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Consider a principal ideal ring R.

A code C of length n is a subset of Rn. If C is a subgroup, then
C is an additive code over R.

The dual code of C is defined in the standard way by

C⊥ = {v ∈ Rn | u · v = 0, for all u ∈ C},

where u · v =
∑n−1

i=0 uivi ∈ R.
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What rings are we interested on?

1 Binary linear codes; R = Z2.
2 Quaternary linear codes; R = Z4.

[HKC+94] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A.
Sloane, P. Solé.
The Z4-linearity of kerdock, preparata, goethals and related codes.
IEEE Trans. Info. Theory, vol. 40, pp. 301-319, 1994.

3 Codes having binary and quaternary coordinates!
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Why only binary and quaternary coordinates?
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A little bit of history...

1973 Additive codes were defined by Delsarte in terms of
association schemes (X,R = {R0, . . . , Rd}).

[Del73] P. Delsarte.

An algebraic approach to the association schemes of coding theory.
Philips Res. Rep. Suppl., vol. 10, pp. iv–97, 1973.

[DL98] P. Delsarte, V. I. Levenshtein.

Association schemes and coding theory,
IEEE Transactions on Information Theory, vol. 44, pp. 2477-2504, 1998.

An additive code is a subgroup of the underlying abelian
group in a translation-invariant association scheme:

X has abelian group structure,
(x, y) ∈ Ri −→ (x+ z, y + z) ∈ Ri, for i ∈ {1, . . . , d},
x, y, z ∈ X.
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A little bit of history...

1997 Translation-invariant propelinear codes were defined by Rifà
and Pujol.

[RP97] J. Rifà, J. Pujol.

Translation-invariant propelinear codes
IEEE Transactions on Information Theory, vol. 43, pp. 590-598, 1997.

C ⊆ Zn2 is called a propelinear code if ∀v ∈ C there exists
πv ∈ Sn such that:

i) ∀c ∈ C : v + πv(c) ∈ C,
ii) ∀c ∈ C : πv ◦ πc = πm, where m = v + πv(c).

These codes are group-ismorphic to subgroups of

Zα2 × Zβ4 ×Qσ
8 ,

where Q8 is the non-abelian quaternion group on 8 elements.
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From [RP97] and [DL98]...

...codes that are subgroups of Zα2 × Zβ4 are

the only additive codes in the binary

Hamming scheme.
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Binary codes

Let C ⊆ Zn2 be a binary code.
If C is a subgroup of Zn2 , then C is a binary linear code.

Two binary codes C1 and C2 of length n are equivalent if there
exists a vector a ∈ Zn2 and a coordinate permutation π ∈ Sn such
that C2 = {a+ π(c) | c ∈ C1}.

They are permutation-equivalent or isomorphic if there exists a
coordinate permutation π ∈ Sn such that C2 = {π(c) | c ∈ C1}.
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Example 1.

Let C be a binary linear code of length 5 and dimension 2, with generator
matrix

G =

(
1 0 1 1 0
0 1 0 1 1

)
.

The dual code C⊥ = {v ∈ Zn2 | u · v = 0 for all u ∈ C} is a binary linear code
of length 5 and dimension 3, with generator matrix

H =

 1 0 1 0 0
1 1 0 1 0
0 1 0 0 1

 .

The matrix H is a generator matrix of C⊥ and a parity-check matrix of C.

The code C has 22 codewords and its dual code C⊥ has 23 codewords, so

|C| · |C⊥| = 22 · 23 = 25.
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Quaternary codes

A quaternary linear code C is a subgroup of Zn4 .

Since C is a subgroup of Zn4 , it is isomorphic to an abelian
structure like Zγ2 × Zδ4.

Its order is a power of two and its type is of the form 2γ4δ.

The number of codewords is |C| = 2γ4δ.

The number of order two codewords is 2γ+δ.
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Proposition 1 (HKC+94).

Any quaternary linear code C of length n and type 4δ2γ is permutation
equivalent to a quaternary linear code with generator matrix of the form

GS =

(
2T 2Iγ 0
S R Iδ

)
, (1)

where R, T are matrices over Z2 of size δ× γ and γ × (n− γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n− γ − δ).
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Proposition 2 (HKC+94).

The quaternary dual code C⊥ of the quaternary linear code C of length n with
generator matrix GS as (1) has generator matrix

HS =

(
0 2Iγ 2Rt

In−γ−δ T t −(S +RT )t

)
, (2)

where R, T are matrices over Z2 of size δ× γ and γ × (n− γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n− γ − δ).
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Gray map. Z4-linear codes

The usual Gray map φ : Z4 → Z2
2 is defined as

φ(0) = 00, φ(1) = 01, φ(2) = 11, φ(3) = 10.

Then, the (exended) Gray map is φ : Zn4 → Z2n
2

φ(x1, . . . , xn)→ (φ(x1), . . . φ(xn)).

Quaternary linear codes can be viewed as binary codes under the
usual Gray map. If C is a quaternary linear code, then the
corresponding binary code C = φ(C) is said to be a Z4-linear code.

©CCSG (Combinatorics, Coding and Security Group) 18/204 18 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Codes over rings
Binary codes
Quaternary codes

Gray map. Z4-linear codes

The usual Gray map φ : Z4 → Z2
2 is defined as

φ(0) = 00, φ(1) = 01, φ(2) = 11, φ(3) = 10.

Then, the (exended) Gray map is φ : Zn4 → Z2n
2

φ(x1, . . . , xn)→ (φ(x1), . . . φ(xn)).

Quaternary linear codes can be viewed as binary codes under the
usual Gray map. If C is a quaternary linear code, then the
corresponding binary code C = φ(C) is said to be a Z4-linear code.

©CCSG (Combinatorics, Coding and Security Group) 18/204 18 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Codes over rings
Binary codes
Quaternary codes

Two quaternary codes C1 and C2 both of length n are monomially
equivalent if one can be obtained from the other by permutating
the coordinates and (if necessary) changing the signs of certain
coordinates.

They are permutation equivalent if they differ only by a
permutation of coordinates.

If C1 and C2 both of length n are monomially equivalent, then
φ(C1) and φ(C2) are permutation equivalent.
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and M. Villanueva.
Z2Z4-linear codes: generator matrices and duality
Designs, Codes and Cryptography, vol. 54, pp. 167-179, 2010.

©CCSG (Combinatorics, Coding and Security Group) 21/204 21 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Definitions
Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

2 Z2Z4-additive codes
Definitions
Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

©CCSG (Combinatorics, Coding and Security Group) 22/204 22 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Definitions
Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Definitions

If C is a subgroup of Zα2 × Zβ4 , then C is a Z2Z4-additive code.

For a vector u ∈ Zα2 × Zβ4 , we write u = (u | u′), where u ∈ Zα2
and u′ ∈ Zβ4 .

A Z2Z4-additive code C is a subgroup of Zα2 × Zβ4 , so it is also
isomorphic to an abelian structure like Zγ2 × Zδ4.
Let Cb be the subcode of C which contains all codewords of order
at most 2.

The order of C is |C| = 2γ4δ.

The number codewords of order at most two in C is
|Cb| = 2γ+δ.

©CCSG (Combinatorics, Coding and Security Group) 23/204 23 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Definitions
Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 2.

C1 = {(00 | 0000), (11 | 2211), (00 | 0022), (11 | 2233)

(10 | 2020), (01 | 0231), (10 | 2002), (01 | 0213)}

(C1)b = {(00 | 0000), (00 | 0022), (10 | 2020), (10 | 2002)}

C1 ⊆ Z2
2 × Z4

4,

|C1| = 2γ+2δ = 8,

|(C1)b| = 2γ+δ = 4.

=⇒ α = 2, β = 4, γ = 2, δ = 2.
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Let X (respectively Y ) be the set of Z2 (respectively Z4)
coordinate positions, so |X| = α and |Y | = β. Unless otherwise
stated, the set X corresponds to the first α coordinates and Y
corresponds to the last β coordinates.

Call CX (respectively CY ) the punctured code of C by deleting the
coordinates out of X (respectively Y ).
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Let κ be the dimension of (Cb)X , which is a binary linear code. For
the case α = 0, we will write κ = 0.

Then, we will say that C is of type (α, β; γ, δ;κ).
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Example 3 (Cont. Example 1).

C1 = {(00 | 0000), (11 | 2211), (00 | 0022), (11 | 2233)

(10 | 2020), (01 | 0231), (10 | 2002), (01 | 0213)}

(C1)b = {(00 | 0000), (00 | 0022), (10 | 2020), (10 | 2002)}

((C1)b)X = {(00), (10)}

C1 is of type (2, 4; 2, 2; 1)
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The Z2Z4-additive codes of type (α, β; γ, δ;κ) are a generalization
of binary linear codes and quaternary linear codes.

