NonCommutative Rings and their Applications, VII Université d'Artois, Faculté des Sciences Jean Perrin de Lens

5th-7th July 2021, Lens (France)

Trusses

Małgorzata Elżbieta Hryniewicka

Faculty of Mathematics, University of Białystok Ciołkowskiego 1M, 15-245 Białystok, Poland

e-mail: margitt@math.uwb.edu.pl; mhryniewicka@uwb.edu.pl

Heinz Prüfer [*T*heorie der Abelschen Gruppen. I. Grundeigenschaften, Mathematische Zeitschrift 20 (1924), 165-187, page 170].

Reinhold Baer [Zur Einführung des Scharbegriffs, Journal für die Reine und Angewandte Mathematik 160 (1929), 199-207, page 202].

A heap is an algebraic system (H, [-, -, -]) consisting of a nonempty set H, and a ternary operation

$$[-, -, -] \colon H \times H \times H \to H, \quad (x, y, z) \mapsto [x, y, z]$$

satisfying

the heap associativity $[[x, y, z], t, u] = [x, y, [z, t, u]], \neq [x, [y, z, t], u]$ Mal'cev identities $[x, x, y] = y = [y, x, x], \neq [x, y, x]$ where $x, y, z, t, u \in H$. A heap (H, [-, -, -]) is abelian, if satisfies the heap commutativity [x, y, z] = [z, y, x],where $x, y, z \in H$.

A heap homomorphism is a function φ : $(H, [-, -, -,]) \rightarrow (\widetilde{H}, [-, -, -,])$ respecting the heap operations

$$\varphi([x, y, z]) = [\varphi(x), \varphi(y), \varphi(z)],$$

where $x, y, z \in H$.

Theorem. Given a group $(G, \circ, 1)$, let

$$[-,-,-]_{\circ}: G \times G \times G \to G, \quad [x,y,z]_{\circ}:= x \circ y^{-1} \circ z,$$

where $x, y, z \in G$. Then

(a)
$$(G, [-, -, -]_{\circ})$$
 is a heap.
Indeed, for any $x, y, z, t, u \in G$,
 $[[x, y, z]_{\circ}, t, u]_{\circ} = (x \circ y^{-1} \circ z) \circ t^{-1} \circ u = x \circ y^{-1} \circ (z \circ t^{-1} \circ u) = [x, y, [z, t, u]_{\circ}]_{\circ}$
 $[x, x, y]_{\circ} = x \circ x^{-1} \circ y = y = y \circ x^{-1} \circ x = [y, x, x]_{\circ}.$

(b) If $(G, \circ, 1)$ is an abelian group, then $(G, [-, -, -]_{\circ})$ is an abelian heap. Indeed, for any $x, y, z \in G$,

$$[x,y,z]_{\circ} = x \circ y^{-1} \circ z = z \circ y^{-1} \circ x = [z,y,x]_{\circ}.$$

(c) Every group homomorphism $\varphi \colon (G, \circ, 1) \to (\widetilde{G}, \circ, 1)$

is an associated heap homomorphism $\varphi \colon (G, [-, -, -]_{\circ}) \to (\tilde{G}, [-, -, -]_{\circ}).$ Indeed, for any $x, y, z \in G$,

$$\varphi([x, y, z]_{\circ}) = \varphi(x \circ y^{-1} \circ z) = \varphi(x) \circ \varphi(y)^{-1} \circ \varphi(z) = [\varphi(x), \varphi(y), \varphi(z)]_{\circ}$$

Theorem. Given a heap (H, [-, -, -]) and $e \in H$, let

$$\circ_e \colon H \times H \to H, \quad x \circ_e y \coloneqq [x, e, y],$$

where $x, y \in H$. Then

(a) (H, \circ_e, e) is a group, known as a retract of (H, [-, -, -]). Indeed, for any $x, y, z \in H$, $(x \circ_e y) \circ_e z = [[x, e, y], e, z] = [x, e, [y, e, z]] = x \circ_e (y \circ_e z)$ $e \circ_e x = [e, e, x] = x = [x, e, e] = x \circ_e e$ $[e, x, e] \circ_e x = [[e, x, e], e, x] = [e, x, [e, e, x]] = [e, x, x] = e =$ $= [x, x, e] = [[x, e, e], x, e] = [x, e, [e, x, e]] = x \circ_e [e, x, e]$, so $x^{-1} = [e, x, e]$.

(b) If (H, [-, -, -]) is an abelian heap, then (H, \circ_e, e) is an abelian group. Indeed, for any $x, y \in H$,

 $x \circ_e y = [x, e, y] = [y, e, x] = y \circ_e x.$

(c) If φ : $(H, [-, -, -]) \to (\widetilde{H}, [-, -, -])$ is a heap homomorphism, then for any $e \in H$, $\tilde{e} \in \widetilde{H}$, the functions $\hat{\varphi}$: $(H, \circ_e, e) \to (\widetilde{H}, \circ_{\widetilde{e}}, \widetilde{e}), \quad x \mapsto [\varphi(x), \varphi(e), \widetilde{e}]$ $\hat{\varphi}^{\circ}$: $(H, \circ_e, e) \to (\widetilde{H}, \circ_{\widetilde{e}}, \widetilde{e}), \quad x \mapsto [\tilde{e}, \varphi(e), \varphi(x)]$

are associated group homomorphisms.

