NonCommutative Rings and their Applications, VII

Université d'Artois, Faculté des Sciences Jean Perrin de Lens 5th-7th July 2021, Lens (France)

Trusses

Małgorzata Elżbieta Hryniewicka

Faculty of Mathematics, University of Białystok Ciołkowskiego 1M, 15-245 Białystok, Poland
e-mail: margitt@math.uwb.edu.pl; mhryniewicka@uwb.edu.pl

Heinz Prüfer [Theorie der Abelschen Gruppen. I. Grundeigenschaften, Mathematische Zeitschrift 20 (1924), 165-187, page 170].

Reinhold Baer [Zur Einführung des Scharbegriffs, Journal für die Reine und Angewandte Mathematik 160 (1929), 199-207, page 202].

A heap is an algebraic system ($H,[-,-,-]$) consisting of a nonempty set H, and a ternary operation

$$
[-,-,-]: H \times H \times H \rightarrow H, \quad(x, y, z) \mapsto[x, y, z]
$$

satisfying
the heap associativity $\quad[[x, y, z], t, u]=[x, y,[z, t, u]], \neq[x,[y, z, t], u]$
Mal'cev identities $\quad[x, x, y]=y=[y, x, x], \neq[x, y, x]$
where $x, y, z, t, u \in H$. A heap ($H,[-,-,-]$) is abelian, if satisfies
the heap commutativity $[x, y, z]=[z, y, x]$,
where $x, y, z \in H$.
A heap homomorphism is a function $\varphi:(H,[-,-,-],) \rightarrow(\widetilde{H},[-,-,-]$,
respecting the heap operations

$$
\varphi([x, y, z])=[\varphi(x), \varphi(y), \varphi(z)],
$$

where $x, y, z \in H$.

Theorem. Given a group $(G, o, 1)$, let

$$
[-,-,-]_{\circ}: G \times G \times G \rightarrow G, \quad[x, y, z]_{\circ}:=x \circ y^{-1} \circ z
$$

where $x, y, z \in G$. Then
(a) $\left(G,[-,-,-]_{\circ}\right)$ is a heap.

Indeed, for any $x, y, z, t, u \in G$,
$\left[[x, y, z]_{\circ}, t, u\right]_{\circ}=\left(x \circ y^{-1} \circ z\right) \circ t^{-1} \circ u=x \circ y^{-1} \circ\left(z \circ t^{-1} \circ u\right)=\left[x, y,[z, t, u]_{\circ}\right] \circ$ $[x, x, y] \circ=x \circ x^{-1} \circ y=y=y \circ x^{-1} \circ x=[y, x, x] \circ$.
(b) If $(G, \circ, 1)$ is an abelian group, then $\left(G,[-,-,-]_{\circ}\right)$ is an abelian heap. Indeed, for any $x, y, z \in G$,
$[x, y, z] \circ=x \circ y^{-1} \circ z=z \circ y^{-1} \circ x=[z, y, x] \circ$.
(c) Every group homomorphism $\varphi:(G, \circ, 1) \rightarrow(\widetilde{G}, \circ, 1)$
is an associated heap homomorphism $\varphi:\left(G,[-,-,-]_{\circ}\right) \rightarrow\left(\widetilde{G},[-,-,-]_{\circ}\right)$.
Indeed, for any $x, y, z \in G$,
$\varphi\left([x, y, z]_{\circ}\right)=\varphi\left(x \circ y^{-1} \circ z\right)=\varphi(x) \circ \varphi(y)^{-1} \circ \varphi(z)=[\varphi(x), \varphi(y), \varphi(z)]_{\circ}$.

Theorem. Given a heap $(H,[-,-,-])$ and $e \in H$, let

$$
\circ_{e}: H \times H \rightarrow H, \quad x \circ_{e} y:=[x, e, y],
$$

where $x, y \in H$. Then
(a) $\left(H, o_{e}, e\right)$ is a group, known as a retract of $(H,[-,-,-])$.

Indeed, for any $x, y, z \in H$,
$\left(x \circ_{e} y\right) \circ_{e} z=[[x, e, y], e, z]=[x, e,[y, e, z]]=x \circ_{e}\left(y \circ_{e} z\right)$
$e \circ_{e} x=[e, e, x]=x=[x, e, e]=x \circ_{e} e$
$[e, x, e] \circ_{e} x=[[e, x, e], e, x]=[e, x,[e, e, x]]=[e, x, x]=e=$
$=[x, x, e]=[[x, e, e], x, e]=[x, e,[e, x, e]]=x \circ_{e}[e, x, e]$,
so $x^{-1}=[e, x, e]$.
(b) If $(H,[-,-,-])$ is an abelian heap, then $\left(H, o_{e}, e\right)$ is an abelian group.

Indeed, for any $x, y \in H$,
$x \circ_{e} y=[x, e, y]=[y, e, x]=y \circ_{e} x$.

(c) If $\varphi:(H,[-,-,-]) \rightarrow(\widetilde{H},[-,-,-])$ is a heap homomorphism, then for any $e \in H, \tilde{e} \in \widetilde{H}$, the functions

$$
\begin{array}{ll}
\widehat{\varphi}:\left(H, \circ_{e}, e\right) \rightarrow\left(\widetilde{H}, \circ_{\widetilde{e}}, \widetilde{e}\right), & x \mapsto[\varphi(x), \varphi(e), \widetilde{e}] \\
\widehat{\varphi}^{\circ}:\left(H, \circ_{e}, e\right) \rightarrow\left(\widetilde{H}, \circ_{\widetilde{e}}, \widetilde{e}\right), & x \mapsto[\widetilde{e}, \varphi(e), \varphi(x)]
\end{array}
$$

are associated group homomorphisms.
Indeed, for any $x, y \in H$,

$$
\begin{aligned}
\widehat{\varphi}\left(x \circ_{e} y\right) & =\left[\varphi\left(x \circ_{e} y\right), \varphi(e), \tilde{e}\right]=[\varphi([x, e, y]), \varphi(e), \tilde{e}]= \\
& =[[\varphi(x), \varphi(e), \varphi(y)], \varphi(e), \tilde{e}]=[\varphi(x), \varphi(e),[\varphi(y), \varphi(e), \tilde{e}]]= \\
& =[\varphi(x), \varphi(e), \widehat{\varphi}(y)]=[\varphi(x), \varphi(e),[\widetilde{e}, \widetilde{e}, \widehat{\varphi}(y)]]= \\
& =[[\varphi(x), \varphi(e), \tilde{e}], \widetilde{e}, \widehat{\varphi}(y)]=[\widehat{\varphi}(x), \widetilde{e}, \widehat{\varphi}(y)]=\widehat{\varphi}(x) o_{e} \widehat{\varphi}(y) .
\end{aligned}
$$