If β = 0, the Z2Z4-additive code is a binary linear code.

In general, any binary linear code of length n and dimension k,
an [n, k] code, is a Z2Z4-additive code of type (n, 0; k, 0; k).

If α = 0, the Z2Z4-additive code is a quaternary linear code.

In general, any quaternary linear code of length n and type
2γ4δ is a Z2Z4-additive code of type (0, n; γ, δ; 0).
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Counting Z2Z4-additive codes

Theorem 4 (DS15).

The number of distinct Z2Z4-additive codes of type (α, β; γ, δ;κ)
is

2(α+β−γ−δ)δ+(β−δ−γ+κ)κ

[
β
δ

]
2

[
α
κ

]
2

[
β − δ
γ − κ

]
2

,

where

[
x
k

]
2

is the binary Gaussian binomial coefficient for k ≥ 0

and x a real number.

[DS15] S.T. Dougherty, E. Salturk.

Counting Z2Z4-Additive Codes.

NoncommutativeRings and Their Applications, Contemporary
Mathematics, vol. 634, pp. 137-147, 2015.
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Separable codes

A Z2Z4-additive code C is said to be separable if C = CX × CY .

Example 5.

Let C be the code

C = {(00 | 00), (00 | 12), (00 | 20), (00 | 32)

(11 | 00), (11 | 12), (11 | 20), (11 | 32)}.

We have

CX ={00, 11},
CY ={00, 12, 20, 32}.

Then, C is separable: C = CX × CY .
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Example 6.

C1 = {(00 | 0000), (11 | 2211), (00 | 0022), (11 | 2233)

(10 | 2020), (01 | 0231), (10 | 2002), (01 | 0213)}

We have

(C1)X = {00, 10, 01, 11},
(C1)Y = {0000, 2211, 0022, 2233,

2020, 0231, 2002, 0213}.

Then, C1 is not separable: C1 6= (C1)X × (C1)Y .
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...some more parameters

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Let κ1 ≤ κ
and δ2 ≤ δ such that

1 {(u | 0) ∈ C} is of type (α, β;κ1, 0;κ1),

2 〈{(0 | u′) ∈ C : u′ = 0 or the order of u′ is four}〉 is of type
(α, β; γ′, δ2; 0) for an integer γ′ ≤ γ.

Consider the values κ2 and δ1 such that

κ = κ1 + κ2 and δ = δ1 + δ2. (3)
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1 CX is a binary linear [α, κ+ δ1] code.

2 CY is a quaternary linear code of length β and type 2γ−κ14δ.

3 C is separable if and only if κ2 and δ1 are zero; that is, κ = κ1

and δ = δ2.
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Example 7.

Let C be the code of type (2, 2; 1, 1; 1)

C = {(00 | 00), (00 | 12), (00 | 20), (00 | 32)

(11 | 00), (11 | 12), (11 | 20), (11 | 32)}.

{(u | 0) ∈ C} = {(00 | 00), (11 | 00)} is of type (2, 2;1, 0;1);
κ1 = 1, κ2 = 0.

〈{(0 | u′) ∈ C : u′ = 0 or the order of u′ is four}〉 = 〈{(00 | 00), (00 |
12)}〉 is of type (2, 2; 0,1; 0); δ2 = 1, δ1 = 0.

CX = {00, 11} is a linear [2, 1 + 0] code.

CY = {00, 12, 20, 32} is a quaternary linear code of lenght 2 and type
21−141.

Since κ = κ1 and δ = δ2, C is separable.
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Example 8.

Let C1 be the code of type (2, 4; 1, 1; 1)

C1 = {(00 | 0000), (11 | 2211), (00 | 0022), (11 | 2233)

(10 | 2020), (01 | 0231), (10 | 2002), (01 | 0213)}

{(u | 0) ∈ C} = {(00 | 0000)} is of type (2, 4;0, 0;0); κ1 = 0, κ2 = 1.

〈{(0 | u′) ∈ C : u′ = 0 or the order of u′ is four}〉 = 〈{(00 | 0000)}〉 is of
type (2, 4; 0,0; 0); δ2 = 0, δ1 = 1.

(C1)X = {00, 10, 01, 11} is a linear [2, 1 + 1] code.

(C1)Y = {0000, 2211, 0022, 2233, 2020, 0231, 2002, 0213} is a quaternary
linear code of lenght 2 and type 21−041.

Since κ 6= κ1 (or δ 6= δ2), C1 is not separable.
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Two Z2Z4-additive codes C1 and C2 are monomially equivalent if
one can be obtained from the other by permutating the
coordinates and (if necessary) changing the signs of certain
coordinates over Z4.

They are permutation equivalent if they differ only by a
permutation of coordinates.
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Gray map. Z2Z4-linear codes

The Gray map is Φ : Zα2 × Zβ4 → Zα+2β
2 :

Φ(x1, . . . , xα, xα+1, . . . , xα+β)→
(x1, . . . , xα, φ(xα+1), . . . φ(xα+β)).

As for quaternary linear codes, Z2Z4-additive codes can be view as
binary codes under the Gray map.

If C is a Z2Z4-additive code, then the corresponding binary code
C = Φ(C) is said to be a Z2Z4-linear code of length n = α+ 2β
and type (α, β; γ, δ;κ), where γ, δ and κ are defined as above.
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If two Z2Z4-additive codes C1 and C2 are monomially equivalent,
then, after the Gray map, the corresponding Z2Z4-linear codes
C1 = Φ(C1) and C2 = Φ(C2) are permutation equivalent as binary
codes.

Note that the inverse statement is not always true.
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Generator matrices

Let C be a Z2Z4-additive code. Although C is not a free module,
every codeword is uniquely expressible in the form

γ∑
i=1

λiui +

δ∑
j=1

µjvj ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, µj ∈ Z4 for 1 ≤ j ≤ δ and

ui, vj ∈ Zα2 × Zβ4 of order two and order four, respectively.
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The vectors {ui}γi=1, {vj}δj=1 give us a generator matrix G of C of
size (γ + δ)× (α+ β) and of the form

G =

(
B1 2B3

B2 Q

)
,

where B1, B2 are matrices over Z2 of size γ × α and δ × α, resp.;
and B3, Q are matrices over Z4 of size γ × β and δ × β, resp. In
B3 all entries are in {0, 1} and in Q all row vector is of order four.
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Theorem 3 (BFR+10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then, C is permutation
equivalent to a Z2Z4-additive code with generator matrix in standard the form

GS =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 , (4)

where Tb, Sb are matrices over Z2 and Sq, T1, T2, R is a matrix over Z4, and all

the entries of T1, T2 and R are in {0, 1}.

Lemma 4 (BFR+10).

There exists a Z2Z4-additive code C of type (α, β; γ, δ;κ) if and only if

α, β, γ, δ, κ ≥ 0, α+ β > 0,
0 < δ + γ ≤ β + κ and κ ≤ min(α, γ).

(5)
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Example 9.

Let C1 be the Z2Z4-additive code of type (2, 4; 1, 1; 1)

C1 = {(00 | 0000), (11 | 2211), (00 | 0022), (11 | 2233)

(10 | 2020), (01 | 0231), (10 | 2002), (01 | 0213)}.

We have that C1 is generated by

G1 =

(
1 0 2 0 2 0
1 1 2 2 1 1

)
.
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Let C be a Z2Z4-additive code with generator matrix in standard form

GS =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 ,

Then, C is permutation equivalent to a code with generator matrix as

G′ =


Iκ1 Tb1 Tb2 Tb3 0 0 0 0 0
0 Iκ2 Tb4 Tb5 2T2 2T ′2 0 0 0
0 0 0 0 2T1 2T ′1 2Iγ−κ 0 0
0 0 Sb1 Sb2 Sq1 Sq2 R1 Iδ1 0
0 0 0 0 Sq3 Sq4 R2 R3 Iδ2

 , (6)

where Tbi , Sbj are matrices over Z2, Sqk , Rs, Tt are quaternary matrices, and

all the entries of Tt are in {0, 1}.
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Example 10.