Indeed, for any
$$x, y \in H$$
,

$$\widehat{\varphi}(x \circ_e y) = [\varphi(x \circ_e y), \varphi(e), \widetilde{e}] = [\varphi([x, e, y]), \varphi(e), \widetilde{e}] =$$

$$= [[\varphi(x), \varphi(e), \varphi(y)], \varphi(e), \widetilde{e}] = [\varphi(x), \varphi(e), [\varphi(y), \varphi(e), \widetilde{e}]] =$$

$$= [\varphi(x), \varphi(e), \widehat{\varphi}(y)] = [\varphi(x), \varphi(e), [\widetilde{e}, \widetilde{e}, \widehat{\varphi}(y)]] =$$

$$= [[\varphi(x), \varphi(e), \widetilde{e}], \widetilde{e}, \widehat{\varphi}(y)] = [\widehat{\varphi}(x), \widetilde{e}, \widehat{\varphi}(y)] = \widehat{\varphi}(x) \circ_{\widetilde{e}} \widehat{\varphi}(y).$$

In a similar manner, $\widehat{\varphi}^{\circ}(x \circ_e y) = \widehat{\varphi}^{\circ}(x) \circ_{\widetilde{e}} \widehat{\varphi}^{\circ}(y)$.

A group $(G, \circ, 1)$

 \Downarrow

The heap $(G, [-, -, -]_{\circ})$ associated to the group $(G, \circ, 1)$,

where $[x, y, z]_{\circ} := x \circ y^{-1} \circ z$

 \Downarrow

 $\forall e \in G$, The group (G, \circ_e, e) associated to the heap $(G, [-, -, -]_{\circ})$,

where $x \circ_e y := [x, e, y]_{\circ} = x \circ e^{-1} \circ y$

A heap (H, [-, -, -])

 \Downarrow

 $\forall e \in H$, The group (H, \circ_e, e) associated to the heap (H, [-, -, -]),

where $x \circ_e y := [x, e, y]$

 \Downarrow

The heap $(H, [-, -, -]_{\circ_e})$ associated to the group (H, \circ_e, e) ,

where $[x, y, z]_{\circ_e} := x \circ_e y^{-1} \circ_e z = [[x, e, y^{-1}], e, z] = [[x, e, [e, y, e]], e, z]$

Theorem. Given a group $(G, \circ, 1)$ and $e \in G$,

let $(G, [-, -, -]_{\circ})$ be the heap associated to the group $(G, \circ, 1)$,

let (G, \circ_e, e) be the group associated to the heap $(G, [-, -, -]_{\circ})$.

Then $(G, \circ, 1) \cong (G, \circ_e, e)$ as groups.

In particular,
$$\circ = \circ_1$$
.
Indeed, let $\varphi \colon (G, \circ, 1) \to (G, \circ_e, e), \ x \mapsto x \circ e$. Then for any $x, y \in G$,
 $\varphi(x \circ y) = (x \circ y) \circ e = (x \circ e) \circ e^{-1} \circ (y \circ e) =$
 $= \varphi(x) \circ e^{-1} \circ \varphi(y) = [\varphi(x), e, \varphi(y)]_{\circ} = \varphi(x) \circ_e \varphi(y).$

Hence φ is a group isomorphism with the inverse φ^{-1} : $(G, \circ_e, e) \to (G, \circ, 1)$, $x \mapsto x \circ e^{-1}$.

 $x \circ y = x \circ 1^{-1} \circ y = [x, 1, y]_{\circ} = x \circ_1 y.$

Theorem. Given a heap (H, [-, -, -]) and $e \in H$,

let (H, \circ_e, e) be the group associated to the heap (H, [-, -, -]),

let $(H, [-, -, -]_{\circ_e})$ be the heap associated to the group (H, \circ_e, e) .

Then
$$[-, -, -] = [-, -, -]_{\circ_e}$$
.

Indeed, for any $x, y, z \in H$,

$$[x, y, z] = [x, y, [e, e, z]] = [[x, y, e], e, z] =$$
$$= [[[x, e, e], y, e], e, z] = [[x, e, [e, y, e]], e, z] =$$
$$= [[x, e, y^{-1}], e, z] = x \circ_e y^{-1} \circ_e z = [x, y, z]_{\circ_e}.$$

Theorem. Let (H, [-, -, -]) be a heap.

(a) For any $e, x, y \in H$, if [e, x, y] = e or [x, y, e] = e, then x = y. Indeed, since $e = [e, x, y] = [e, x, y]_{\circ_e} = e \circ_e x^{-1} \circ_e y = x^{-1} \circ_e y$ or $e = [x, y, e] = [x, y, e]_{\circ_e} = x \circ_e y^{-1} \circ_e e = x \circ_e y^{-1}$, it follows that x = y.