In a similar manner, $\hat{\varphi}^{\circ}\left(x \circ_{e} y\right)=\hat{\varphi}^{\circ}(x) \circ_{e}^{\sim} \hat{\varphi}^{\circ}(y)$.

A group $(G, \circ, 1)$
\Downarrow
The heap ($G,[-,-,-]_{\circ}$) associated to the group ($G, \circ, 1$),
where $[x, y, z]_{\circ}:=x \circ y^{-1} \circ z$
\Downarrow
$\forall e \in G$, The group (G, \circ_{e}, e) associated to the heap ($G,[-,-,-]_{\circ}$),
where $x \circ_{e} y:=[x, e, y] \circ=x \circ e^{-1} \circ y$

A heap ($H,[-,-,-]$)
\Downarrow
$\forall e \in H$, The group (H, o_{e}, e) associated to the heap ($H,[-,-,-]$),
where $x \circ_{e} y:=[x, e, y]$
\Downarrow
The heap ($H,[-,-,-]_{o_{e}}$) associated to the group (H, o_{e}, e),
where $[x, y, z]_{o_{e}}:=x \circ_{e} y^{-1} \circ_{e} z=\left[\left[x, e, y^{-1}\right], e, z\right]=[[x, e,[e, y, e]], e, z]$

Theorem. Given a group $(G, o, 1)$ and $e \in G$,
let $(G,[-,-,-] \circ)$ be the heap associated to the group $(G, \circ, 1)$,
let $\left(G, \circ_{e}, e\right)$ be the group associated to the heap $\left(G,[-,-,-]_{\circ}\right)$.
Then $(G, \circ, 1) \cong\left(G, \circ_{e}, e\right)$ as groups.

In particular, $\circ=\circ_{1}$.
Indeed, let $\varphi:(G, \circ, 1) \rightarrow\left(G, \circ_{e}, e\right), x \mapsto x \circ e$. Then for any $x, y \in G$,

$$
\begin{aligned}
\varphi(x \circ y) & =(x \circ y) \circ e=(x \circ e) \circ e^{-1} \circ(y \circ e)= \\
& =\varphi(x) \circ e^{-1} \circ \varphi(y)=[\varphi(x), e, \varphi(y)]_{\circ}=\varphi(x) \circ e \varphi(y) .
\end{aligned}
$$

Hence φ is a group isomorphism with the inverse $\varphi^{-1}:\left(G, \circ_{e}, e\right) \rightarrow(G, \circ, 1), x \mapsto x \circ e^{-1}$.
$x \circ y=x \circ 1^{-1} \circ y=[x, 1, y] \circ=x \circ 1 y$.

Theorem. Given a heap $(H,[-,-,-])$ and $e \in H$,
let $\left(H, \circ_{e}, e\right)$ be the group associated to the heap $(H,[-,-,-])$,
let $\left(H,[-,-,-]_{o_{e}}\right)$ be the heap associated to the group $\left(H, o_{e}, e\right)$.

Then $[-,-,-]=[-,-,-]_{o_{e}}$.
Indeed, for any $x, y, z \in H$,
$[x, y, z]=[x, y,[e, e, z]]=[[x, y, e], e, z]=$
$=[[[x, e, e], y, e], e, z]=[[x, e,[e, y, e]], e, z]=$
$=\left[\left[x, e, y^{-1}\right], e, z\right]=x \circ_{e} y^{-1} \circ_{e} z=[x, y, z]_{o_{e}}$.

Theorem. Let $(H,[-,-,-])$ be a heap.
(a) For any $e, x, y \in H$, if $[e, x, y]=e$ or $[x, y, e]=e$, then $x=y$. Indeed, since
$e=[e, x, y]=[e, x, y]_{o_{e}}=e \circ_{e} x^{-1} \circ_{e} y=x^{-1} \circ_{e} y$ or
$e=[x, y, e]=[x, y, e]_{o_{e}}=x \circ_{e} y^{-1} \circ_{e} e=x \circ_{e} y^{-1}$,
it follows that $x=y$.
(b) For any $x, y, z, t, u \in H$,

$$
[x,[y, z, t], u]=[x, t,[z, y, u]]
$$

Indeed, for any $e \in H$,
$[x,[y, z, t], u]=\left[x,[y, z, t]_{o_{e}}, u\right]_{o_{e}}=x \circ_{e}\left(y \circ_{e} z^{-1} \circ_{e} t\right)^{-1} \circ_{e} u=$

$$
=x \circ_{e} t^{-1} \circ_{e} z \circ_{e} y^{-1} \circ_{e} u=\left[x, t,[z, y, u]_{\circ_{e}} \rho_{o_{e}}=[x, t,[z, y, u]] .\right.
$$

(c) For any $x, y, z \in H$,

$$
[x, y,[y, x, z]]=[x,[y, z, x], y]=[[z, x, y], y, x]=z
$$

Indeed, for any $e \in H$,
$[x, y,[y, x, z]]=\left[x, y,[y, x, z]_{o_{e}} \sigma_{o_{e}}=x \circ_{e} y^{-1} \circ_{e} y o_{e} x^{-1} \circ_{e} z=z\right.$
$[x,[y, z, x], y]=[x, x,[z, y, y]]=[x, x, z]=z$
$[[z, x, y], y, x]=\left[[z, x, y]_{o_{e}} y, x\right]_{o_{e}}=z o_{e} x^{-1} \circ_{e} y \circ_{e} y^{-1} \circ_{e} x=z$.
(d) If $(H,[-,-,-])$ is an abelian heap, then for any $x_{1}, x_{2}, \ldots, z_{3} \in H$,

$$
\left[\left[x_{1}, x_{2}, x_{3}\right],\left[y_{1}, y_{2}, y_{3}\right],\left[z_{1}, z_{2}, z_{3}\right]\right]=\left[\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right],\left[x_{3}, y_{3}, z_{3}\right]\right]
$$

