Homogeneous Weight Enumerators

Jay A．Wood

Department of Mathematics
Western Michigan University
http：／／homepages．wmich．edu／～jwood／
NCRA VII
Lens，France（virtually）
Traverse City，Michigan（actually）
5 July 2021

Main Result

- The MacWilliams identities fail to hold for the homogeneous weight enumerator over $\mathbb{Z} / m \mathbb{Z}$, with m composite and greater than 5 .

Outline

- MacWilliams identities for Hamming weight
- Homogeneous weight
- Prime powers: $m=p^{a}, a \geq 2$
- Two primes: $m=p q$, primes $p<q$
- Going from $\mathbb{Z} / p q \mathbb{Z}$ to $\mathbb{Z} / m \mathbb{Z}$
- Analyzing dual codewords of small weight

Historical context

- F. J. MacWilliams, "A theorem on the distribution of weights in a systematic code," Bell System Tech J, 1963. Also, her 1962 Radcliffe PhD dissertation.
- Linear codes over finite fields
- Dual codes defined using the standard dot product
- Uses Hamming weight and Hamming weight enumerator hwe.

MacWilliams identities

- For a linear code $C \subseteq \mathbb{F}_{q}^{n}$, with dual code $C^{\perp} \subseteq \mathbb{F}_{q}^{n}$,

$$
\text { hwe }_{C^{\perp}}(X, Y)=\frac{1}{|C|} \operatorname{hwe}_{C}(X+(q-1) Y, X-Y)
$$

- Need to know only hwe $_{C}$, not C itself, in order to know hwe C^{\perp}.
- Also true for Lee weight enumerator over $\mathbb{Z} / 4 \mathbb{Z}$, using $X+Y$ and $X-Y$ substitutions (famous $\mathbb{Z} / 4 \mathbb{Z}$ paper, Hammons, et al., 1994).

Commutative diagram

- The following diagram commutes:
$\{[n, k]$-linear codes $\} \xrightarrow{\perp}\{[n, n-k]$-linear codes $\}$

- MW is the MacWilliams transform, induced by:

$$
(X, Y) \mapsto\left((X+(q-1) Y) / q^{k / n},(X-Y) / q^{k / n}\right)
$$

Failure of MacWilliams identities

- Suppose there is a different weight w, with its weight enumerator for a linear code C : $\mathrm{wwe}_{C}=\sum_{c \in C} t^{w(c)}=\sum_{j} A_{j}^{w}(C) t^{j}$.
- The MacWilliams identities will fail for wwe if there exist two linear codes C and D such that $w^{w e_{C}}=w w e_{D}$ and $w w e_{C \perp} \neq w w e_{D^{\perp}}$.
- For the latter, it is enough to have $A_{j}^{w}\left(C^{\perp}\right) \neq A_{j}^{w}\left(D^{\perp}\right)$, for some j.
- There is no way to complete the commutative diagram with a well-defined map.

Some failures

- Lee weight over $\mathbb{Z} / m \mathbb{Z}, m \geq 5$: Abdelghany and Wood, Discrete Math, 2020. (Noha's talk.)
- Euclidean weight over $\mathbb{Z} / m \mathbb{Z}, m$ divisible by $4,6,9$ or by a prime p in the range $5 \leq p<2^{13}$: computational results. Conjecture: any $m \geq 4$.
- Homogeneous weight over $\mathbb{Z} / m \mathbb{Z}$, excluding primes and 4. (The rest of this talk.)
- Homogeneous weight over $M_{2 \times 2}\left(\mathbb{F}_{q}\right), q>2$.

Homogeneous weight

- Homogeneous weight: Constantinescu-Heise 1997, Honold-Nechaev 1999, Greferath-Schmidt 2000
- Characterization: $\mathrm{w}(0)=0 ; \mathrm{w}$ is constant on any left orbit of the group of units; same average weight ζ on any nonzero left principal ideal.
- Greferath-Schmidt: W exists for any finite ring (a formula!); unique up to a scalar multiple (ζ).

Homogeneous weight enumerator

- An appropriate choice of ζ yields non-negative integer values for W .
- For $\mathbb{Z} / m \mathbb{Z}, m=p_{1}^{a_{1}} p_{2}^{a_{2}} \cdots p_{k}^{a_{k}}$, choose
$\zeta=\prod_{i=1}^{k}\left(p_{i}-1\right)$.
- Extend W to vectors:

$$
\mathrm{w}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sum_{i=1}^{n} \mathrm{w}\left(x_{i}\right)
$$

- Then wwe $_{C}(t)=\sum_{c \in C} t^{\mathrm{w}(c)}=\sum_{j} A_{j}^{\mathrm{w}}(C) t^{j}$.