(b) For any
$$x, y, z, t, u \in H$$
,
$$[x, [y, z, t], u] = [x, t, [z, y, u]].$$

Indeed, for any
$$e \in H$$
,
 $[x, [y, z, t], u] = [x, [y, z, t]_{\circ_e}, u]_{\circ_e} = x \circ_e (y \circ_e z^{-1} \circ_e t)^{-1} \circ_e u =$
 $= x \circ_e t^{-1} \circ_e z \circ_e y^{-1} \circ_e u = [x, t, [z, y, u]_{\circ_e}]_{\circ_e} = [x, t, [z, y, u]].$

(c) For any $x, y, z \in H$,

$$[x, y, [y, x, z]] = [x, [y, z, x], y] = [[z, x, y], y, x] = z.$$

Indeed, for any
$$e \in H$$
,
 $[x, y, [y, x, z]] = [x, y, [y, x, z]_{\circ_e}]_{\circ_e} = x \circ_e y^{-1} \circ_e y \circ_e x^{-1} \circ_e z = z$
 $[x, [y, z, x], y] = [x, x, [z, y, y]] = [x, x, z] = z$
 $[[z, x, y], y, x] = [[z, x, y]_{\circ_e}, y, x]_{\circ_e} = z \circ_e x^{-1} \circ_e y \circ_e y^{-1} \circ_e x = z.$

(d) If (H, [-, -, -]) is an abelian heap, then for any $x_1, x_2, \ldots, z_3 \in H$, $[[x_1, x_2, x_3], [y_1, y_2, y_3], [z_1, z_2, z_3]] = [[x_1, y_1, z_1], [x_2, y_2, z_2], [x_3, y_3, z_3]].$

Indeed,

$$\begin{split} & [[x_1, x_2, x_3], [y_1, y_2, y_3], [z_1, z_2, z_3]] = [[x_1, x_2, x_3]_{\circ_e}, [y_1, y_2, y_3]_{\circ_e}, [z_1, z_2, z_3]_{\circ_e}]_{\circ_e} = \\ & = x_1 \circ_e x_2^{-1} \circ_e x_3 \circ_e (y_1 \circ_e y_2^{-1} \circ_e y_3)^{-1} \circ_e z_1 \circ_e z_2^{-1} \circ_e z_3 = \\ & = x_1 \circ_e y_1^{-1} \circ_e z_1 \circ_e (x_2 \circ_e y_2^{-1} \circ_e z_2)^{-1} \circ_e x_3 \circ_e y_3^{-1} \circ_e z_3 = \\ & = [[x_1, y_1, z_1]_{\circ_e}, [x_2, y_2, z_2]_{\circ_e}, [x_3, y_3, z_3]_{\circ_e}]_{\circ_e} = [[x_1, y_1, z_1], [x_2, y_2, z_2], [x_3, y_3, z_3]] \end{split}$$

•

Example. Let $(G, \circ, 1)$ be a group.

Assume that G has more than one element.

Let $H \neq G$ be a subgroup of $(G, \circ, 1)$, and let $x \in G \setminus H$.

Let $(G, [-, -, -]_{\circ})$ be the heap associated to the group $(G, \circ, 1)$.

Although the left coset xH is not a subgroup of $(G, \circ, 1)$,

it is a subheap $(xH, [-, -, -]_{\circ})$ of $(G, [-, -, -]_{\circ})$. Indeed, for any $a, b, c \in H$,

 $[x \circ a, x \circ b, x \circ c] = x \circ a \circ (x \circ b)^{-1} \circ x \circ c = x \circ a \circ b^{-1} \circ c \in xH.$

Wolfgang Rump [Braces, radical rings, and the quantum Yang-Baxter equation, Journal of Algebra 307 (2007) 153-170].

Tomasz Brzeziński [*T*russes: Between braces and rings, Transactions of the American Mathematical Society 372 (2019), 4149–4176].

A truss is an algebraic system $(T, [-, -, -], \cdot)$ consisting of a nonempty set T,

a ternary operation

$$[-,-,-]: T \times T \times T \to T, \quad (x,y,z) \mapsto [x,y,z],$$

and a binary operation

$$\therefore T \times T \to T, \quad (x, y) \mapsto x \cdot y$$

such that

(T, [-, -, -]) is an abelian heap,

 (T, \cdot) is a semigroup,

the truss distributivity $x \cdot [y, z, t] = [x \cdot y, x \cdot z, x \cdot t]$,

 $[x, y, z] \cdot t = [x \cdot t, y \cdot t, z \cdot t]$ holds,

where $x, y, z, t \in T$.

A truss $(T, [-, -, -], \cdot)$ is commutative, if the semigroup (T, \cdot) is commutative.

A truss $(T, [-, -, -], \cdot, 1)$ is unital, if the semigroup $(T, \cdot, 1)$ is a monoid.

A trass homomorphism is a function φ : $(T, [-, -, -,], \cdot) \rightarrow (\tilde{T}, [-, -, -,], \cdot)$

such that

 φ : $(T, [-, -, -,]) \rightarrow (\tilde{T}, [-, -, -,])$ is a heap homomorphism,

 $\varphi \colon (T, \cdot) \to (\widetilde{T}, \cdot)$ is a semigroup homomorphism.

A brace is an algebraic system $(B, +, \cdot, 0, 1)$ consisting of a nonempty set B,

and binary operations

$$+: B \times B \to B, \quad (x, y) \mapsto x + y,$$

$$\therefore B \times B \to B, \quad (x, y) \mapsto x \cdot y$$

such that

(B, +, 0) is an abelian group,

 $(B,\cdot,1)$ is a group,

the brace distributivity $x \cdot (y+z) = x \cdot y - x + x \cdot z$, $(x+y) \cdot z = x \cdot z - z + y \cdot z$ holds,

where $x, y, z \in B$.

Theorem. In a brace $(B, +, \cdot, 0, 1)$, 0 = 1.

This element will be denoted by θ .