Indeed,
$\left[\left[x_{1}, x_{2}, x_{3}\right],\left[y_{1}, y_{2}, y_{3}\right],\left[z_{1}, z_{2}, z_{3}\right]\right]=\left[\left[x_{1}, x_{2}, x_{3}\right]_{o_{e}},\left[y_{1}, y_{2}, y_{3}\right]_{o_{e}}\left[z_{1}, z_{2}, z_{3}\right]_{o_{e}}\right]_{o_{e}}=$

$$
=x_{1} \circ_{e} x_{2}^{-1} \circ_{e} x_{3} \circ_{e}\left(y_{1} \circ_{e} y_{2}^{-1} \circ_{e} y_{3}\right)^{-1} \circ_{e} z_{1} \circ_{e} z_{2}^{-1} \circ_{e} z_{3}=
$$

$$
=x_{1} \circ_{e} y_{1}^{-1} \circ_{e} z_{1} \circ_{e}\left(x_{2} \circ_{e} y_{2}^{-1} \circ_{e} z_{2}\right)^{-1} \circ_{e} x_{3} \circ_{e} y_{3}^{-1} \circ_{e} z_{3}=
$$

$$
=\left[\left[x_{1}, y_{1}, z_{1}\right]_{o_{e}},\left[x_{2}, y_{2}, z_{2}\right]_{o_{e}},\left[x_{3}, y_{3}, z_{3}\right]_{o_{e}}\right]_{o_{e}}=\left[\left[x_{1}, y_{1}, z_{1}\right],\left[x_{2}, y_{2}, z_{2}\right],\left[x_{3}, y_{3}, z_{3}\right]\right] .
$$

Example. Let $(G, \circ, 1)$ be a group.

Assume that G has more than one element.

Let $H \neq G$ be a subgroup of $(G, \circ, 1)$, and let $x \in G \backslash H$.

Let $\left(G,[-,-,-]_{\circ}\right)$ be the heap associated to the group $(G, \circ, 1)$.

Although the left coset $x H$ is not a subgroup of $(G, \circ, 1)$,
it is a subheap $\left(x H,[-,-,-]_{\circ}\right)$ of $\left(G,[-,-,-]_{\circ}\right)$.
Indeed, for any $a, b, c \in H$,
$[x \circ a, x \circ b, x \circ c]=x \circ a \circ(x \circ b)^{-1} \circ x \circ c=x \circ a \circ b^{-1} \circ c \in x H$.

Wolfgang Rump [Braces, radical rings, and the quantum Yang-Baxter equation, Journal of Algebra 307 (2007) 153-170].

Tomasz Brzeziński [Trusses: Between braces and rings, Transactions of the American Mathematical Society 372 (2019), 4149-4176].

A truss is an algebraic system $(T,[-,-,-], \cdot)$ consisting of a nonempty set T, a ternary operation

$$
[-,-,-]: T \times T \times T \rightarrow T, \quad(x, y, z) \mapsto[x, y, z]
$$

and a binary operation

$$
\therefore T \times T \rightarrow T, \quad(x, y) \mapsto x \cdot y
$$

such that
($T,[-,-,-]$) is an abelian heap,
(T, \cdot) is a semigroup,
the truss distributivity

$$
\begin{aligned}
& x \cdot[y, z, t]=[x \cdot y, x \cdot z, x \cdot t] \\
& {[x, y, z] \cdot t=[x \cdot t, y \cdot t, z \cdot t] \text { holds, }}
\end{aligned}
$$

where $x, y, z, t \in T$.

A truss $(T,[-,-,-], \cdot)$ is commutative, if the semigroup (T, \cdot) is commutative.

A truss $(T,[-,-,-], \cdot, 1)$ is unital, if the semigroup $(T, \cdot, 1)$ is a monoid.
A trass homomorphism is a function $\varphi:(T,[-,-,-],, \cdot) \rightarrow(\widetilde{T},[-,-,-],, \cdot)$
such that
$\varphi:(T,[-,-,-],) \rightarrow(\widetilde{T},[-,-,-]$,$) is a heap homomorphism,$
$\varphi:(T, \cdot) \rightarrow(\widetilde{T}, \cdot)$ is a semigroup homomorphism.

A brace is an algebraic system $(B,+, \cdot, 0,1)$ consisting of a nonempty set B, and binary operations

$$
+: B \times B \rightarrow B, \quad(x, y) \mapsto x+y
$$

$\therefore B \times B \rightarrow B, \quad(x, y) \mapsto x \cdot y$
such that
$(B,+, 0)$ is an abelian group,
$(B, \cdot, 1)$ is a group,
the brace distributivity $x \cdot(y+z)=x \cdot y-x+x \cdot z$,

$$
(x+y) \cdot z=x \cdot z-z+y \cdot z \text { holds, }
$$

where $x, y, z \in B$.

Theorem. In a brace $(B,+, \cdot, 0,1), 0=1$.
This element will be denoted by θ.
Indeed, from the fact that 0 is the additive identity element and that 1 is the multiplicative identity element, it follows that $1+0=1$ and $0 \cdot 1=0$.

Hence
$0 \cdot 1=0 \cdot(1+0)=0 \cdot 1-0+0 \cdot 0=0-0+0 \cdot 0=0 \cdot 0$, and since \cdot is a group operation,
it follows that $1=0$.

Theorem. Given a brace $(B,+, \cdot, \theta)$,
let $\left(B,[-,-,-,]_{+}\right)$be the abelian heap associated to the abelian group ($B,+, \theta$).