Main Theorem

Theorem

Suppose m is not prime and $m \geq 6$. Then there exist linear codes C and D over $\mathbb{Z} / m \mathbb{Z}$ satisfying

$$
\mathrm{wwe}_{C}=\mathrm{wwe}_{D}
$$

but with

$$
A_{j}^{\mathrm{W}}\left(C^{\perp}\right) \neq A_{j}^{\mathrm{W}}\left(D^{\perp}\right)
$$

for some $j>0$.

- There are no MacWilliams identities for w over $\mathbb{Z} / m \mathbb{Z}$ for those m.

Examples of homogeneous weight (1)

- Over \mathbb{F}_{q}, choosing $\zeta=q-1$ yields $\mathrm{W}(r)=q, r \neq 0$.
- Over \mathbb{F}_{q}, W is q times the Hamming weight.
- MacWilliams identities hold for Hamming weight.
- This is why we exclude primes in Main Theorem.

Examples of homogeneous weight (2)

- Over $\mathbb{Z} / p^{\mathrm{a}} \mathbb{Z}, p$ prime, $a \geq 2$; ideals are

$$
(1) \supset(p) \supset\left(p^{2}\right) \supset \cdots \supset\left(p^{a-1}\right) \supset(0) \text {. }
$$

- Choosing $\zeta=p-1$:

$$
\mathrm{w}(r)= \begin{cases}0, & r=0, \\ p, & r \in\left(p^{a-1}\right)-(0), \\ p-1, & r \in(1)-\left(p^{a-1}\right) .\end{cases}
$$

Prime power case: $m=p^{a}, a \geq 2$

- Two linear codes C_{1}, C_{2} with generator matrices of sizes $1 \times(p+1)$ and $2 \times(p+1)$.

$$
\begin{aligned}
& G_{1}=\left[\begin{array}{cccccc}
p^{a-1} & p^{a-2} & p^{a-2} & p^{a-2} & \cdots & p^{a-2}
\end{array}\right] \\
& G_{2}=\left[\begin{array}{cccccc}
0 & p^{a-1} & p^{a-1} & p^{a-1} & \cdots & p^{a-1} \\
p^{a-1} & 0 & p^{a-1} & 2 p^{a-1} & \cdots & (p-1) p^{a-1}
\end{array}\right]
\end{aligned}
$$

Result in prime power case

- Same wwe: $1+\left(p^{2}-1\right) t^{p^{2}}$.
- For duals, counting singleton vectors that annihilate columns is enough in most cases.
- Dual $A_{p}^{\mathrm{W}}: p-1$ versus $p^{2}-1$, for $p \geq 3, a=2$.
- Dual $A_{p-1}^{\mathrm{w}}: 2 p^{\mathrm{a}-1}-p^{2}-p$ versus $p^{a}+p^{a-1}-p^{2}-p$, for $p \geq 2, a \geq 3$.
- But, when $p=2$, doubleton vectors can have weight p (the $m=4$ exception, where weight enumerators are equal).

Outline of proof of Main Theorem (1)

- Already did prime power case (except $m=4$).
- Now assume $m=p q$, for primes $p<q$.
- Can show, when $p>2$, that $1 \times n$ generator matrices do not yield examples.
- So, use $2 \times n$ generator matrix. Assume second row is multiple of p.

Outline of proof of Main Theorem (2)

- Primes $p<q$.
- Code C has generator matrix G of size $2 \times(2 q+3)$:

$$
G=\left[\begin{array}{cccc|c|cccc}
q & \ldots & 1 & \ldots & q & 0 & \ldots & p & \ldots \\
p & \ldots & r p & \ldots & 0 & p & \ldots & r p & \ldots
\end{array}\right]
$$

- Twice in the second row, $r=0,1, \ldots, q-1$.
- Column groupings by gcd of entries: $1, q, p$.
- $C \cong \mathbb{Z} / p q \mathbb{Z} \oplus \mathbb{Z} / p \mathbb{Z}$, as q annihilates the second row. Think of $[x y] \mapsto[x y] G$.