Indeed, from the fact that 0 is the additive identity element

and that 1 is the multiplicative identity element,

it follows that 1 + 0 = 1 and $0 \cdot 1 = 0$.

Hence

$$0 \cdot 1 = 0 \cdot (1 + 0) = 0 \cdot 1 - 0 + 0 \cdot 0 = 0 - 0 + 0 \cdot 0 = 0 \cdot 0,$$

and since \cdot is a group operation,

it follows that 1 = 0.

Theorem. Given a brace $(B, +, \cdot, \theta)$,

let $(B, [-, -, -,]_+)$ be the abelian heap associated to the abelian group $(B, +, \theta)$.

Then $(B, [-, -, -]_+, \cdot, \theta)$ is a unital truss. Indeed, for any $x, y, z, t \in B$, since $x = x \cdot \theta = x \cdot (z - z) = x \cdot z - x + x \cdot (-z)$, it follows that $x \cdot (-z) = x - x \cdot z + x$, and thus $x \cdot [y, z, t]_+ = x \cdot (y - z + t) = x \cdot y - x + x \cdot (-z) - x + x \cdot t =$

$$= x \cdot y - x + (x - x \cdot z + x) - x + x \cdot t =$$
$$= x \cdot y - x \cdot z + x \cdot t = [x \cdot y, x \cdot z, x \cdot t]_{+}.$$

In a similar manner, $[x, y, z]_+ \cdot t = [x \cdot t, y \cdot t, z \cdot t]_+$.

Theorem. Given a ring $(R, +, \cdot, 0)$,

let $(R, [-, -, -,]_+)$ be the abelian heap associated to the abelian group (R, +, 0).

Then $(R, [-, -, -]_+, \cdot, 0)$ is a truss.

Indeed, for any $x, y, z, t \in R$,

 $x \cdot [y, z, t]_{+} = x \cdot (y - z + t) = x \cdot y - x \cdot z + x \cdot t = [x \cdot y, x \cdot z, x \cdot t]_{+}.$ In a similar manner, $[x, y, z]_{+} \cdot t = [x \cdot t, y \cdot t, z \cdot t]_{+}.$

Theorem. Given a truss $(T, [-, -, -], \cdot)$ and $e \in T$,

let $(T, +_e, e)$ be the abelian group associated to the abelian heap (T, [-, -, -]). Then $(T, +_e, \cdot, e)$ is a ring iff

 $e \cdot x = e = x \cdot e$ for any $x \in T$.

An element $e \in T$ with this property is called an absorber.

If an absorber exists, then it is unique. Indeed, if $(T, +_e, \cdot, e)$ is a ring, then since e is the zero element, it follows that $e \cdot x = e = x \cdot e$ for any $x \in T$. If e is an absorber in the truss $(T, [-, -, -], \cdot)$, then for any $x, y, z \in T$, $x \cdot (y +_e z) = x \cdot [y, e, z] = [z \cdot y, x \cdot e, x \cdot z] = [z \cdot y, e, x \cdot z] = x \cdot y +_e x \cdot z$. In a similar manner, $(x +_e y) \cdot z = x \cdot z +_e y \cdot z$.

If e, f are absorbers in the truss $(T, [-, -, -], \cdot)$, then $e = e \cdot f = f$.

Example. Let (H, [-, -, -]) be an abelian heap.

Assume that H has more than one element. Let

 $\therefore H \times H \to H, \quad x \cdot y := x,$

where $x, y \in H$. Then

(a) $(H, [-, -, -], \cdot)$ is a noncommutative truss. Indeed, for any $x, y, z, t \in H$, $x \cdot (y \cdot z) = x = x \cdot z = (x \cdot y) \cdot z$ $x \cdot [y, z, t] = x = [x, x, x] = [x \cdot y, x \cdot z, x \cdot t]$ $[x, y, z] \cdot t = [x, y, z] = [x \cdot t, y \cdot t.z \cdot t]$

 $x \cdot y = x \neq y = y \cdot x$ as long as $x \neq y$.

(b) $(H, [-, -, -], \cdot)$ is nonunital,

and hence $(H, [-, -, -], \cdot)$ is not arrising from any brace. Indeed, if the truss $(H, [-, -, -], \cdot)$ was unital, the operation \cdot would need to have the identity element, say 1. But for any $x \in H$, if $x \neq 1$ then $1 \cdot x = 1 \neq x$.

Thus 1 cannot be the identity element.

(c) $(H, [-, -, -], \cdot)$ has no absorbers,

and hence $(H, [-, -, -], \cdot)$ is not arrising from any ring. Indeed, if the truss $(H, [-, -, -], \cdot)$ was arrising from a ring, it would need to have the absorber, say 0. But for any $x \in H$, if $x \neq 0$ then $x \cdot 0 = x \neq 0$.

Thus 0 cannot be the absorber.

Example. Let $(\mathbb{Z}, +, \cdot, 0, 1)$ be the ring of integer numbers,

and let $(\mathbb{Z}, [-, -, -]_+, \cdot)$ be the truss associated to the ring $(\mathbb{Z}, +, \cdot, 0, 1)$.

Although the set of odd integer numbers $2\mathbb{Z}+1$ is not a subring of $(\mathbb{Z}, +, \cdot, 0, 1)$,

it is a subtruss $(2\mathbb{Z} + 1, [-, -, -]_+, \cdot)$ of $(\mathbb{Z}, [-, -, -]_+, \cdot)$.