Then $\left(B,[-,-,-]_{+}, \cdot, \theta\right)$ is a unital truss.
Indeed, for any $x, y, z, t \in B$, since
$x=x \cdot \theta=x \cdot(z-z)=x \cdot z-x+x \cdot(-z)$,
it follows that

$$
x \cdot(-z)=x-x \cdot z+x,
$$

and thus

$$
\begin{aligned}
x \cdot[y, z, t]_{+} & =x \cdot(y-z+t)=x \cdot y-x+x \cdot(-z)-x+x \cdot t= \\
& =x \cdot y-x+(x-x \cdot z+x)-x+x \cdot t= \\
& =x \cdot y-x \cdot z+x \cdot t=[x \cdot y, x \cdot z, x \cdot t]_{+} .
\end{aligned}
$$

In a similar manner, $[x, y, z]_{+} \cdot t=[x \cdot t, y \cdot t, z \cdot t]_{+}$.

Theorem. Given a ring $(R,+, \cdot, 0)$,
let $\left(R,[-,-,-]_{+}\right)$be the abelian heap associated to the abelian group ($R,+, 0$).

Then $\left(R,[-,-,-]_{+}, \cdot, 0\right)$ is a truss.
Indeed, for any $x, y, z, t \in R$, $x \cdot[y, z, t]_{+}=x \cdot(y-z+t)=x \cdot y-x \cdot z+x \cdot t=[x \cdot y, x \cdot z, x \cdot t]_{+}$.
In a similar manner, $[x, y, z]_{+} \cdot t=[x \cdot t, y \cdot t, z \cdot t]_{+}$.

Theorem. Given a truss $(T,[-,-,-], \cdot)$ and $e \in T$,
let $\left(T,+_{e}, e\right)$ be the abelian group associated to the abelian heap $(T,[-,-,-])$.
Then $(T,+e, \cdot, e)$ is a ring iff

$$
e \cdot x=e=x \cdot e \quad \text { for any } x \in T
$$

An element $e \in T$ with this property is called an absorber.
If an absorber exists, then it is unique.
Indeed, if $\left(T,+_{e}, \cdot, e\right)$ is a ring, then since e is the zero element, it follows that $e \cdot x=e=x \cdot e$ for any $x \in T$.
If e is an absorber in the truss ($T,[-,-,-], \cdot)$, then for any $x, y, z \in T$, $x \cdot(y+e z)=x \cdot[y, e, z]=[z \cdot y, x \cdot e, x \cdot z]=[z \cdot y, e, x \cdot z]=x \cdot y+e x \cdot z$. In a similar manner, $(x+e y) \cdot z=x \cdot z+e y \cdot z$.

If e, f are absorbers in the truss $(T,[-,-,-], \cdot)$, then $e=e \cdot f=f$.

Example. Let $(H,[-,-,-])$ be an abelian heap.

Assume that H has more than one element. Let

$$
\therefore H \times H \rightarrow H, \quad x \cdot y:=x
$$

where $x, y \in H$. Then
(a) $(H,[-,-,-], \cdot)$ is a noncommutative truss.

Indeed, for any $x, y, z, t \in H$,
$x \cdot(y \cdot z)=x=x \cdot z=(x \cdot y) \cdot z$
$x \cdot[y, z, t]=x=[x, x, x]=[x \cdot y, x \cdot z, x \cdot t]$
$[x, y, z] \cdot t=[x, y, z]=[x \cdot t, y \cdot t . z \cdot t]$
$x \cdot y=x \neq y=y \cdot x \quad$ as long as $x \neq y$.

(b) $(H,[-,-,-], \cdot)$ is nonunital,
and hence ($H,[-,-,-], \cdot)$ is not arrising from any brace.
Indeed, if the truss $(H,[-,-,-], \cdot)$ was unital, the operation • would need to have the identity element, say 1.
But for any $x \in H$, if $x \neq 1$ then $1 \cdot x=1 \neq x$.
Thus 1 cannot be the identity element.
(c) $(H,[-,-,-], \cdot)$ has no absorbers,
and hence $(H,[-,-,-], \cdot)$ is not arrising from any ring.
Indeed, if the truss $(H,[-,-,-], \cdot)$ was arrising from a ring,
it would need to have the absorber, say 0 .
But for any $x \in H$, if $x \neq 0$ then $x \cdot 0=x \neq 0$.
Thus 0 cannot be the absorber.

Example. Let $(\mathbb{Z},+, \cdot, 0,1)$ be the ring of integer numbers, and let $\left(\mathbb{Z},[-,-,-]_{+}, \cdot\right)$ be the truss associated to the ring $(\mathbb{Z},+, \cdot, 0,1)$.

Although the set of odd integer numbers $2 \mathbb{Z}+1$ is not a subring of $(\mathbb{Z},+, \cdot, 0,1)$,
it is a subtruss $\left(2 \mathbb{Z}+1,[-,-,-]_{+}, \cdot\right)$ of $\left(\mathbb{Z},[-,-,-]_{+}, \cdot\right)$.

Theorem. Let $(H,[-,-,-])$ be a heap, and let $S \subseteq H$ be a nonempty subset.
Then the following statements are equivalent
(a) S is a subheap $(S,[-,-,-])$ of $(H,[-,-,-])$.
(b) For every $e \in S$,
S is a subgroup (S, \circ_{e}, e) of the associated group (H, \circ_{e}, e).
Indeed, for $(\mathrm{a}) \Rightarrow(\mathrm{b})$, let $s, t \in S$. Then
$s \circ_{e} t^{-1}=[s, e,[e, t, e]]=[[s, e, e], t, e]=[s, t, e] \in S$.
(c) For some $e \in S$,
S is a subgroup (S, \circ_{e}, e) of the associated group (H, \circ_{e}, e).
Indeed, for $(\mathrm{c}) \Rightarrow(\mathrm{a})$, let $s, t, u \in S$. Then
$[s, t, u]=[s, t, u]_{o_{e}}=s \circ_{e} t^{-1} \circ_{e} u \in S$.

