y, y], t, τxy (u)] = [z, t, [u, y, x]] = [[z, t, u], y, x] = τxy ([z, t, u]).
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(f) For any x, y ∈ H, x = τxy (y).

Indeed, if x′ ∈ x, then since

x′ = (τxy ◦ τ
y
x)(x′) = τxy ([x′, x, y]),

and since for any s ∈ S,

[[x′, x, y], y, s] = [x′, x, [y, y, s] = [x′, x, s]] ∈ S,

it follows that x′ = τxy ([x′, x, y]) ∈ τxy (y).

If y′ ∈ y, then for any s ∈ S,

[τxy (y′), x, s] = [[y′, y, x]x, s] = [y′, y, [x, x, s]] = [y′, y, s] ∈ S,

and thus τxy (y) ∈ x.

(g) For any x, y ∈ H, (x, [−,−,−]) ∼= (y, [−,−,−]) as heaps.
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Theorem. Let S be a normal subheap (S, [−,−,−]) of a heap (H, [−,−,−]).

Then

(a) ∼S is a congruence in (H, [−,−,−]), that is,

∼S is an equivalence relation on (H, [−,−,−]) and

x ∼S x′, y ∼S y′, z ∼S x′ imply that [x, y, z] ∼S [x′, y′, z′],

where x, x′, . . . , z′ ∈ H.

Indeed, if x ∼S x′, y ∼S y′, z ∼S x′, then for any e ∈ S,

x′ ∈ x = τxe (e) = τxe (S)

y′ ∈ y = τ ye (e) = τ ye (S)

z′ ∈ z = τ ze (e) = τ ze (S).

In the associated group (H, ◦e, e), this means that

x = τxe (s) = [s, e, x] = s ◦e x
y = τ ye (t) = [t, e, y] = t ◦e y
z = τ ze (u) = [u, e, z] = z ◦e z

for some s, t, u ∈ S. Then
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[x′, y′, z′] = [s ◦e x, t ◦e y, u ◦e z]◦e = s ◦e x ◦e (t ◦e y)−1 ◦e u ◦e z =

= s ◦e x ◦e y−1 ◦e t−1 ◦e u ◦e y ◦e x−1 ◦e x ◦e y−1 ◦e z =

= v ◦e [x, y, z]◦e = [v, e, [x, y, z]],

where v = s ◦e x ◦e y−1 ◦e t−1 ◦e u ◦e y ◦e x−1.

From the fact that S is a normal subgroup (S, ◦e, e) of (H, ◦e, e), it follows that v ∈ S.

Hence

[x′, y′, z′] = [v, e, [x, y, z]] = τ [x,y,z]
e (v) ∈ τ [x,y,z]

e (S) = τ [x,y,z]
e (e) = [x, y, z],

and thus [x, y, z] ∼S [x′, y′, z′].

(b) the set of equivalence classes H/ ∼S is a heap with the ternary operation

[−,−,−] : H/ ∼S ×H/ ∼S ×H/ ∼S→ H/ ∼S, [x, y, z] := [x, y, z],

where x, y, z ∈ H.

Indeed, if x = x′, y = y′, z = z′, then since x ∼S x′, y ∼S y′, z ∼S z′,

it follows that [x, y, z] ∼S [x, y, z], and thus [x, y, z] = [x′, y′, z′].
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Given a heap homomorphism ϕ : (H, [−,−,−])→ (H̃, [−,−,−]),

let the kernel relation of ϕ on H be defined as

x Kerϕ y :⇔ ϕ(x) = ϕ(y).

Theorem. Let (H, [−,−,−]) be a heap.

(a) For any heap homomorphism ϕ : (H, [−,−,−])→ (H̃, [−,−,−]),

Kerϕ is a congruence in (H, [−,−,−]).