Theorem. Let (H, [-, -, -]) be a heap, and let $S \subseteq H$ be a nonempty subset.

Then the following statements are equivalent

(a) S is a subheap (S, [-, -, -]) of (H, [-, -, -]).

(b) For every $e \in S$,

S is a subgroup (S, \circ_e, e) of the associated group (H, \circ_e, e) . Indeed, for (a) \Rightarrow (b), let $s, t \in S$. Then

$$s \circ_e t^{-1} = [s, e, [e, t, e]] = [[s, e, e], t, e] = [s, t, e] \in S.$$

(c) For some $e \in S$,

S is a subgroup (S, \circ_e, e) of the associated group (H, \circ_e, e) . Indeed, for (c) \Rightarrow (a), let $s, t, u \in S$. Then

 $[s,t,u] = [s,t,u]_{\circ_e} = s \circ_e t^{-1} \circ_e u \in S.$

A subheap S of a heap (H, [-, -, -]) is normal, if

$$\exists e \in S \ \forall s \in S \ \forall x \in H \ \exists t \in S, \ [x, e, s] = [t, e, x].$$

Theorem. Let (H, [-, -, -]) be a heap, and let $S \subseteq H$ be a nonempty subset.

Then the following statements are equivalent

(a) S is a normal subheap (S, [-, -, -]) of (H, [-, -, -]).

(b) $\forall e, s \in S \ \forall x \in H \ \exists t \in S, \ [x, e, s] = [t, e, x].$

Indeed, for (a) \Rightarrow (b), let $e \in S$ be such that

 $\forall s \in S \ \forall x \in H \ \exists t \in S, \ [x, e, s] = [t, e, x].$

Then for any $f, s \in S$, $x \in H$ and for some $u \in S$, since [x, e, [e, f, s]] = [u, e, x], it follows that [[x, e, e], f, s] = [u, e, [f, f, x]],

and thus [x, f, s] = [[u, e, f], f, x], where $[u, e, f] \in S$.

(C) $\forall e, s \in S \ \forall x \in H$, $[[x, e, s], x, e] \in S$. Indeed, for (b) \Rightarrow (c), let $e, s \in S$, $x \in H$, and let $t \in S$ be such that [x, e, s] = [t, e, x]. Then $[[x, e, s], x, e] = [[t, e, x], x, e] = [t, e, [x, x, e]] = [t, e, e] = t \in S$. For (c) \Rightarrow (a), let $e, s \in S \ x \in H$, and let $t \in S$ be such that [[x, e, s], x, e] = t. Then since [[[x, e, s], x, e], e, x] = [t, e, x], it follows that [x, e, s] = [t, e, x].

(d) For every $e \in S$,

S is a normal subgroup (S, \circ_e, e) of the associated group (H, \circ_e, e) . Indeed, for (b) \Rightarrow (d), let $e, s \in S, x \in H$, and let $t \in S$ be such that [x, e, s] = [t, e, x]. Then since $x \circ_e s = t \circ_e x$,

it follows that $x \circ_e s \circ_e x^{-1} = t \in S$.

(e) For some $e \in S$,

S is a normal subgroup (S, \circ_e, e) of the associated group (H, \circ_e, e) . Indeed, for $(e) \Rightarrow (a)$, let $s \in S$, $x \in H$, and let $t \in S$ be such that $x \circ_e s \circ_e x^{-1} = t$. Then since $x \circ_e s = t \circ_e x$,

it follows that [x, e, s] = [t, e, x].

Given a subheap S of a heap (H, [-, -, -]),

let the subheap relation \sim_S on H be defined as

 $x \sim_S y$: \Leftrightarrow for some $s \in S, [x, y, s] \in S$.

In the associated group (H, \circ_s, s) , this means that

 $x \circ_s y^{-1} = x \circ_s y^{-1} \circ_s s = [x, y, s]_{\circ_s} = [x, y, s] \in S.$

Theorem. Let S be a subheap (S, [-, -, -]) of a heap (H, [-, -, -]). Then

(a) $x \sim_S y \quad \Leftrightarrow \quad \text{for every } s \in S, [x, y, s] \in S.$ Indeed, let $x \sim_S y$, and let $s \in S$ be such that $[x, y, s] \in S.$ Then for any $t \in S$,

 $[x, y, t] = [x, y, [s, s, t]] = [[x, y, s], s, t] \in S.$

(b) \sim_S is an equivalence relation on (H, [-, -, -]).

Indeed, for any $x, y, z \in H$, $s \in S$,

since $[x, x, s] = s \in S$, it follows that $x \sim_S x$.

If $x \sim_S y$, then since $[x, y, s] \in S$, it follows that $[y, x, [x, y, s]] = s \in S$, and thus $y \sim_S x$.

If $x \sim_S y$ and $y \sim_S z$, then since $[x, y, S] \subseteq S$ and $[y, z, s] \in S$, it follows that

 $[x, z, s] = [[x, y, y], z, s] = [x, y, [y, z, s]] \in S$, and thus $x \sim_S z$.

The equivalence class with respect to the subheap relation \sim_S will be denoted by

$$\overline{x} := \left\{ x' \in H \mid \text{for some } s \in S, \ [x', x, s] \in S \right\} = \left\{ x' \in H \mid \text{for every } s \in S, \ [x', x, s] \in S \right\}.$$

(c) For every $s \in S$, $\overline{s} = S$.