A subheap S of a heap ($H,[-,-,-]$) is normal, if

$$
\exists e \in S \forall s \in S \forall x \in H \exists t \in S,[x, e, s]=[t, e, x] .
$$

Theorem. Let $(H,[-,-,-])$ be a heap, and let $S \subseteq H$ be a nonempty subset.
Then the following statements are equivalent
(a) S is a normal subheap $(S,[-,-,-])$ of $(H,[-,-,-])$.
(b) $\forall e, s \in S \forall x \in H \exists t \in S,[x, e, s]=[t, e, x]$.

Indeed, for (a) \Rightarrow (b), let $e \in S$ be such that

$$
\forall s \in S \forall x \in H \exists t \in S,[x, e, s]=[t, e, x] .
$$

Then for any $f, s \in S, x \in H$ and for some $u \in S$, since $[x, e,[e, f, s]]=[u, e, x]$,
it follows that $[[x, e, e], f, s]=[u, e,[f, f, x]]$,
and thus $[x, f, s]=[[u, e, f], f, x]$, where $[u, e, f] \in S$.

(c) $\forall e, s \in S \forall x \in H,[[x, e, s], x, e] \in S$.

Indeed, for $(\mathrm{b}) \Rightarrow(\mathrm{c})$, let $e, s \in S, x \in H$,
and let $t \in S$ be such that $[x, e, s]=[t, e, x]$. Then
$[[x, e, s], x, e]=[[t, e, x], x, e]=[t, e,[x, x, e]]=[t, e, e]=t \in S$.
For $(\mathrm{c}) \Rightarrow$ (a), let $e, s \in S x \in H$,
and let $t \in S$ be such that $[[x, e, s], x, e]=t$.
Then since $[[[x, e, s], x, e], e, x]=[t, e, x]$,
it follows that $[x, e, s]=[t, e, x]$.
(d) For every $e \in S$,
S is a normal subgroup (S, \circ_{e}, e) of the associated group (H, \circ_{e}, e).
Indeed, for $(\mathrm{b}) \Rightarrow(\mathrm{d})$, let $e, s \in S, x \in H$,
and let $t \in S$ be such that $[x, e, s]=[t, e, x]$.
Then since $x \circ_{e} s=t \circ_{e} x$,
it follows that $x \circ_{e} s \circ_{e} x^{-1}=t \in S$.

(e) For some $e \in S$,
S is a normal subgroup (S, \circ_{e}, e) of the associated group (H, \circ_{e}, e).
Indeed, for $(\mathrm{e}) \Rightarrow(\mathrm{a})$, let $s \in S, x \in H$,
and let $t \in S$ be such that $x \circ_{e} s \circ_{e} x^{-1}=t$.
Then since $x \circ_{e} s=t 0_{e} x$,
it follows that $[x, e, s]=[t, e, x]$.

Given a subheap S of a heap $(H,[-,-,-])$,
let the subheap relation \sim_{S} on H be defined as

$$
x \sim_{S} y \quad: \Leftrightarrow \quad \text { for some } s \in S,[x, y, s] \in S
$$

In the associated group (H, o_{s}, s), this means that
$x \circ_{s} y^{-1}=x \circ_{s} y^{-1} \circ_{s} s=[x, y, s]_{\circ_{s}}=[x, y, s] \in S$.
Theorem. Let S be a subheap $(S,[-,-,-])$ of a heap $(H,[-,-,-])$. Then
(a) $x \sim_{S} y \quad \Leftrightarrow \quad$ for every $s \in S,[x, y, s] \in S$.

Indeed, let $x \sim_{S} y$, and let $s \in S$ be such that $[x, y, s] \in S$.
Then for any $t \in S$,
$[x, y, t]=[x, y,[s, s, t]]=[[x, y, s], s, t] \in S$.

(b) \sim_{S} is an equivalence relation on $(H,[-,-,-]$).

Indeed, for any $x, y, z \in H, s \in S$,
since $[x, x, s]=s \in S$, it follows that $x \sim_{S} x$.
If $x \sim_{S} y$, then since $[x, y, s] \in S$, it follows that $[y, x,[x, y, s]]=s \in S$, and thus $y \sim_{S} x$.
If $x \sim_{S} y$ and $y \sim_{S} z$, then since $[x, y, S] \subseteq S$ and $[y, z, s] \in S$, it follows that $[x, z, s]=[[x, y, y], z, s]=[x, y,[y, z, s]] \in S$, and thus $x \sim_{S} z$.

The equivalence class with respect to the subheap relation \sim_{S} will be denoted by

$$
\begin{aligned}
\bar{x}: & =\left\{x^{\prime} \in H \mid \text { for some } s \in S,\left[x^{\prime}, x, s\right] \in S\right\}= \\
& =\left\{x^{\prime} \in H \mid \text { for every } s \in S,\left[x^{\prime}, x, s\right] \in S\right\} .
\end{aligned}
$$

(c) For every $s \in S, \bar{s}=S$.

Indeed, for any $x \in H$, from the fact that $[x, s, s]=x$,
it follows that $x \in \bar{s}$ if and only if $x \in S$.

(d) For every $x \in H, \bar{x}$ is a subheap $(\bar{x},[-,-,-])$ of $(H,[-,-,-])$.

Indeed, for any $y, z, t \in \bar{x}, s \in S$, since $y \in \bar{z}$,
it follows that $[[y, z, t], x, s]=[y, z,[t, x, s]] \in S$,
and thus $[y, z, t] \in \bar{x}$.
(e) For any $x, y \in H$, the function

$$
\tau_{y}^{x}:(H,[-,-,-]) \rightarrow(H,[-,-,-]), \quad \tau_{y}^{x}(z):=[z, y, x]
$$

is a heap automorphism with the inverse $\left(\tau_{y}^{x}\right)^{-1}=\tau_{x}^{y}$.
Indeed, for any $z, t, u \in H$,

$$
\begin{aligned}
{\left[\tau_{y}^{x}(z), \tau_{y}^{x}(t), \tau_{y}^{x}(u)\right] } & =\left[[z, y, x], \tau_{y}^{x}(t), \tau_{y}^{x}(u)\right]=\left[z, y,\left[x,[t, y, x], \tau_{y}^{x}(u)\right]\right]= \\
& =\left[z, y,\left[x, x,\left[y, t, \tau_{y}^{x}(u)\right]\right]\right]=\left[z, y,\left[y, t, \tau_{y}^{x}(u)\right]\right]= \\
& =\left[[z, y, y], t, \tau_{y}^{x}(u)\right]=[z, t,[u, y, x]]=[[z, t, u], y, x]=\tau_{y}^{x}([z, t, u])
\end{aligned}
$$

(f) For any $x, y \in H, \bar{x}=\tau_{y}^{x}(\bar{y})$.