Indeed, if x Kerϕ x′, y Kerϕ y′, z Kerϕ z′,

then since ϕ(x) = ϕ(x′), ϕ(y) = ϕ(y′), ϕ(z) = ϕ(z′),

it follows that

ϕ([x, y, z]) = [ϕ(x), ϕ(y), ϕ(z)] = [ϕ(x′), ϕ(y′), ϕ(z′)] = ϕ([x′, y′, z′]),

and thus [x, y, z] Kerϕ [x′, y′, z′].
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(b) If ρ is a congruence in (H, [−,−,−]), then

(i) the set of equivalence classes H/ρ is a heap with the ternary operation

[−,−,−] : H/ρ×H/ρ×H/ρ→ H/ρ, [x̂, ŷ, ẑ] := ̂[x, y, z],

where x, y, z ∈ H, and x̂, ŷ, ẑ mean the equivalence classes with respect to the
relation ρ.

(ii) the function

ϕ : (H, [−,−,−])→ (H̃, [−,−,−]), x 7→ x̂

is a heap homomorphism such that ρ = Kerϕ.

Indeed, for any x, y, z ∈ H,

ϕ([x, y, z]) = ̂[x, y, z] = [x̂, ŷ, ẑ] = [ϕ(x), ϕ(y), ϕ(z)]

x ρ y ⇔ x̂ = ŷ ⇔ ϕ(x) = ϕ(y) ⇔ x Kerϕ y.
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The equivalence class with respect to the kernel relation Kerϕ will be denoted
by

x̂ :=
{
x′ ∈ H | ϕ(x) = ϕ(x′)

}
.

Theorem. Under the above notations, for every x ∈ H,

x̂ is a normal subheap (x̂, [−,−,−]) of (H, [−,−,−]).

Indeed, for any s, t, u ∈ x̂, y ∈ H, since

ϕ([s, t, u]) = [ϕ(s), ϕ(t), ϕ(u)] = [ϕ(x), ϕ(x), ϕ(x)] = ϕ(x),

it follows that [s, t, u] ∈ x̂.

Since

ϕ([[y, s, t], ys]) = [[ϕ(y), ϕ(s), ϕ(t)], ϕ(y), ϕ(s)] =

= [[ϕ(y), ϕ(x), ϕ(x)], ϕ(y), ϕ(x)] = [ϕ(y), ϕ(y), ϕ(x)] = ϕ(x),

it follows that [[y, s, t], y, s] ∈ x̂,

and thus x̂ is a normal subheap (x̂, [−,−,−]) of (H, [−,−,−]).
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Given a heap homomorphism ϕ : (H, [−,−,−])→ (H̃, [−,−,−]), and e ∈ Imϕ,

the e-kernel of ϕ is the subset of H defined as

kereϕ :=
{
x ∈ H | ϕ(x) = e

}
.

Theorem. Under the above notations,

(a) for every e ∈ Imϕ,

kereϕ is a normal subheap (kereϕ, [−,−,−]) of (H, [−,−,−]).

Indeed, for any x ∈ kereϕ, since

y ∈ kereϕ ⇔ ϕ(y) = e ⇔ ϕ(y) = ϕ(x) ⇔ x Kerϕ y ⇔ y ∈ x̂,

it follows that

kereϕ = x̂, the equivalence class with respect the kernel relation Kerϕ.

Thus

kereϕ is a normal subheap (kereϕ, [−,−,−]) of (H, [−,−,−]).
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(b) For any e, f ∈ Imϕ, (kereϕ, [−,−,−]) ∼= (kerfϕ, [−,−,−]) as heaps.

Indeed, let x ∈ kereϕ, y ∈ kerfϕ.

It suffices to prove that kereϕ = τxy (kerfϕ).

If z ∈ kereϕ, then since

z = (τxy ◦ τ
y
x)(z) = τxy ([z, x, y]),

and since

ϕ([z, x, y]) = [ϕ(z), ϕ(x), ϕ(y)] = [e, e, f ] = f ,

it follows that

z = τxy ([z, x, y]) ∈ τxy (kereϕ).

If z ∈ kerfϕ, then

ϕ(τxy (z)) = ϕ([z, y, x]) = [ϕ(z), ϕ(y), ϕ(x)] = [f, f, e] = e,

and thus τxy (z) ∈ kereϕ.
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(c) For ane e ∈ Imϕ, ∼kereϕ= Kerϕ.