Indeed, for any $x \in H$, from the fact that [x, s, s] = x,

it follows that $x \in \overline{s}$ if and only if $x \in S$.

(d) For every $x \in H$, \overline{x} is a subheap $(\overline{x}, [-, -, -])$ of (H, [-, -, -]).

Indeed, for any $y, z, t \in \overline{x}$, $s \in S$, since $y \in \overline{z}$, it follows that $[[y, z, t], x, s] = [y, z, [t, x, s]] \in S$, and thus $[y, z, t] \in \overline{x}$.

(e) For any $x, y \in H$, the function $\tau_y^x \colon (H, [-, -, -]) \to (H, [-, -, -]), \quad \tau_y^x(z) \coloneqq [z, y, x]$ is a heap automorphism with the inverse $(\tau_y^x)^{-1} = \tau_x^y$. Indeed, for any $z, t, u \in H$, $[\tau_y^x(z), \tau_y^x(t), \tau_y^x(u)] = [[z, y, x], \tau_y^x(t), \tau_y^x(u)] = [z, y, [x, [t, y, x], \tau_y^x(u)]] =$

 $= [z, y, [x, x, [y, t, \tau_y^x(u)]]] = [z, y, [y, t, \tau_y^x(u)]] =$

 $= [[z, y, y], t, \tau_y^x(u)] = [z, t, [u, y, x]] = [[z, t, u], y, x] = \tau_y^x([z, t, u]).$

(f) For any
$$x, y \in H$$
, $\overline{x} = \tau_y^x(\overline{y})$.

Indeed, if $x' \in \overline{x}$, then since

$$x' = (\tau_y^x \circ \tau_x^y)(x') = \tau_y^x([x', x, y]),$$

and since for any $s \in S$,

 $[[x', x, y], y, s] = [x', x, [y, y, s] = [x', x, s]] \in S$,

it follows that $x' = \tau_y^x([x', x, y]) \in \tau_y^x(\overline{y})$.

If $y' \in \overline{y}$, then for any $s \in S$,

$$[au_y^x(y'), x, s] = [[y', y, x]x, s] = [y', y, [x, x, s]] = [y', y, s] \in S$$
,

and thus $\tau_y^x(\overline{y}) \in \overline{x}$.

(g) For any $x, y \in H$, $(\overline{x}, [-, -, -]) \cong (\overline{y}, [-, -, -])$ as heaps.

Theorem. Let S be a normal subheap (S, [-, -, -]) of a heap (H, [-, -, -]). Then

(a) \sim_S is a congruence in (H, [-, -, -]), that is,

 \sim_S is an equivalence relation on (H,[-,-,-]) and

 $x\sim_S x'$, $y\sim_S y'$, $z\sim_S x'$ imply that $[x,y,z]\sim_S [x',y',z']$,

where $x, x', \ldots, z' \in H$. Indeed, if $x \sim_S x', y \sim_S y', z \sim_S x'$, then for any $e \in S$, $x' \in \overline{x} = \tau_e^x(\overline{e}) = \tau_e^x(S)$ $y' \in \overline{y} = \tau_e^y(\overline{e}) = \tau_e^y(S)$ $z' \in \overline{z} = \tau_e^z(\overline{e}) = \tau_e^z(S)$. In the associated group (H, \circ_e, e) , this means that $\overline{x} = \tau_e^x(s) = [s, e, x] = s \circ_e x$ $\overline{y} = \tau_e^y(t) = [t, e, y] = t \circ_e y$ $\overline{z} = \tau_e^z(u) = [u, e, z] = z \circ_e z$

for some $s, t, u \in S$. Then

$$\begin{split} [x',y',z'] &= [s \circ_e x, t \circ_e y, u \circ_e z]_{\circ_e} = s \circ_e x \circ_e (t \circ_e y)^{-1} \circ_e u \circ_e z = \\ &= s \circ_e x \circ_e y^{-1} \circ_e t^{-1} \circ_e u \circ_e y \circ_e x^{-1} \circ_e x \circ_e y^{-1} \circ_e z = \\ &= v \circ_e [x,y,z]_{\circ_e} = [v,e,[x,y,z]], \end{split}$$
where $v = s \circ_e x \circ_e y^{-1} \circ_e t^{-1} \circ_e u \circ_e y \circ_e x^{-1}.$

From the fact that S is a normal subgroup (S, \circ_e, e) of (H, \circ_e, e) , it follows that $v \in S$. Hence

$$[x', y', z'] = [v, e, [x, y, z]] = \tau_e^{[x, y, z]}(v) \in \tau_e^{[x, y, z]}(S) = \tau_e^{[x, y, z]}(\overline{e}) = \overline{[x, y, z]},$$

and thus $[x, y, z] \sim_S [x', y', z'].$

(b) the set of equivalence classes H/\sim_S is a heap with the ternary operation $[-,-,-]: H/\sim_S \times H/\sim_S \times H/\sim_S \to H/\sim_S, \quad [\overline{x},\overline{y},\overline{z}] := \overline{[x,y,z]},$ where $x, y, z \in H$. Indeed, if $\overline{x} = \overline{x'}, \ \overline{y} = \overline{y'}, \ \overline{z} = \overline{z'}$, then since $x \sim_S x', \ y \sim_S y', \ z \sim_S z',$ it follows that $[x, y, z] \sim_S [x, y, z]$, and thus $\overline{[x, y, z]} = \overline{[x', y', z']}.$

Given a heap homomorphism $\varphi \colon (H, [-, -, -]) \to (\widetilde{H}, [-, -, -]),$

let the kernel relation of φ on H be defined as

 $x \ Ker \varphi \ y \quad :\Leftrightarrow \quad \varphi(x) = \varphi(y).$

Theorem. Let (H, [-, -, -]) be a heap.