Indeed, if $x^{\prime} \in \bar{x}$, then since
$x^{\prime}=\left(\tau_{y}^{x} \circ \tau_{x}^{y}\right)\left(x^{\prime}\right)=\tau_{y}^{x}\left(\left[x^{\prime}, x, y\right]\right)$,
and since for any $s \in S$,
$\left[\left[x^{\prime}, x, y\right], y, s\right]=\left[x^{\prime}, x,[y, y, s]=\left[x^{\prime}, x, s\right]\right] \in S$,
it follows that $x^{\prime}=\tau_{y}^{x}\left(\left[x^{\prime}, x, y\right]\right) \in \tau_{y}^{x}(\bar{y})$.
If $y^{\prime} \in \bar{y}$, then for any $s \in S$,
$\left[\tau_{y}^{x}\left(y^{\prime}\right), x, s\right]=\left[\left[y^{\prime}, y, x\right] x, s\right]=\left[y^{\prime}, y,[x, x, s]\right]=\left[y^{\prime}, y, s\right] \in S$,
and thus $\tau_{y}^{x}(\bar{y}) \in \bar{x}$.
(g) For any $x, y \in H,(\bar{x},[-,-,-]) \cong(\bar{y},[-,-,-])$ as heaps.

Theorem. Let S be a normal subheap $(S,[-,-,-])$ of a heap $(H,[-,-,-])$.
Then
(a) \sim_{S} is a congruence in $(H,[-,-,-])$, that is,
\sim_{S} is an equivalence relation on ($H,[-,-,-]$) and $x \sim_{S} x^{\prime}, y \sim_{S} y^{\prime}, z \sim_{S} x^{\prime}$ imply that $[x, y, z] \sim_{S}\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$,
where $x, x^{\prime}, \ldots, z^{\prime} \in H$.
Indeed, if $x \sim_{S} x^{\prime}, y \sim_{S} y^{\prime}, z \sim_{S} x^{\prime}$, then for any $e \in S$,
$x^{\prime} \in \bar{x}=\tau_{e}^{x}(\bar{e})=\tau_{e}^{x}(S)$
$y^{\prime} \in \bar{y}=\tau_{e}^{y}(\bar{e})=\tau_{e}^{y}(S)$
$z^{\prime} \in \bar{z}=\tau_{e}^{z}(\bar{e})=\tau_{e}^{z}(S)$.
In the associated group (H, o_{e}, e), this means that

$$
\begin{aligned}
& \bar{x}=\tau_{e}^{x}(s)=[s, e, x]=s \circ_{e} x \\
& \bar{y}=\tau_{e}^{y}(t)=[t, e, y]=t \circ_{e} y \\
& \bar{z}=\tau_{e}^{z}(u)=[u, e, z]=z \circ_{e} z
\end{aligned}
$$

for some $s, t, u \in S$. Then

$$
\begin{aligned}
{\left[x^{\prime}, y^{\prime}, z^{\prime}\right] } & =\left[s \circ_{e} x, t \circ_{e} y, u \circ_{e} z\right]_{o_{e}}=s \circ_{e} x \circ_{e}\left(t \circ_{e} y\right)^{-1} \circ_{e} u \circ_{e} z= \\
& =s \circ_{e} x \circ_{e} y^{-1} \circ_{e} t^{-1} \circ_{e} u \circ_{e} y \circ_{e} x^{-1} \circ_{e} x \circ_{e} y^{-1} \circ_{e} z= \\
& =v \circ_{e}[x, y, z]_{o_{e}}=[v, e,[x, y, z]]
\end{aligned}
$$

where $v=s \circ_{e} x \circ_{e} y^{-1} \circ_{e} t^{-1} \circ_{e} u \circ_{e} y \circ_{e} x^{-1}$.
From the fact that S is a normal subgroup (S, \circ_{e}, e) of (H, \circ_{e}, e), it follows that $v \in S$.
Hence
$\left[x^{\prime}, y^{\prime}, z^{\prime}\right]=[v, e,[x, y, z]]=\tau_{e}^{[x, y, z]}(v) \in \tau_{e}^{[x, y, z]}(S)=\tau_{e}^{[x, y, z]}(\bar{e})=\overline{[x, y, z]}$,
and thus $[x, y, z] \sim_{S}\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$.
(b) the set of equivalence classes H / \sim_{S} is a heap with the ternary operation

$$
[-,-,-]: H / \sim_{S} \times H / \sim_{S} \times H / \sim_{S} \rightarrow H / \sim_{S}, \quad[\bar{x}, \bar{y}, \bar{z}]:=\overline{[x, y, z]}
$$

where $x, y, z \in H$.
Indeed, if $\bar{x}=\overline{x^{\prime}}, \bar{y}=\overline{y^{\prime}}, \bar{z}=\overline{z^{\prime}}$, then since $x \sim_{S} x^{\prime}, y \sim_{S} y^{\prime}, z \sim_{S} z^{\prime}$,
it follows that $[x, y, z] \sim_{S}[x, y, z]$, and thus $\overline{[x, y, z]}=\overline{\left[x^{\prime}, y^{\prime}, z^{\prime}\right]}$.