Let C be a Z2Z4-additive code with generator matrix in standard
form GS

GS =



1111 000000
0101 220000
0000 202000
0101 000200
0101 111010
0011 101101

 ;G′ =



1111 000000
0101 220000
0000 202000
0101 000200
0011 101110
0000 111201


C is permutation equivalent to a code generated by G′. Therefore,
κ1 = 1 and δ2 = 1.
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Let C be a Z2Z4-additive separable code; κ = κ1, δ = δ2

G =


Iκ1 Tb1 Tb2 Tb3 0 0 0 0 0

�0 ��Iκ2 �
�Tb4 �

�Tb5 ��2T2 �
�2T ′2 �0 �0 �0

0 0 0 0 2T1 2T ′1 2Iγ−κ 0 0

�0 �0 �
�Sb1 �

�Sb2 �
�Sq1 �

�Sq2 ��R1 ��Iδ1 �0
0 0 0 0 Sq3 Sq4 R2 R3 Iδ2


⇓

GS =

 Iκ Tb 0 0 0
0 0 2T1 2Iγ−κ 0
0 0 Sq R Iδ

 ,
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Duality of codes over rings.

Let R be a principal ideal ring.
The inner product for any two vectors u, v ∈ Rn is defined as:

u · v = u1v1 + u2v2 + · · ·+ unvn ∈ R.

Let C ⊆ Rn be a linear code of length n over R. The dual code of
C, denoted by C⊥, is defined in the standard way:

C⊥ = {v ∈ Rn | u · v = 0 for all u ∈ C}.

It is easy to see that C⊥ is a subgroup of Rn, so C⊥ is also a
quaternary linear code.
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Dual of Z2Z4-additive codes. Parity-check matrices

What if we have a code C ⊆ Zα2 × Zβ4 ????
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Fundamental theorem of finite Abelian groups

The fundamental theorem of finite Abelian groups states that a
finite Abelian group G is isomorphic to

〈pα1
1 〉 × · · · × 〈p

αk
k 〉,

where p1, . . . , pk are not necessarily distinct prime numbers, and
αi ≥ 1 for any i ∈ {1, . . . , k}.

The decomposition is unique up to the order in which the
factors are written.

{pα1
1 , . . . , pαkk } is a basis.

The exponent of G is m = lcm{piα
i | i = 1, . . . , k}.
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Fundamental theorem of finite Abelian groups

For i ∈ {i, . . . , k}, select si such that m = sipi
αi (si is the order

of pi
αi in Zm).

The inner product of elements u = (u1, u2, . . . , uk) and
v = (v1, v2, . . . , vk) ∈ G is uniquely defined as the equivalence
class of

k∑
i=1

siuivi ∈ Zm.
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Fundamental theorem of finite Abelian groups:

G = Zα2 × Zβ4

G = Z2 × · · · × Z2 × Z4 × · · · × Z4.

1 The exponent of G is m = 4.

2 m = si · 2, for i ∈ {1, . . . , α} ⇒ si = 2,

3 m = sj · 4, for j ∈ {α+ 1, . . . , α+ β} ⇒ sj ∈ {1, 3}.
For u = (u1, u2, . . . , uα+β) and v = (v1, v2, . . . , vα+β) ∈ G,

u · v =

α+β∑
i=1

siuivi =
α∑
i=1

2uivi +

α+β∑
j=α+1

ujvj ∈ Z4.
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Dual of Z2Z4-additive codes. Parity-check matrices

The inner product for any two vectors u, v ∈ Zα2 ×Zβ4 is defined as:

u · v = 2(

α∑
i=1

uivi) +

α+β∑
j=α+1

ujvj ∈ Z4.

Let C be a Z2Z4-additive code. The additive dual code of C,
denoted by C⊥, is defined in the standard way:

C⊥ = {v ∈ Zα2 × Zβ4 | u · v = 0 for all u ∈ C}.

It is easy to see that C⊥ is a subgroup of Zα2 × Zβ4 , so C⊥ is also a
Z2Z4-additive code.

If C ⊂ C⊥, C is called an additive self-orthogonal code.

If C = C⊥, C is called an additive self-dual code.
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One could think on Z2Z4-additive codes only as
quaternary linear codes, changing ones by twos in
the coordinates over Z2.
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Example 11.

Let C be a Z2Z4-additive code generated by

G =

(
1 0 2 0 2 0
1 1 2 2 1 1

)
.

C = {(00 | 0000), (11 | 2211), (00 | 0022), (11 | 2233)

(10 | 2020), (01 | 0231), (10 | 2002), (01 | 0213)}

The code C can be seen as the quaternary linear code generated by(
2 0 2 0 2 0
2 2 2 2 1 1

)
.

C = {(000000), (222211), (000022), (222233)

(202020), (020231), (202002), (020213)}
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However...

...these quaternary linear codes are not equivalent to
the quaternary linear codes!!

Note that the inner product defined in Zα2 × Zβ4 gives us that the
dual code of a Z2Z4-additive code is not equivalent to the dual
code of the corresponding quaternary linear code.

©CCSG (Combinatorics, Coding and Security Group) 56/204 56 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Definitions
Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 12.

Taking α = β = 1 and the vectors v = (1 | 3) and w = (1 | 2), it
is easy to check that v ·w = 0, so v and w are orthogonal.

Taking β = 2 and changing the ones by twos in the coordinates
over Z2 of these vectors, we get v̄ = (23) and w̄ = (22), which are
not orthogonal in the quaternary sense.
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Example 13 (cont.).

Let C be a Z2Z4-additive code generated by(
1 3

)
.

Then, C = {(0 | 0), (1 | 3), (0 | 2), (1 | 1)} and C⊥ = {(0 | 0), (1 | 2)}.
Note that C is of type (1, 1; 0, 1; 0) and C⊥ is of type (1, 1; 1, 0; 1).

The corresponding quaternary linear code D is generated by(
2 3

)
.

Then, D = {(00), (23), (02), (21)} and D⊥ = {(00), (32), (20), (12)}.
Note that D is of type (0, 2; 0, 1; 0) and D⊥ is of type (0, 2; 0, 1; 0).
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Proposition 5 (HKC+94).

The quaternary dual code C⊥ of the quaternary linear code C of length n with
generator matrix

GS =

(
2T 2Iγ 0
S R Iδ

)
, (7)

has generator matrix

HS =

(
0 2Iγ 2Rt

In−γ−δ T t −(S +RT )t

)
, (8)

where R, T, S are matrices over Z4 of size δ × γ, γ × (n− γ − δ), and
δ × (n− γ − δ) respectively; and all the entries in R and T are in {0, 1}.
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In order to construct the additive dual code of a Z2Z4-additive
code, we will need the following maps:

The usual one modulo two, ξ : Z4 −→ Z2,
that is ξ(0) = 0, ξ(1) = 1, ξ(2) = 0, ξ(3) = 1.

The identity map, ι : Z2 −→ Z4, that is ι(0) = 0, ι(1) = 1.

The normal inclusion from the additive structure in Z2 to Z4,
χ : Z2 −→ Z4, that is χ(0) = 0, χ(1) = 2.

These maps can be extended to the maps:

(ξ, Id) : Zα4 × Zβ4 −→ Zα2 × Zβ4 denoted also by ξ.

(ι, Id) : Zα2 × Zβ4 −→ Zα4 × Zβ4 denoted also by ι.

(χ, Id) : Zα2 × Zβ4 −→ Zα4 × Zβ4 denoted also by χ.
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Let (u · v)4 denote the standard inner product for quaternary

vectors u, v and u · v the inner product for vectors u,v ∈ Zα2 ×Zβ4 .

Lemma 6 (BFR+10).

If u ∈ Zα2 × Zβ4 , v ∈ Zα+β
4 , then (χ(u) · v)4 = u · ξ(v).

Lemma 7 (BFR+10).

If u,v ∈ Zα2 × Zβ4 , then (χ(u) · ι(v))4 = u · v.

Proposition 8 (BFR+10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then,

C⊥ = ξ(χ(C)⊥) and C⊥ = χ−1(ξ−1(C)⊥).

©CCSG (Combinatorics, Coding and Security Group) 61/204 61 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Definitions
Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Theorem 9 (BFR+10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator matrix in
standard form

GS =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 . (9)

Then, the generator matrix of C⊥ is

HS =

 T tb Iα−κ 0 0 2ι(Sb)
t

0 0 0 2Iγ−κ 2Rt

ξ(T2)t 0 Iβ+κ−γ−δ T t1 −
(
Sq +RT1

)t
 , (10)

where Tb, Sb are matrices over Z2 and T1, T2, R, Sq are matrices over Z4 and

all the entries in T1 and T2 are in {0, 1}.
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Theorem 10 (BFR+10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). The additive dual code
C⊥ is then of type (α, β; γ̄, δ̄; κ̄), where

γ̄ = α+ γ − 2κ,
δ̄ = β − γ − δ + κ,
κ̄ = α− κ.

(11)

Corollary 11 (BFR+10).

If C is a Z2Z4-additive code of type (α, β; γ, δ;κ), then |C| · |C⊥| = 2α4β .
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Example 14.