(a) For any heap homomorphism $\varphi \colon (H, [-, -, -]) \to (\widetilde{H}, [-, -, -])$,

Ker φ is a congruence in (H, [-, -, -]). Indeed, if $x \text{ Ker}\varphi x'$, $y \text{ Ker}\varphi y'$, $z \text{ Ker}\varphi z'$, then since $\varphi(x) = \varphi(x')$, $\varphi(y) = \varphi(y')$, $\varphi(z) = \varphi(z')$, it follows that $\varphi([x, y, z]) = [\varphi(x), \varphi(y), \varphi(z)] = [\varphi(x'), \varphi(y'), \varphi(z')] = \varphi([x', y', z'])$, and thus $[x, y, z] \text{ Ker}\varphi [x', y', z']$.

(b) If ρ is a congruence in (H, [-, -, -]), then

(i) the set of equivalence classes H/ρ is a heap with the ternary operation

$$[-,-,-]: H/\rho \times H/\rho \times H/\rho \to H/\rho, \quad [\widehat{x},\widehat{y},\widehat{z}] := [\widehat{x,y,z}],$$

where $x, y, z \in H$, and \hat{x} , \hat{y} , \hat{z} mean the equivalence classes with respect to the relation ρ .

(ii) the function

$$\varphi \colon (H, [-, -, -]) \to (\widetilde{H}, [-, -, -]), \quad x \mapsto \widehat{x}$$

is a heap homomorphism such that $\rho = Ker\varphi$. Indeed, for any $x, y, z \in H$,

$$\varphi([x, y, z]) = \widehat{[x, y, z]} = [\widehat{x}, \widehat{y}, \widehat{z}] = [\varphi(x), \varphi(y), \varphi(z)]$$
$$x \ \rho \ y \quad \Leftrightarrow \quad \widehat{x} = \widehat{y} \quad \Leftrightarrow \quad \varphi(x) = \varphi(y) \quad \Leftrightarrow \quad x \ Ker\varphi \ y.$$

The equivalence class with respect to the kernel relation $Ker\varphi$ will be denoted by

$$\widehat{x} := \Big\{ x' \in H \mid \varphi(x) = \varphi(x') \Big\}.$$

Theorem. Under the above notations, for every $x \in H$,

 $\hat{x} \text{ is a normal subheap } (\hat{x}, [-, -, -]) \text{ of } (H, [-, -, -]).$ Indeed, for any $s, t, u \in \hat{x}, y \in H$, since $\varphi([s, t, u]) = [\varphi(s), \varphi(t), \varphi(u)] = [\varphi(x), \varphi(x), \varphi(x)] = \varphi(x),$ it follows that $[s, t, u] \in \hat{x}.$ Since $\varphi([[y, s, t], ys]) = [[\varphi(y), \varphi(s), \varphi(t)], \varphi(y), \varphi(s)] =$ $= [[\varphi(y), \varphi(x), \varphi(x)], \varphi(y), \varphi(x)] = [\varphi(y), \varphi(y), \varphi(x)] = \varphi(x),$

it follows that $[[y,s,t],y,s]\in \widehat{x}$,

and thus \hat{x} is a normal subheap $(\hat{x}, [-, -, -])$ of (H, [-, -, -]).

Given a heap homomorphism $\varphi \colon (H, [-, -, -]) \to (\widetilde{H}, [-, -, -])$, and $e \in Im\varphi$,

the e-kernel of φ is the subset of H defined as

$$ker_e\varphi := \{x \in H \mid \varphi(x) = e\}.$$

Theorem. Under the above notations,

(a) for every $e \in Im\varphi$,

 $ker_e \varphi$ is a normal subheap $(ker_e \varphi, [-, -, -])$ of (H, [-, -, -]). Indeed, for any $x \in ker_e \varphi$, since $y \in ker_e \varphi \iff \varphi(y) = e \iff \varphi(y) = \varphi(x) \iff x \ Ker \varphi \ y \iff y \in \hat{x}$, it follows that $ker_e \varphi = \hat{x}$, the equivalence class with respect the kernel relation $Ker \varphi$. Thus

 $ker_e\varphi$ is a normal subheap $(ker_e\varphi, [-, -, -])$ of (H, [-, -, -]).

(b) For any $e, f \in Im\varphi$, $(ker_e\varphi, [-, -, -]) \cong (ker_f\varphi, [-, -, -])$ as heaps.

Indeed, let $x \in ker_e \varphi$, $y \in ker_f \varphi$.

It suffices to prove that $ker_e\varphi = \tau_y^x(ker_f\varphi)$.