Given a heap homomorphism $\varphi:(H,[-,-,-]) \rightarrow(\widetilde{H},[-,-,-])$,
let the kernel relation of φ on H be defined as

$$
x \operatorname{Ker} \varphi y \quad: \Leftrightarrow \quad \varphi(x)=\varphi(y) .
$$

Theorem. Let ($H,[-,-,-]$) be a heap.
(a) For any heap homomorphism $\varphi:(H,[-,-,-]) \rightarrow(\widetilde{H},[-,-,-])$,
$\operatorname{Ker\varphi }$ is a congruence in ($H,[-,-,-]$).
Indeed, if $x \operatorname{Ker} \varphi x^{\prime}, y \operatorname{Ker} \varphi y^{\prime}, z \operatorname{Ker} \varphi z^{\prime}$,
then since $\varphi(x)=\varphi\left(x^{\prime}\right), \varphi(y)=\varphi\left(y^{\prime}\right), \varphi(z)=\varphi\left(z^{\prime}\right)$,
it follows that
$\varphi([x, y, z])=[\varphi(x), \varphi(y), \varphi(z)]=\left[\varphi\left(x^{\prime}\right), \varphi\left(y^{\prime}\right), \varphi\left(z^{\prime}\right)\right]=\varphi\left(\left[x^{\prime}, y^{\prime}, z^{\prime}\right]\right)$,
and thus $[x, y, z] \operatorname{Ker} \varphi\left[x^{\prime}, y^{\prime}, z^{\prime}\right]$.

(b) If ρ is a congruence in $(H,[-,-,-])$, then
(i) the set of equivalence classes H / ρ is a heap with the ternary operation

$$
[-,-,-]: H / \rho \times H / \rho \times H / \rho \rightarrow H / \rho, \quad[\widehat{x}, \widehat{y}, \widehat{z}]:=[\widehat{x, y, z}]
$$

where $x, y, z \in H$, and $\widehat{x}, \widehat{y}, \widehat{z}$ mean the equivalence classes with respect to the relation ρ.
(ii) the function

$$
\varphi:(H,[-,-,-]) \rightarrow(\widetilde{H},[-,-,-]), \quad x \mapsto \widehat{x}
$$

is a heap homomorphism such that $\rho=\operatorname{Ker} \varphi$.
Indeed, for any $x, y, z \in H$,
$\varphi([x, y, z])=[\widehat{x, y, z}]=[\widehat{x}, \widehat{y}, \widehat{z}]=[\varphi(x), \varphi(y), \varphi(z)]$
$x \rho y \quad \Leftrightarrow \quad \widehat{x}=\widehat{y} \quad \Leftrightarrow \quad \varphi(x)=\varphi(y) \quad \Leftrightarrow \quad x \operatorname{Ker} \varphi y$.

The equivalence class with respect to the kernel relation $\operatorname{Ker} \varphi$ will be denoted by

$$
\widehat{x}:=\left\{x^{\prime} \in H \mid \varphi(x)=\varphi\left(x^{\prime}\right)\right\} .
$$

Theorem. Under the above notations, for every $x \in H$,
\widehat{x} is a normal subheap $(\widehat{x},[-,-,-])$ of $(H,[-,-,-])$.
Indeed, for any $s, t, u \in \widehat{x}, y \in H$, since
$\varphi([s, t, u])=[\varphi(s), \varphi(t), \varphi(u)]=[\varphi(x), \varphi(x), \varphi(x)]=\varphi(x)$,
it follows that $[s, t, u] \in \widehat{x}$.
Since

$$
\begin{aligned}
\varphi([[y, s, t], y s]) & =[[\varphi(y), \varphi(s), \varphi(t)], \varphi(y), \varphi(s)]= \\
& =[[\varphi(y), \varphi(x), \varphi(x)], \varphi(y), \varphi(x)]=[\varphi(y), \varphi(y), \varphi(x)]=\varphi(x),
\end{aligned}
$$

it follows that $[[y, s, t], y, s] \in \widehat{x}$,
and thus \widehat{x} is a normal subheap ($\widehat{x},[-,-,-]$) of ($H,[-,-,-]$).

Given a heap homomorphism $\varphi:(H,[-,-,-]) \rightarrow(\widetilde{H},[-,-,-])$, and $e \in \operatorname{Im} \varphi$, the e-kernel of φ is the subset of H defined as

$$
\operatorname{ker}_{e} \varphi:=\{x \in H \mid \varphi(x)=e\}
$$

Theorem. Under the above notations,
(a) for every $e \in \operatorname{Im} \varphi$,
$k_{e} \varphi$ is a normal subheap ($\operatorname{ker}_{e} \varphi,[-,-,-]$) of $(H,[-,-,-])$.
Indeed, for any $x \in \operatorname{ker}_{e} \varphi$, since
$y \in \operatorname{ker}_{e} \varphi \quad \Leftrightarrow \quad \varphi(y)=e \quad \Leftrightarrow \quad \varphi(y)=\varphi(x) \quad \Leftrightarrow \quad x \operatorname{Ker} \varphi y \quad \Leftrightarrow \quad y \in \widehat{x}$,
it follows that
$\operatorname{ker}_{e} \varphi=\widehat{x}$, the equivalence class with respect the kernel relation $\operatorname{Ker} \varphi$.
Thus
$k e r_{e} \varphi$ is a normal subheap $\left(\operatorname{ker}_{e} \varphi,[-,-,-]\right)$ of $(H,[-,-,-])$.

(b) For any $e, f \in \operatorname{Im\varphi },\left(\operatorname{ker}_{e} \varphi,[-,-,-]\right) \cong\left(\operatorname{ker}_{f} \varphi,[-,-,-]\right)$ as heaps.

Indeed, let $x \in k e r_{e} \varphi, y \in k e r_{f} \varphi$.
It suffices to prove that $\operatorname{ker}_{e} \varphi=\tau_{y}^{x}\left(\operatorname{ker}_{f} \varphi\right)$.
If $z \in k e r_{e} \varphi$, then since
$z=\left(\tau_{y}^{x} \circ \tau_{x}^{y}\right)(z)=\tau_{y}^{x}([z, x, y])$,
and since
$\varphi([z, x, y])=[\varphi(z), \varphi(x), \varphi(y)]=[e, e, f]=f$,
it follows that
$z=\tau_{y}^{x}([z, x, y]) \in \tau_{y}^{x}\left(k e r_{e} \varphi\right)$.
If $z \in \operatorname{ker}_{f} \varphi$, then
$\varphi\left(\tau_{y}^{x}(z)\right)=\varphi([z, y, x])=[\varphi(z), \varphi(y), \varphi(x)]=[f, f, e]=e$,
and thus $\tau_{y}^{x}(z) \in k e r_{e} \varphi$.