Let C1 be the Z2Z4-additive code of type (2, 4; 2, 1; 1) with generator matrix
G1. The additive dual code C⊥1 is a Z2Z4-additive code with generator matrix
H1.

G1 =

 1 0 2 2 0 0
0 0 2 0 2 0
0 1 3 1 1 1

 H1 =


0 1 0 0 0 2
0 0 0 0 2 2
1 0 1 0 1 0
1 0 0 1 0 3


H1 is a generator matrix of C⊥1 and a parity-check matrix of C1.

The code C1 is of type (2, 4; 2, 1; 1) and C⊥1 is of type (2, 4; 2, 2; 1).

The code C1 has 224 = 24 codewords and C⊥1 has 2242 = 26 codewords,
so |C1| · |C⊥1 | = 2244 = 210.
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Again, in general the Z2Z4-linear code C = Φ(C) is not linear, so
it need not have a dual. However, the corresponding binary code
C⊥ = Φ(C⊥) is called Z2Z4-dual code of C.

C Φ−−−−→ C = Φ(C)

⊥
y
C⊥ Φ−−−−→ C⊥ = Φ(C⊥)

If C ⊂ C⊥, C is called a self Z2Z4-orthogonal code.

If C = C⊥, C is called a self Z2Z4-dual code.
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Example 15.

Let C be a Z2Z4-additive code of type (1, 2; 0, 2; 0)

C = {(0|000), (0|323), (1|330), (1|231), (1|132), (1|033), (0|220), (1|312),
(0|121), (0|022), (1|213), (0|301), (0|202), (1|110), (0|103), (1|011)}.

We have that

C⊥={(0|000), (1|020), (1|111), (1|202), (0|131), (0|222), (0|313), (1|333)},
C = Φ(C) = {(0000000), (1000101), (0010010), (1010100), (0110011),
(1110110), (0100001), (1100111), (0001111), (1001010), (0011101),
(1011011), (0111100), (1111001), (0101110), (1101000)} is a binary
non-linear code, and

C⊥ = Φ(C⊥) = {(0000000), (1001100), (0011001), (1010101),
(0111111), (1110011), (0100110), (1101010)} is a binary linear code.
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Binary coding. Example.

Let C be a binary Hamming code (linear 1-perfect code) of length 7 and
dimension 4, that is, a Z2Z4-additive code of type (7, 0; 4, 0; 4) generated by

GS =


1 0 0 0 0 1 1
0 1 0 0 1 0 1
0 0 1 0 1 1 0
0 0 0 1 1 1 1

 .

Information: 1011 1110...→ i1 = (1011), i2 = (1110)...

Encoding: vj = ij · GS .

Encoded info.: v1 = 1011010, v2 = 1110000... → 1011010 1110000 ...
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Binary decoding: syndrome table.

Let C be an [n, k, d] code with parity check matrix H with error
correcting capability t. Consider {ei}ri=1 all error vectors with
wt(ei) ≤ t.

error ⊆ Zn2 syndrome ⊆ Zn−k2

0 0

e1 s1 = e1 ·Ht

...
...

er sr = er ·Ht

For a received w, compute s = w ·Ht.

If s = sj , then decode by v′ = w − ej .
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Binary decoding. Example of a perfect code.

The parity-check matrix of C is

HS =

 0 1 1 1 1 0 0
1 0 1 1 0 1 0
1 1 0 1 0 0 1

 .

Received data: 1010010 1110000 ...
→ w1 = (1010010), w2 = (1110000), ...

Syndrome: sj = wj · HtS ; s1 = (111), s2 = (000)

The error vectors are e1 = (0001000) and e2 = (0000000).

The corrected codewords are v′1 = (1011010) and v′2 = (1110000).
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Z2Z4 coding. Example.

Let C be a Z2Z4-additive code of type (7, 4; 5, 3; 5), Φ(C) is perfect, generated
by

GS =



1 0 0 0 0 0 0 2 0 0 0
0 1 0 0 0 1 1 0 0 0 0
0 0 1 0 0 1 1 2 0 0 0
0 0 0 1 0 1 0 2 0 0 0
0 0 0 0 1 0 1 2 0 0 0
0 0 0 0 0 1 1 3 1 0 0
0 0 0 0 0 1 0 1 0 1 0
0 0 0 0 0 0 1 1 0 0 1


.

Binary Information: ib = (10111110110)

Information (over Zγ2 × Zδ4): i = Φ−1(ib) = (10111|213).
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Z2Z4 coding. Example.

i = (10111|213)

χ(GS) =



2 0 0 0 0 0 0 2 0 0 0
0 2 0 0 0 2 2 0 0 0 0
0 0 2 0 0 2 2 2 0 0 0
0 0 0 2 0 2 0 2 0 0 0
0 0 0 0 2 0 2 2 0 0 0
0 0 0 0 0 2 2 3 1 0 0
0 0 0 0 0 2 0 1 0 1 0
0 0 0 0 0 0 2 1 0 0 1


.

Codeword (over Zα2 × Zβ4 ): v = χ−1(ι(i) · χ(GS)) =
= χ−1((10111213) · χ(GS)) = χ−1(20222222213) = (1011111|2213).

Codeword (binary): vb = Φ(v) = 101111111110110
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Z2Z4 decoding: syndrome table

Let C = Φ(C) be a Z2Z4-linear code with error correcting
capability t. Consider {ei}ri=1 all error vectors with wt(ei) ≤ t. Let
H be the parity check matrix of C.

error ⊆ Zα+2β
2 syndrome ⊆ Zγ̄+δ̄

4

0 0

e1 s1 = ι(Φ−1(e1)) · χ(H)t

...
...

er sr = ι(Φ−1(er)) · χ(H)t

For a received binary w, compute s = ι(Φ−1(w)) · χ(H)t.

If s = sj , then decode by v′ = w − ej .
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Z2Z4 decoding. Example of a perfect code.

The parity-check matrix of C is

HS =

 0 1 1 1 0 1 0 0 2 2 0
0 1 1 0 1 0 1 0 2 0 2
1 0 1 1 1 0 0 1 1 3 3

 .

Binary received vector: 100111111110110.

Received vector (over Zα2 × Zβ4 ): w = (1001111|2213).

Syndrome: s = ι(w) · χ(HS)t = (222) is (+/-) a column in χ(HS).

The error is e = (0010000|0000) and the codeword is
v′ = (1011111|2213) → binary codeword 101111111110110.
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Z2Z4 decoding. Example of a perfect code.

The parity-check matrix of C is

HS =

 0 1 1 1 0 1 0 0 2 2 0
0 1 1 0 1 0 1 0 2 0 2
1 0 1 1 1 0 0 1 1 3 3

 .

Binary received vector: 101111111110111

Received vector (over Zα2 × Zβ4 ): v = (1011111|2212)

Syndrome: s = ι(v) · χ(HS)t = (021) is (+/-) a column in χ(HS).

The error is e = (0000000|0003) and the codeword is
v′ = (1011111|2213) → binary codeword 101111111110110.
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Permutation Decoding

Z2Z4-linear codes are also systematic codes and can be decoded by
using permutation decoding.

[BBFV15] J. J. Bernal, J. Borges, C. Fernández-Córdoba, M.
Villanueva.
Permutation Decoding of Z2Z4-linear Codes
Designs, Codes and Cryptography, vol. 76, pp. 269-277, 2015.
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Magma. Computational Algebra System

http://magma.maths.usyd.edu.au/magma/

http://www.ccsg.uab.cat (Downloads/Z2Z4-Additive Codes version 4.0)

Some functions for Z2Z4-additive codes:
Z2Z4AdditiveCode(L : Alpha:=0, OverZ2:=false) List -> Rec

Z2Z4Type(C) : Rec -> [ RngIntElt ]

Z2Z4GeneratorMatrix(C) : Rec -> ModMatRngElt

Z2Z4ParityCheckMatrix(C) : Rec -> ModMatRngElt

Z2Z4MinRowsGeneratorMatrix(C) : Rec -> ModMatRngElt

Z2Z4MinRowsParityCheckMatrix(C) : Rec -> ModMatRngElt

Z2Z4StandardForm(C) : Rec -> Rec, Map, ModMatRngElt, GrpPermElt

Z2Z4Dual(C) : Rec -> Rec

Z2Z4DualType(C) : Rec -> [ RngIntElt ]

IsZ2Z4SelfOrthogonal(C) : Rec -> BoolElt

IsZ2Z4SelfDual(C) : Rec -> BoolElt

Z2Z4GrayMap(C) : Rec -> Map

Z2Z4GrayMapImage(C) : Rec -> [ ModTupRngElt ]
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Examples 16.