If $z \in ker_e \varphi$, then since

$$z = (\tau_y^x \circ \tau_x^y)(z) = \tau_y^x([z, x, y]),$$

and since

$$\varphi([z, x, y]) = [\varphi(z), \varphi(x), \varphi(y)] = [e, e, f] = f,$$

it follows that

$$z = \tau_y^x([z, x, y]) \in \tau_y^x(ker_e\varphi).$$

If $z \in ker_f \varphi$, then

$$\varphi(\tau_y^x(z)) = \varphi([z, y, x]) = [\varphi(z), \varphi(y), \varphi(x)] = [f, f, e] = e,$$

and thus $au_y^x(z) \in ker_e arphi.$

(c) For ane $e \in Im\varphi$, $\sim_{ker_e\varphi} = Ker\varphi$.

Indeed, if $x\sim_{ker_e arphi} y$, then for any $s\in ker_e arphi$,

 $[x, y, s] \in ker_e \varphi$ by the definition of the subheap relation $\sim_{ker_e \varphi}$.

From this it follows that

$$e = \varphi([y, x, s]) = [\varphi(x), \varphi(y), \varphi(s)] = [\varphi(x), \varphi(y), e],$$

which means that $\varphi(x) = \varphi(y)$, and thus

 $x \ Ker\varphi \ y$ by the definition of the kernel relation $Ker\varphi$. If $x \ Ker\varphi \ y$, then since $\varphi(x) = \varphi(y)$, it follows that for any $s \in ker_e\varphi$, $\varphi([x,y,s]) = [\varphi(x), \varphi(y), \varphi(s)] = [\varphi(x), \varphi(x), e] = e$,

which means that $[x,y,s] \in ker_e \varphi$,

and thus $x\sim_{ker_earphi} y.$

Corollary. Let (H, [-, -, -]) be a heap,

and let ρ be an equivalence relation on (H, [-, -, -]).

Then the following statemants are equivalent

(a) ρ is a congruence in (H, [-, -, -]).

(b) There exists a heap homomorphism $\varphi : (H, [-, -, -]) \rightarrow (H, [-, -, -])$

such that $\rho = Ker\varphi$.

(c) There exists a normal subheap (S, [-, -, -]) of (H, [-, -, -])

such that $\rho = \sim_S$.

Let $(T, [-, -, -], \cdot)$ be a truss.

A subheap (S, [-, -, -]) of the heap (T, [-, -, -])is an ideal of the truss $(T, [-, -, -], \cdot)$, if $s \cdot x \in S, \quad x \cdot s \in S,$ where $s \in S$, $x \in T$. Theorem. Let S be an ideal of a truss $(T, [-, -, -], \cdot)$. Then \sim_S is a congruence in the truss $(T, [-, -, -], \cdot)$, that is, \sim_S is a congruence in the heap (T, [-, -, -]),

 $x \sim_S x'$, $y \sim_S y'$ imply that $x \cdot y \sim_S x' \cdot y'$,

where $x, x', y, y' \in H$.

Theorem. Let $\varphi \colon (T, [-, -, -], \cdot) \to (\widetilde{T}, [-, -, -], \cdot)$ be a truss homomorphism,

and let $e \in Im\varphi$. Then

(a) For any $s \in ker_e \varphi$, $x \in T$, $s \cdot x \in ker_e \varphi \quad \Leftrightarrow \quad \text{for any } y \in Im\varphi$, $e \cdot y = e$.

(b) For any $s \in ker_e \varphi$, $x \in T$, $x \cdot s \in ker_e \varphi \quad \Leftrightarrow \quad \text{for any } y \in Im\varphi$, $y \cdot e = e$.

Theorem. Let φ : $(T, [-, -, -], \cdot) \rightarrow (\tilde{T}, [-, -, -], \cdot)$ be a truss homomorphism,

and let $e \in Im\varphi$. Then for any $p, q \in ker_e\varphi$, $x \in T$, $[x \cdot p, x \cdot q, q] \in ker_e\varphi$, $[p \cdot x, q \cdot x, q] \in ker_e\varphi$.

Let $(T, [-, -, -], \cdot)$ be a truss.

A subheap (P, [-, -, -]) of the heap (T, [-, -, -])

is a paragon of the truss $(T, [-, -, -], \cdot)$, if $[x \cdot p, x \cdot q, q] \in P, \quad [p \cdot x, q \cdot x, q] \in P,$

where $p, q \in P$, $x \in T$.

Example. Let $(R, +, \cdot, 0)$ be a ring.

Assume that R has more than one element.

Let $I \neq R$ be an ideal of $(R, +, \cdot, 0)$, and let $x \in T \setminus I$.

Let $(R, [-, -, -]_+, \cdot)$ be the trass associated to the ring $(R, +, \cdot, 0)$.

Although the coset x + I is not an ideal of $(R, +, \cdot, 0)$,

it is a paragon of $(R, [-, -, -]_+, \cdot)$.

Theorem. Let $(T, [-, -, -], \cdot)$ be a truss,

and let ρ be an equivalence relation on $(T, [-, -, -], \cdot)$.

Then the following statemants are equivalent

(a) ρ is a congruence in $(T, [-, -, -], \cdot)$.

(b) There exists a truss homomorphism $\varphi : (T, [-, -, -], \cdot) \to (\widetilde{T}, [-, -, -], \cdot)$

such that $\rho = Ker\varphi$.

(c) There exists a paragon P of $(T, [-, -, -], \cdot)$

such that $\rho = \sim_P$.

Thank you very much for your attention!

Merci beaucoup pour votre attention!