(c) For ane $e \in \operatorname{Im} \varphi, \sim_{k e r_{e} \varphi}=\operatorname{Ker} \varphi$.

Indeed, if $x \sim_{k r_{c} \varphi} y$, then for any $s \in \operatorname{ker}_{e} \varphi$, $[x, y, s] \in k e r_{e} \varphi$ by the definition of the subheap relation $\sim_{k e r_{e} \varphi}$.

From this it follows that
$e=\varphi([y, x, s])=[\varphi(x), \varphi(y), \varphi(s)]=[\varphi(x), \varphi(y), e]$,
which means that $\varphi(x)=\varphi(y)$, and thus
$x \operatorname{Ker} \varphi y$ by the definition of the kernel relation $\operatorname{Ker} \varphi$.
If $x \operatorname{Ker} \varphi y$, then since $\varphi(x)=\varphi(y)$,
it follows that for any $s \in \operatorname{ker}_{e} \varphi$,
$\varphi([x, y, s])=[\varphi(x), \varphi(y), \varphi(s)]=[\varphi(x), \varphi(x), e]=e$,
which means that $[x, y, s] \in \operatorname{ker}_{e} \varphi$,
and thus $x \sim_{k e r_{e} \varphi} y$.

Corollary. Let ($H,[-,-,-]$) be a heap,
and let ρ be an equivalence relation on ($H,[-,-,-]$).
Then the following statemants are equivalent
(a) ρ is a congruence in $(H,[-,-,-])$.
(b) There exists a heap homomorphism $\varphi:(H,[-,-,-]) \rightarrow(\widetilde{H},[-,-,-])$
such that $\rho=\operatorname{Ker\varphi }$.
(c) There exists a normal subheap ($S,[-,-,-]$) of ($H,[-,-,-]$)
such that $\rho=\sim_{S}$.

Let $(T,[-,-,-], \cdot)$ be a truss.
A subheap ($S,[-,-,-]$) of the heap ($T,[-,-,-]$)
is an ideal of the truss ($T,[-,-,-], \cdot)$, if

$$
s \cdot x \in S, \quad x \cdot s \in S,
$$

where $s \in S, x \in T$.
Theorem. Let S be an ideal of a truss $(T,[-,-,-], \cdot)$. Then
\sim_{S} is a congruence in the truss ($\left.T,[-,-,-], \cdot\right)$, that is,
\sim_{S} is a congruence in the heap ($T,[-,-,-]$),
$x \sim_{S} x^{\prime}, y \sim_{S} y^{\prime}$ imply that $x \cdot y \sim_{S} x^{\prime} \cdot y^{\prime}$,
where $x, x^{\prime}, y, y^{\prime} \in H$.

Theorem. Let $\varphi:(T,[-,-,-], \cdot) \rightarrow(\widetilde{T},[-,-,-], \cdot)$ be a truss homomorphism, and let $e \in \operatorname{Im} \varphi$. Then
(a) For any $s \in \operatorname{ker}_{e} \varphi, x \in T, s \cdot x \in \operatorname{ker}_{e} \varphi \quad \Leftrightarrow \quad$ for any $y \in \operatorname{Im} \varphi, e \cdot y=e$.
(b) For any $s \in \operatorname{ker}_{e} \varphi, x \in T, x \cdot s \in \operatorname{ker}_{e} \varphi \quad \Leftrightarrow \quad$ for any $y \in \operatorname{Im} \varphi, y \cdot e=e$.

Theorem. Let $\varphi:(T,[-,-,-], \cdot) \rightarrow(\widetilde{T},[-,-,-], \cdot)$ be a truss homomorphism, and let $e \in \operatorname{Im} \varphi$. Then for any $p, q \in \operatorname{ker}_{e} \varphi, x \in T$,

$$
[x \cdot p, x \cdot q, q] \in \operatorname{ker}_{e} \varphi, \quad[p \cdot x, q \cdot x, q] \in \operatorname{ker}_{e} \varphi .
$$

Let $(T,[-,-,-], \cdot)$ be a truss.
A subheap ($P,[-,-,-]$) of the heap ($T,[-,-,-]$)
is a paragon of the truss $(T,[-,-,-], \cdot)$, if

$$
[x \cdot p, x \cdot q, q] \in P, \quad[p \cdot x, q \cdot x, q] \in P,
$$

where $p, q \in P, x \in T$.

Example. Let $(R,+, \cdot, 0)$ be a ring.

Assume that R has more than one element.

Let $I \neq R$ be an ideal of $(R,+, \cdot, 0)$, and let $x \in T \backslash I$.

Let $\left(R,[-,-,]_{+}, \cdot\right)$ be the trass associated to the ring $(R,+, \cdot, 0)$.

Although the coset $x+I$ is not an ideal of $(R,+, \cdot, 0)$,
it is a paragon of $\left(R,[-,-,-]_{+}, \cdot\right)$.

Theorem. Let $(T,[-,-,-], \cdot)$ be a truss,
and let ρ be an equivalence relation on $(T,[-,-,-], \cdot)$.
Then the following statemants are equivalent
(a) ρ is a congruence in $(T,[-,-,-], \cdot)$.
(b) There exists a truss homomorphism $\varphi:(T,[-,-,-], \cdot) \rightarrow(\widetilde{T},[-,-,-], \cdot)$
such that $\rho=\operatorname{Ker} \varphi$.
(c) There exists a paragon P of $(T,[-,-,-], \cdot)$
such that $\rho=\sim_{P}$.

Thank you very much for your attention!
Merci beaucoup pour votre attention!