Consider the matrices

G1 =


1010 2000
0101 2000
0000 2200
0000 2020
0011 1111

 ;G2 =


1010 00
0101 00
0000 20
0000 02

 .

The codes generated by these matrices are Z2Z4-additive self-dual. The code

generated by G1 is non-separable and the code generated by G2 is separable.
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The following theorem show some properties of separable
Z2Z4-additive self-dual codes.

Theorem 12 (BDF12).

Let C be a Z2Z4-additive self-dual code of type
(2κ, β;β + κ− 2δ, δ;κ). The following statements are equivalent:

(i) CX is a binary self-orthogonal code.

(ii) CX is a binary self-dual code.

(iii) |CX | = 2κ.

(iv) CY is a quaternary self-orthogonal code.

(v) CY is a quaternary self-dual code.

(vi) |CY | = 2β.

(vii) C is separable.
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Theorem 13 (BDF12).

If C is a binary self-dual code of length α and D is a quaternary
self-dual code of length β, then C ×D is a Z2Z4-additive self-dual
code of length α+ β.

©CCSG (Combinatorics, Coding and Security Group) 83/204 83 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Classification of Z2Z4-additive self-dual codes
Allowable α and β values
Constructions of Z2Z4-additive self-dual codes

Antipodality

A binary code C is antipodal if for any codeword z ∈ C, z+1 ∈ C.
If C is a Z2Z4-additive code, we say that C is antipodal if Φ(C) is
antipodal.
Clearly, a Z2Z4-additive code is antipodal iff (1α | 2β) ∈ C.

Examples 17.

Let C1 and C2 be the Z2Z4-additive codes generated by

G1 =

(
1 1 2 0
0 1 1 1

)
;G2 =

(
1 1 0
0 0 2

)
.

Both codes are Z2Z4-additive self-dual. The code C1 is non-antipodal and the

code C2 is antipodal.
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Type of a Z2Z4-additive self-dual code

Let C be a Z2Z4-additive self-dual.

If C has odd weights, then it is Type 0.

If it has only even weights, then the C is Type I.

If all the codewords have doubly-even weight, then C is
Type II.
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Examples 18.

Let C1 and C2 be the Z2Z4-additive codes generated by

G1 =

(
1 1 2 0
0 1 1 1

)
;G2 =

(
1 1 0
0 0 2

)
.

The codes C1 and C2 are Z2Z4-additive self-dual. The code C1 is Type 0 and
the code C2 is Type I.
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Examples 19.

The code C3 generated by

G3 =



10001110 0000
01001101 0000
00101011 0000
00010111 0000
00000000 0202
00000000 2020
00000000 1111


is Z2Z4-additive self-dual and of Type II.
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Relationship among separability, antipodality and Type

The following table shows the relations among Type, separability
and antipodality.

Type 0 Type I Type II

non-separable separable separable
separability or non-separable or non-separable

antipodality non-antipodal antipodal antipodal

Now we will see some examples that show the existence of all
possible cases described in the above table.
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Type 0

Examples 20.

The code C1 generated by the matrix

G1 =

(
11 20
01 11

)
is a Z2Z4-additive self-dual code of Type 0; the vector (01|11) is an odd weight

vector. Since it is Type 0, C1 is non-separable and non-antipodal.
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Examples 21.

Consider the code C2 generated by the matrix

G2 =

(
11 0
00 2

)
.

Notice that for α = 2 and β = 1, it is not possible to have odd weight

codewords. Thus, the code must be of Type I and antipodal. Also, we have

that the code restricted to the quaternary coordinates is {0,2} which is

self-dual and hence, C2 is separable.
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Examples 22.

Consider the following matrices:

G3 =


1111 0000
0101 2000
0101 0200
0101 0020
0011 1111

 ; G4 =


1111 000000
0101 220000
0000 202000
0101 000200
0101 111010
0011 101101

 . (12)

The codes C3 and C4 generated by G3 and G4, respectively, are non-separable

Type I.
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Examples 23.

As we have seen previously, the code defined in Example 19, generated by

10001110 0000
01001101 0000
00101011 0000
00010111 0000
00000000 0202
00000000 2020
00000000 1111


.

is Z2Z4-additive self-dual, separable and of Type II.
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Type II, non-separable

Examples 24.

The code C6 generated by the following matrix

10010110 0000
01001110 0000
00100111 0000
00000110 2000
00000110 0200
00000110 0020
00011011 1111


.

is non-separable, since (C6)X is not self-orthogonal. On the other hand, it can

be checked that all weights are doubly-even.
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Allowable α and β values

Proposition 14 (BDF12).

There exist Z2Z4-additive self-dual codes of type (α, β; γ, δ;κ) for
all even α and all β.

Theorem 15.

If C is a Type II Z2Z4-additive code of type (α, β; γ, δ;κ), then

α ≡ 0 (mod 8), and β ≡ 0 (mod 4).
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Theorem 16 (BDF12).

Let C be a Z2Z4-additive self-dual code of type (α, β; γ, δ;κ), with
α, β > 0.

(i) If C is Type 0, then α ≥ 2, β ≥ 2.

(ii) If C is Type I and separable, then α ≥ 2, β ≥ 1.

(iii) If C is Type I and non-separable, then α ≥ 4, β ≥ 4.

(iv) If C is Type II, then α ≥ 8, β ≥ 4.

We define αmin and βmin to the minimum values of α and β for
each Type of code and separability condition.

©CCSG (Combinatorics, Coding and Security Group) 96/204 96 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Classification of Z2Z4-additive self-dual codes
Allowable α and β values
Constructions of Z2Z4-additive self-dual codes

Example 25.

Type 0 Type I Type II

−
(

11 0
00 2

)
;



10000111 0000
01001011 0000
00101101 0000
00011110 0000
00000000 2200
00000000 2020
00000000 1111


.

(
11 20
01 11

)
;


1010 2000
0101 2000
0101 0200
0101 0020
0011 1111

 ;



10010110 0000
01001110 0000
00100111 0000
00000110 2000
00000110 0200
00000110 0020
00011011 1111


.
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Theorem 17 (BDF12).

Let αmin and βmin be as defined above.

(i) There exist a Type 0 or Type I code of type (α, β; γ, δ;κ) if
and only if α = αmin + 2a, a ≥ 0, β ≥ βmin.

(ii) There exist a Type II code of type (α, β; γ, δ;κ) if and only if
α = αmin + 8a, β = βmin + 4b, a, b ≥ 0 .
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The following table sumarizes the allowable values of α and β
deppending on the Type of the code and the separability.

Type 0 Type I Type II

separable - α = 2 + 2a α = 8 + 8a
α, β; a, b ≥ 0 - β = 1 + b β = 4 + 4b

non-separable α = 2 + 2a α = 4 + 2a α = 8 + 8a
α, β; a, b ≥ 0 β = 2 + b β = 4 + b β = 4 + 4b
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Constructions of Z2Z4-additive self-dual codes

Three different constructions:

Product of codes.

Neighbor contruction.

Extending the length.
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Product of codes

Proposition 18 (BDF12).

If C is a Z2Z4-additive self-dual code of type (α, β; γ, δ;κ) and D
is a Z2Z4-additive self-dual code of type (α′, β′; γ′, δ′;κ′) then
C × D is a Z2Z4-additive self-dual code of type
(α+ α′, β + β′; γ + γ′, δ + δ′;κ+ κ′).
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Examples 26.

GC =

(
11 20
01 11

)
; GD =


1010 2000
0101 2000
0101 0200
0101 0020
0011 1111

 ;

GCxD =



11 0000 20 0000
01 0000 11 0000
00 1010 00 0000
00 0101 00 2000
00 0101 00 0200
00 0101 00 0020
00 0011 00 1111


; G′CxD =



100001 200000
010100 000000
001010 020000
001010 002000
001010 000200
000110 011110
000001 300001


;

C is of type (2, 2; 1, 1; 1), D is of type (4, 4; 4, 1; 2) and C ×D is of type

(5, 5; 5, 2; 3).
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Neighbor construction

Let C be a Z2Z4-additive self-dual code and let v 6∈ C be a
self-orthogonal vector. Let Cv be the subcode of C of vectors
orthogonal to v

Cv = {u ∈ C | u · v = 0}.

Theorem 19 (BDF12).

Let C be a Z2Z4-additive self-dual code and let v be a
self-orthogonal vector that is not an element of C. Then

N(C,v) = 〈Cv,v〉

is a self-dual code.
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Examples 27.