Indeed, if x ∼kereϕ y, then for any s ∈ kereϕ,

[x, y, s] ∈ kereϕ by the definition of the subheap relation ∼kereϕ.

From this it follows that

e = ϕ([y, x, s]) = [ϕ(x), ϕ(y), ϕ(s)] = [ϕ(x), ϕ(y), e],

which means that ϕ(x) = ϕ(y), and thus

x Kerϕ y by the definition of the kernel relation Kerϕ.

If x Kerϕ y, then since ϕ(x) = ϕ(y),

it follows that for any s ∈ kereϕ,

ϕ([x, y, s]) = [ϕ(x), ϕ(y), ϕ(s)] = [ϕ(x), ϕ(x), e] = e,

which means that [x, y, s] ∈ kereϕ,

and thus x ∼kereϕ y.
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Corollary. Let (H, [−,−,−]) be a heap,

and let ρ be an equivalence relation on (H, [−,−,−]).

Then the following statemants are equivalent

(a) ρ is a congruence in (H, [−,−,−]).

(b) There exists a heap homomorphism ϕ : (H, [−,−,−])→ (H̃, [−,−,−])

such that ρ = Kerϕ.

(c) There exists a normal subheap (S, [−,−,−]) of (H, [−,−,−])

such that ρ =∼S.
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Let (T, [−,−,−], ·) be a truss.

A subheap (S, [−,−,−]) of the heap (T, [−,−,−])

is an ideal of the truss (T, [−,−,−], ·), if

s · x ∈ S, x · s ∈ S,
where s ∈ S, x ∈ T .

Theorem. Let S be an ideal of a truss (T, [−,−,−], ·). Then

∼S is a congruence in the truss (T, [−,−,−], ·), that is,

∼S is a congruence in the heap (T, [−,−,−]),

x ∼S x′, y ∼S y′ imply that x · y ∼S x′ · y′,

where x, x′, y, y′ ∈ H.
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Theorem. Let ϕ : (T, [−,−,−], ·)→ (T̃ , [−,−,−], ·) be a truss homomorphism,

and let e ∈ Imϕ. Then

(a) For any s ∈ kereϕ, x ∈ T , s · x ∈ kereϕ ⇔ for any y ∈ Imϕ, e · y = e.

(b) For any s ∈ kereϕ, x ∈ T , x · s ∈ kereϕ ⇔ for any y ∈ Imϕ, y · e = e.
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Theorem. Let ϕ : (T, [−,−,−], ·)→ (T̃ , [−,−,−], ·) be a truss homomorphism,

and let e ∈ Imϕ. Then for any p, q ∈ kereϕ, x ∈ T ,

[x · p, x · q, q] ∈ kereϕ, [p · x, q · x, q] ∈ kereϕ.

Let (T, [−,−,−], ·) be a truss.

A subheap (P, [−,−,−]) of the heap (T, [−,−,−])

is a paragon of the truss (T, [−,−,−], ·), if

[x · p, x · q, q] ∈ P, [p · x, q · x, q] ∈ P,

where p, q ∈ P , x ∈ T .
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Example. Let (R,+, ·,0) be a ring.

Assume that R has more than one element.

Let I 6= R be an ideal of (R,+, ·,0), and let x ∈ T \ I.

Let (R, [−,−,−]+, ·) be the trass associated to the ring (R,+, ·,0).

Although the coset x+ I is not an ideal of (R,+, ·,0),

it is a paragon of (R, [−,−,−]+, ·).
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Theorem. Let (T, [−,−,−], ·) be a truss,

and let ρ be an equivalence relation on (T, [−,−,−], ·).

Then the following statemants are equivalent

(a) ρ is a congruence in (T, [−,−,−], ·).

(b) There exists a truss homomorphism ϕ : (T, [−,−,−], ·)→ (T̃ , [−,−,−], ·)

such that ρ = Kerϕ.

(c) There exists a paragon P of (T, [−,−,−], ·)

such that ρ =∼P .
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Thank you very much for your attention!

Merci beaucoup pour votre attention!
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