Weight enumerator of C

- p odd: computation shows

$$
\mathrm{wwe}_{C}=1+(p-1) t^{\beta}+\left(q^{2}-1\right) t^{\gamma}+(p-1)\left(q^{2}-1\right) t^{\alpha}
$$

with $\beta<\gamma<\alpha$:

$$
\begin{aligned}
\alpha & =2 p q^{2}-2 q^{2}+p q-2 p \\
\beta & =p q^{2}+p q-2 p \\
\gamma & =2 p q^{2}-2 q^{2}
\end{aligned}
$$

- $p=2: \beta=\alpha$ and wwe $_{C}=1+\left(q^{2}-1\right) t^{\gamma}+q^{2} t^{\alpha}$.

Orbit structure of C

- The group of units $\mathcal{U}_{p q}$ of $\mathbb{Z} / p q \mathbb{Z}$ acts on the linear code C by scalar multiplication. Think $u[x y]$.
- Representatives of the nonzero orbits are just the transposes of the columns of G. Use the same groupings as for the columns.
- Each orbit has a gcd: $1, q, p$, for left, middle, right groupings.

Orbit analysis

- $w w e=1+(p-1) t^{\beta}+\left(q^{2}-1\right) t^{\gamma}+(p-1)\left(q^{2}-1\right) t^{\alpha}$.
- The $p-1$ codewords of weight β come from one orbit of size $p-1$: grouping II.
- The $q^{2}-1$ codewords of weight γ come from $q+1$ orbits of size $q-1$: grouping III.
- The $(p-1)\left(q^{2}-1\right)$ codewords of weight α come from $q+1$ orbits of size $(p-1)(q-1)$: grouping I.

The second code

- Swap: assign weight β to the first orbit of size $(p-1)(q-1)$; assign weight α to the last $p-1$ orbits of size $q-1$.
- Original orbit weight listing is $(\alpha, \ldots, \alpha ; \beta ; \gamma, \ldots, \gamma)$.
- Second code has orbit weight listing $(\gamma, \alpha, \ldots, \alpha ; \beta ; \gamma, \ldots, \gamma, \alpha, \ldots, \alpha)$.
- Makes use of different sizes of orbits.
- Same weight enumerators.

Second code D exists!

- Detailed analysis of map that associates multiplicities of columns in a generator matrix to orbit weight listing.
- Explicit form of inverse.
- Nonnegative multiplicities for second code.
- Need to clear denominators: multiply all multiplicities by same factor. Do the same for C.
- New codes have same weight enumerators.

Features of multiplicities

- Can clear denominators with $(p-1) q^{2}$.
- Comparing multiplicities for C and D yields...
- Sum of grouping III multiplicities: same.
- Grouping II: different.
- Sum of all (length): same.
- Remember the same/different pattern for later.

Other values of m

- Suppose m is not a prime or a prime power.
- Pick two primes $p<q$ that divide m.
- Form generator matrices over $\mathbb{Z} / p q \mathbb{Z}$, as above.
- Multiply all entries by $m /(p q)$.
- Generate codes over $\mathbb{Z} / m \mathbb{Z}$.
- Form of W implies codes still have same weight enumerators.

Small weight codewords in the dual

- Except when $6 \mid m$, small weight nonzero vectors are singletons (only one nonzero entry).
- We look for singletons that annihilate the corresponding column of the generator matrix of C or D.
- Special argument needed for $6 \mid m$ case: omitted.

Annihilators

- Singletons can annihilate: no columns; grouping II columns only; grouping III columns only; all columns, depending on divisibility by p or q.
- Singletons that annihilate grouping II columns only will contribute differently to $w w e_{C \perp}$ and $w w e_{D^{\perp}}$.
- All other singletons contribute the same.
- Can always find singletons that annihilate grouping II columns only. (Which proves the theorem!)

Exercises

- Figure out the formula for the homogeneous weight on $\mathbb{Z} / 6 \mathbb{Z}$.
- Let $G_{1}=\left[\begin{array}{lll}1 & 1 & 1\end{array}\right]$ and $G_{2}=\left[\begin{array}{lll}1 & 3 & 3\end{array}\right]$ generate two linear codes over $\mathbb{Z} / 6 \mathbb{Z}$. Find their dual codes.
- Find the homogeneous weight enumerators of the linear codes and their duals.
- Look up the eighth edition of the Oxford Essential World Atlas. What location is on the cover?

Thank you

- Thank you for your kind attention.
- Thanks to André for his organizing acumen and hospitality!