Let C be the Z2Z4-additive code generated by the matrix

G =

(
11 20
01 11

)
,

and let v = (00|20).
C = {(00|00), (11|20), (01|11), (00|22), (01|33), (10|31), (11|02), (10|13)}.
Then, Cv = {(00|00), (11, |20), (00|22), (11|02)}, is generated by

Gv =

(
11 20
00 22

)
,

Then, the code N(C,v) = 〈Cv,v〉 is a Z2Z4-additive self-dual code generated
by

GN(C,v) =

 11 00
00 20
00 02
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Extending the length

Let C be a Z2Z4-additive self-dual code, v /∈ C. Cv is a subgroup
of C and C⊥v = 〈C,v〉. Moreover,

|C|
|Cv|

=
|C⊥v |
|C|
∈ {2, 4}.

Let w be the vector such that C = 〈Cv,w〉. Then

C⊥v = 〈Cv,w,v〉.
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Examples 28.

Let C be the Z2Z4-additive code generated by the matrix

G =

(
11 20
01 11

)
,

and let v = (00|20) as in Example 27. Then Cv is generated by

Gv =

(
11 20
00 22

)
,

and C = 〈Cv,w〉, where w = (01|11). The code C⊥v is generated by

Hv =


11 20
00 22
00 02
01 11

 .
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Construction of D̄ by extending the length of D = C⊥v

For u = (uX , uY ) ∈ C⊥v we define the extension of u as

ū = (u′X , uX , uY , u
′
Y ).

If u ∈ Cv, then ū = (0, uX , uY ,0).
Then

D̄ = 〈{ū | u ∈ C⊥v }〉.

We choose u′X and u′Y so that D̄ is a self-orthogonal code. If D̄ is
not self-dual we may need to add additional vectors to the code.
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Theorem 20 (BDF12).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) and v 6∈ C.
Let w, Cv be as before and D = C⊥v = 〈Cv,w,v〉. There exists a
Z2Z4-additive self-dual code 〈D̄, V 〉 of type
(α+ α′, β + β′; γ′, δ′;κ′), for some set of vectors V with the
following conditions:

(i) α′ 6= 0 and β′ = 0 only if v ·w = 2 and v · v ∈ {0, 2},
(ii) α′ = 0 and β′ 6= 0 only if v ·w = 2 or v ·w ∈ {1, 3} and

v · v ∈ {1, 3},
(iii) α′ 6= 0 and β′ 6= 0.

©CCSG (Combinatorics, Coding and Security Group) 109/204 109 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Classification of Z2Z4-additive self-dual codes
Allowable α and β values
Constructions of Z2Z4-additive self-dual codes

Table: Case α′ 6= 0, β′ = 0.

v · v v′X w′X V

0 (0, 0, 1, 1) (0, 1, 0, 1) {(1, 1, 1, 1,0)}
2 (0, 1) (1, 1) ∅

Table: Case α′ = 0, β′ 6= 0, v ·w = 2.

v · v v′Y w′Y V

0 (1, 1, 1, 1) (2, 0, 0, 0) {(0, 0, 2, 2, 0), (0, 0, 0, 2, 2)}
1 (1, 1, 1) (2, 0, 0) {(0, 0, 2, 2)}
2 (1, 1) (2, 0) ∅
3 (1) (2) ∅
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Table: Case α′ = 0, β′ 6= 0, v ·w = 1.

v · v v′Y w′Y V

1 (1, 1, 1, 0) (1, 1, 1, 1) {(0, 0, 2, 2, 0), (0, 2, 2, 0, 0)}
3 (3, 0, 0, 0) (1, 1, 1, 1) {(0, 0, 2, 2, 0), (0, 0, 0, 2, 2)}

Table: Case α′ 6= 0, β′ 6= 0, v ·w = 1.

v · v v′X v′Y w′X w′Y V

0 (1, 0) (1, 0, 1) (1, 0) (1, 1, 0) {(1, 1,0, 2, 0, 0), (1, 1,0, 0, 2, 0)}
1 (1, 0) (1, 0) (1, 0) (1, 1) {(1, 1,0, 2, 0)}
2 (1, 1) (0, 1, 1) (1, 0) (1, 1, 0) {(1, 1,0, 2, 0, 0), (1, 1,0, 0, 2, 2)}
3 (1, 1) (1, 0) (1, 0) (1, 1) {(1, 1,0, 0, 2)}
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Table: Case α′ 6= 0, β′ 6= 0, v ·w = 2.

v · v v′X v′Y w′X w′Y V

0 (1, 0) (1, 1) (1, 1) (2, 2) {(1, 1,0, 2, 0)}
1 (1, 0) (1, 0) (1, 1) (0, 2) {(1, 1,0, 2, 0)}
2 (1, 1) (1, 3) (1, 0) (1, 1) ∅
3 (0, 0) (0, 1) (1, 1) (0, 2) {(1, 1,0, 2, 0)}
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Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). To construct
a Z2Z4-additive code D of type (α+ α′, β + β′; γ′, δ′;κ′) :

1) Select v 6∈ C such that v · v is the approppriate value given in
the previous tables.

2) Construct Cv and determine w such that C = 〈Cv,w〉.
3) From previous tables, determine the values of

v′X , v
′
Y , w

′
X , w

′
Y , V .

4) Define D = C⊥v = 〈Cv,w,v〉. If Gv is the generator matrix of
Cv, then, the generator matrix of D̄ is:

GD̄ =


0 Gv 0
v′X v v′Y
w′X w w′Y

V

 .
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Example 29.

Let C be the Z2Z4-additive code generated by the matrix

G =

(
11 20
01 11

)
.

We want to extend the binary and also the quaternary coordinates. From
Theorem 20, there is no restriction to v and w.
Let v = (00|20), w = (01|11) and, by Example 28,

Gv =

(
11 20
00 22

)
.

Note that v · v = 0 and v ·w = 2
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Example 30.

Table: Case α′ 6= 0, β′ 6= 0, v ·w = 2.

v · v v′X v′Y w′X w′Y V

0 (1, 0) (1, 1) (1, 1) (2, 2) {(1, 1,0, 2, 0)}

The generator matrix of D̄ is:

GD̄ =


0 Gv 0
v′X v v′Y
w′X w w′Y

V

 =


00 11 20 00
00 00 22 00
10 00 20 11
11 01 11 22
11 00 00 20

 .
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Z2Z4-additive formally self-dual

Let C be a Z2Z4-additive code. We say that C is Z2Z4-additive
formally self-dual if WC⊥(x, y) = WC(x, y).

[DF14] S. T. Dougherty, C. Fernández-Córdoba.

Z2Z4-additive formally self-dual codes

Designs, Codes and Cryptography, vol. 72, pp. 435-453, 2014.
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4 Linearity, Rank and Kernel
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Let C be a Z2Z4-additive code and C = Φ(C).
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Example 31.

Consider the Z2Z4-additive code C15 of type (3, 5; 3, 3; 3) generated by the
following matrix:

u1

u2

u3

v1

v2

v3

 =


1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 . (13)

C15 = Φ(C15) is not linear: Φ(v2) + Φ(v3) 6∈ C15;

Φ−1(Φ(v2) + Φ(v3)) = Φ−1((000 0001000100) + (000 0001000001)) =
Φ−1(000 0000000101) = (000 | 00011) 6∈ C15.
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Definitions of rank and kernel

Let C be a binary code, 0 ∈ C.

Rank of C: rank(C) = dim
〈
C
〉
.

Kernel of C: K(C) = {x ∈ C | C = C + x},
ker(C) = dim(K(C)).

K(C) =
⋂

i∈{0,··· ,s}

Di,

where D0 . . . ,Ds are all the maximal linear subspaces of C [PL95].

[PL95] K. T. Phelps, M. Levan.

Kernels of nonlinear Hamming codes

Designs, Codes and Cryptography, vol. 6, pp. 247-257, 1995.
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Let C be a Z2Z4-additive code and C = Φ(C).

K(C) ⊆ C ⊆ 〈C〉.
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Why do we study rank and kernel?

Let Ci be a binary code, with rank ri and dimension of the kernel
ki for i ∈ {1, 2}.

If Ci is linear, then K(Ci) = Ci = 〈Ci〉.

If r1 6= r2, then C1 is not equivalent to C2.

If k1 6= k2, then C1 is not equivalent to C2.

Ci =
⋃

j∈{0,··· ,t}

K(Ci) + vj , where v0 = 0, v1, · · · , vt are coset

representatives.
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Linearity

Let u = (u1, . . . , uα+β),v = (v1, . . . , vα+β) ∈ Zα2 × Zβ4 .

u ∗ v = (u1v1, . . . , uα+βvα+β).

Proposition 21.

Let u,v ∈ Zα2 × Zβ4 . Then, Φ(u + v) = Φ(u) + Φ(v) + Φ(2u ∗ v).
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Linearity

Corollary 22 (FPV10).

Let C be a Z2Z4-additive code. Then, C = Φ(C) is linear if and
only if 2u ∗ v ∈ C ∀u,v ∈ C.

Note that if u ∈ Zα2 × Zβ4 is of order two, then 2u ? v = 0 ∈ C, for
all v ∈ C.
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Proposition 23 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix G. Let {ui}γi=1 and {vj}δj=1 be the row vectors of order
two and four in G, respectively. Then, C = Φ(C) is linear if and
only if 2vj ∗ vk ∈ C for all j, k satisfying 1 ≤ j < k ≤ δ.

Corollary 24 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). If δ ≤ 1, then
Φ(C) is linear.
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Example 32.

Consider the Z2Z4-additive code C15 of type (3, 5; 3, 3; 3)
generated by the following matrix:

(G15)S =



u1

u2

u3

v1

v2

v3

 =



1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 .

Φ(C15) is not linear; 2v2 ∗ v3 = (000 | 02000) 6∈ C15.

©CCSG (Combinatorics, Coding and Security Group) 129/204 129 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Linearity
Rank
Kernel
Paris (r,k)

Example 33.

Consider the Z2Z4-additive code C of type (3, 3; 3, 2; 3) generated
by the following matrix:

GS =


u1

u2

u3

v1

v2

 =


1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 2 0 0
0 0 1 0 1 0
0 0 0 1 0 1

 . (14)

C = Φ(C) is linear: for all vi,vj ∈ C, 1 ≤ j < k ≤ δ, 2vi ∗ vj ∈ C;
that is, 2v1 ∗ v2 = 0 ∈ C.
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Lemma 25.

Let C be a Z2Z4-additive code. If Φ(C) is linear, then φ(CY ) is
linear.

The converse is not true in general.

Proposition 26 (BDFT19).

Let C be a separable Z2Z4-additive code. Then, Φ(C) is linear if
and only if φ(CY ) is linear.
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Example 34.

Let C15 be the Z2Z4-additive code given in Example 32. We have seen that
Φ(C15) is not linear.

(G15)S =


(u1 | u′1)
(u2 | u′2)
(u3 | u′3)
(v1 | v′1)
(v2 | v′2)
(v3 | v′3)

 =


1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 . (15)

2v′1 ∗ v′2 = 2v′1 ∗ v′3 = 0 ∈ (C15)Y ,

2v′2 ∗ v′3 = (0, 2, 0, 0, 0) ∈ (C15)Y .

Then, φ((C15)Y ) is linear.
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Let C be a Z2Z4-additive code with generator matrix in standard
form,

GS =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 ,

and let C′ be the subcode generated by

G′ =
(

0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

)
. (16)
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G′ =

 ��Iκ ��Tb ��2T2 �0 �0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 .

Proposition 27 (BDFT19).

Let C be a Z2Z4-additive code with generator matrix in standard
form, and let C′ be the subcode generated by G′. Then, Φ(C) is
linear if and only if φ(C′Y ) is linear.
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Example 35.

Let C15 be the Z2Z4-additive code given in Example 32 genrated
by (C15)S . We have seen that Φ(C15) is not linear. Let

G′15 =


�����(u1 | u′1)

�����(u2 | u′2)

�����(u3 | u′3)
(v1 | v′1)
(v2 | v′2)
(v3 | v′3)

 =


�1 �0 �0 �0 �0 �0 �0 �0

�0 �1 �0 �2 �0 �0 �0 �0

�0 �0 �1 �0 �2 �0 �0 �0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 .

2v′1 ∗ v′2 = 2v′1 ∗ v′3 = 0 ∈ (C′15)Y ,

2v′2 ∗ v′3 = (0, 2, 0, 0, 0) 6∈ (C′15)Y .

Then, φ((C15)′Y ) is linear.
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Rank of Z2Z4-linear codes

Let C be a Z2Z4-additive code. We define the code the
Z2Z4-additive code

R(C) = Φ−1(〈Φ(C)〉).

Proposition 28 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Let G be a
generator matrix of C, and let {ui}γi=1 be the rows of order two
and {vj}δj=1 the rows of order four in G. Then,

R(C) = 〈C, {2vj ∗ vk}1≤j<k≤δ〉 =

〈{ui}γi=1, {vj}
δ
j=1, {2vj ∗ vk}1≤j<k≤δ〉.
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Corollary 29 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then, R(C)
is a Z2Z4-additive code of type (α, β; γ + r̄, δ;κ), with r̄ ≥ 0, and
rank(Φ(C)) = log2(|R(C)|) = γ + 2δ + r̄.

Corollary 30 (FPV10).

If C is a Z2Z4-linear code, then 〈C〉 is both linear and Z2Z4-linear.
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Example 36.

Consider the Z2Z4-additive code C15 of type (3, 5; 3, 3; 3)
generated by the following matrix:

(G15)S =



u1

u2

u3

v1

v2

v3

 =



1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 .

Note that 2v1 ∗ v2 = 2v1 ∗ v3 = 0 ∈ C15.
R(C15) = 〈C15, 2v2 ∗ v3〉 = 〈u1,u2,u3,v1,v2,v3, 2v2 ∗ v3〉.
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Example 37.

C15 of type (3, 5; 3, 3; 3). We have that R(C15) is generated by

(G15)S =



u1

u2

u3 − (2v2 ? v3)
(2v2 ? v3)

v1

v2

v3


=



1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 0 0 0 0
0 0 0 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1


.

rank(C15) = γ + 2δ + 1 = 3 + 2 · 3 + 1 = 10.
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If C = CX × CY , then it is easy to see that 2(u | u′) ? (v | v′) ∈ C if
and only if 2u′ ? v′ ∈ CY .

Proposition 31 (BDFT19).

If C is a separable Z2Z4-additive code of type (α, β; γ, δ;κ), then
R(C) = CX ×R(CY ) and rank(Φ(C)) = κ+ rank(φ(CY )).

If C is not separable, then it is not true in general.
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Example 38.

Consider the Z2Z4-additive code C15 of type (3, 5; 3, 3; 3)
generated by the following matrix:

(G15)S =



(u1 | u′1)
(u2 | u′2)
(u3 | u′3)
(v1 | v′1)
(v2 | v′2)
(v3 | v′3)

 =



1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 .

R(C15) = 〈C15, 2v2 ∗ v3〉 = 〈u1,u2,u3,v1,v2,v3, 2v2 ∗ v3〉.
We have seen that (C15)Y is linear, so

R((C15)Y ) = 〈u′2, u′3, v′1, v′2, v′3〉.
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G′ =

 ��Iκ ��Tb ��2T2 �0 �0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 .

Theorem 32 (BDFT19).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix in standard form, and let C′ be the subcode generated by
G′. Then,

rank(Φ(C)) = κ+ rank(φ(C′Y )).
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Example 39.

Let C15 be the Z2Z4-additive code given in Example 32 genrated
by (G15)S . Let

(G′15)S =


�����(u1 | u′1)

�����(u2 | u′2)

�����(u3 | u′3)
(v1 | v′1)
(v2 | v′2)
(v3 | v′3)

 =


�1 �0 �0 �0 �0 �0 �0 �0

�0 �1 �0 �2 �0 �0 �0 �0

�0 �0 �1 �0 �2 �0 �0 �0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 .

R(C15) = 〈u1,u2,u3,v1,v2,v3, 2v2 ∗ v3〉; rank(Φ(C15)) = 10.
R((C′15)Y ) = 〈v′1, v′2, v′3, 2v′2 ? v′3〉; R((C′15)Y ) = 7

R(C15) = κ+R((C′15)Y ).
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Bounds for the rank of Z2Z4-linear codes

Proposition 33 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then, R(C)
is a Z2Z4-additive code of type (α, β; γ + r̄, δ;κ), with r̄ ≥ 0, and
rank(Φ(C)) = log2(|R(C)|) = γ + 2δ + r̄, where

r̄ ∈
{

0, . . . ,min
{
β − (γ − κ)− δ,

(
δ

2

)}}
.
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Theorem 34 (FPV10).

Let α, β, γ, δ, κ be allowable parameters. Then, there exists a
Z2Z4-linear code C of type (α, β; γ, δ;κ) and rank r = γ + 2δ + r̄,
for any

r̄ ∈
{

0, . . . ,min
{
β − (γ − κ)− δ,

(
δ

2

)}}
.

Example 40.

Let C be a Z2Z4-linear code of type (α, 5; 2, 3; 1). Then, r = 8 + r̄,
r̄ ∈ {0, . . . ,min(1, 3)} = {0, 1}; r ∈ {8, 9}.
Let C be a Z2Z4-linear code of type (α, 8; 2, 3; 1). Then, r = 8 + r̄,
r̄ ∈ {0 . . . ,min(4, 3)} = {0, 1, 2, 3}; r ∈ {8, 9, 10, 11}.
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Example

For Z2Z4-additive codes C of type (α, 8; 2, 3; 1),
r ∈ {8, 9, 10, 11}.
We obtain Z2Z4-linear codes C = Φ(C) for all possible ranks,
taking the following generator matrix:

GS =

 1 Tb 0 0 0
0 0 0 2 0
0 Sb Sq 0 I3


r = 8, when Sq = (0) r = 9, when Sq = A

r = 10, when Sq = B r = 11, when Sq = C

A =

(
1 0 0 0
1 0 0 0
0 0 0 0

)
B =

(
1 0 0 0
1 1 0 0
0 1 0 0

)
C =

(
1 0 1 0
1 1 0 0
0 1 1 0

)
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Kernel of Z2Z4-linear codes

Let C be a Z2Z4-additive code. We define the kernel of C, denoted
by K(C), as the Z2Z4-additive code

K(C) = Φ−1(K(Φ(C))).

Proposition 35 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix G. Let {ui}γi=1 and {vj}δj=1 be the row vectors of order
two and four in G, respectively. Then,

K(C) = {u ∈ C | 2u ∗ vj ∈ C, ∀j ∈ {1, . . . , δ}}.
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Corollary 36 (FPV10).

Let C be a Z2Z4-additive code. We have that

Cb ⊆ K(C).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix G. Let {ui}γi=1 and {vj}δj=1 be the row vectors of order
two and four in G, respectively. Then,

〈{ui}γi=1, {2vj}
δ
j=1〉 ⊆ K(C).

©CCSG (Combinatorics, Coding and Security Group) 150/204 150 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Linearity
Rank
Kernel
Paris (r,k)

Corollary 36 (FPV10).

Let C be a Z2Z4-additive code. We have that

Cb ⊆ K(C).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix G. Let {ui}γi=1 and {vj}δj=1 be the row vectors of order
two and four in G, respectively. Then,

〈{ui}γi=1, {2vj}
δ
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Example 41.

Consider the Z2Z4-additive code C15 of type (3, 5; 3, 3; 3)
generated by the following matrix:

(G15)S =


u1

u2

u3

v1

v2

v3

 =


1 0 0 0 0 0 0 0
0 1 0 2 0 0 0 0
0 0 1 0 2 0 0 0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 . (17)

〈u1,u2,u3, 2v1, 2v2, 2v3〉 ⊆ K(C15).

2v1 ∗ v2 = 2v1 ∗ v3 = 0 ∈ C15; v1 ∈ K(C15).

2v2 ∗ v3 6∈ C15; v2,v3, 6∈ K(C15).

K(C15) = 〈u1,u2,u3,v1, 2v2, 2v3〉; ker(C15) = 7.
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Proposition 37 (BDFT19).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then,
K(C) ⊆ CX ×K(CY ) and ker(Φ(C)) ≤ κ+ ker(φ(CY )).

Proposition 38 (BDFT19).

If C is a separable Z2Z4-additive code of type (α, β; γ, δ;κ), then
K(C) = CX ×K(CY ) and ker(Φ(C)) = κ+ ker(φ(CY )).
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Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then,
K(C) ⊆ CX ×K(CY ) and ker(Φ(C)) ≤ κ+ ker(φ(CY )).

Proposition 38 (BDFT19).

If C is a separable Z2Z4-additive code of type (α, β; γ, δ;κ), then
K(C) = CX ×K(CY ) and ker(Φ(C)) = κ+ ker(φ(CY )).
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Example 42.

Let C15 be the Z2Z4-additive code of type (3, 5; 3, 3; 3) given in
Example 32 genrated by (G15)S . Let

(G′15)S =


�����(u1 | u′1)

�����(u2 | u′2)

�����(u3 | u′3)
(v1 | v′1)
(v2 | v′2)
(v3 | v′3)

 =


�1 �0 �0 �0 �0 �0 �0 �0

�0 �1 �0 �2 �0 �0 �0 �0

�0 �0 �1 �0 �2 �0 �0 �0
0 0 1 1 0 1 0 0
0 0 0 0 1 0 1 0
0 0 0 0 1 0 0 1

 .

K(C15) = 〈u1,u2,u3,v1, 2v2, 2v3〉; ker(C15) = 7.
K(C′15) = 〈v′1, 2v′2, 2v′3〉; ker(C15) = 4.

K(C15) = κ+K(C′15).
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Bounds on the kernel dimension of Z2Z4-linear codes

Proposition 39 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then, K(C)
is a Z2Z4-additive subcode of C of type (α, β; γ + k̄, δ − k̄;κ) and
ker(Φ(C)) = γ + 2δ − k̄, where k̄ ∈ {0} ∪ {2, . . . , δ}.

Let C be a Z2Z4code with generator matrix:

GS =

 Iκ Tb 2T2 0 0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 . (18)

The available values for ker(Φ(C)) depends on the number of
columns of Sq, s = β − (γ − κ)− δ.
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G′ =

 ��Iκ ��Tb ��2T2 �0 �0
0 0 2T1 2Iγ−κ 0
0 Sb Sq R Iδ

 .

Theorem 40 (BDFT19).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix in standard form, and let C′ be the subcode generated by
G′. Then,

ker(Φ(C)) = κ+ ker(φ(C′Y )).
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Kernel dimension of Z2Z4-linear codes

Theorem 41 (FPV10).

Let α, β, γ, δ, κ be allowable parameters. Then, there exists a
Z2Z4-linear code C of type (α, β; γ, δ;κ) with
ker(C) = γ + 2δ − k̄ if and only if

k̄ = 0, if s = 0,
k̄ ∈ {0} ∪ {2, . . . , δ} and k̄ even, if s = 1,
k̄ ∈ {0} ∪ {2, . . . , δ}, if s ≥ 2,

and s = β − (γ − κ)− δ.
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Example 43.

Let C be a Z2Z4-linear code of type (α, 7; 2, 5; 1). Then,
s = 1 → k̄ ∈ {0, 2, 4} and ker(C) ∈ {8, 10, 12}.
Let C be a Z2Z4-linear code of type (α, 8; 2, 5; 1). Then,
s = 2 → k̄ ∈ {0, 2, 3, 4, 5} and ; ker(C) ∈ {7, 8, 9, 10, 12}.
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Example

For Z2Z4-additive codes C of type (α, 8; 2, 5; 1),
k = ker(Φ(C)) ∈ {7, 8, 9, 10,−, 12}.

We obtain Z2Z4-linear codes C = Φ(C) for all possible k, taking:

GS =

 1 Tb 0 0 0
0 0 0 2 0

0 Sb Sq 0 I5


k = 12, when Sq = (0) k = 10, when Sq = A k = 9, when Sq = B

k = 8, when Sq = C k = 7, when Sq = D

A =


1 0
1 0
0 0
0 0
0 0

 B =


1 0
1 1
0 1
0 0
0 0

 C =


1 0
1 1
1 1
1 0
0 0

 D =


1 0
1 1
1 1
1 1
0 1
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Let v1, . . . ,vm in Zα2 × Zβ4 and I = {i1, . . . , il} ⊆ {1, . . . ,m}.
Then, denote

vI = vi1 + · · ·+ vil .

If I = ∅, then vI = 0.

Proposition 42 (FPV10).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) with generator
matrix G, and let C = Φ(C) be the corresponding Z2Z4-linear code
with ker(C) = γ + 2δ − k̄, where k̄ ∈ {2, . . . , δ}. Let {vj}δj=1 be
the rows of order four in G. Then, there exists a set
{j1, . . . , jk̄} ⊆ {1, . . . , δ} such that

C =
⋃

I⊆{j1,...,jk̄}

(K(C) + Φ(vI)).
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Example 44.

Let C15 be the Z2Z4-additive defined before. We have that

C15 = 〈u1,u2,u3,v1,v2,v3〉,
K(C15) = 〈u1,u2,u3,v1, 2v2, 2v3〉.

We can write C15 = Φ(C15) as the following union of cosets of
K(C15):

C15 =K(C15)∪(
K(C15) + Φ(v2)

)
∪(

K(C15) + Φ(v3)
)
∪(

K(C15) + Φ(v2 + v3)
)
.

©CCSG (Combinatorics, Coding and Security Group) 160/204 160 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Linearity
Rank
Kernel
Paris (r,k)

4 Linearity, Rank and Kernel
Basic definitions
Linearity
Rank of Z2Z4-linear codes
Kernel of Z2Z4-linear codes
Pairs of rank and dimension of the kernel

©CCSG (Combinatorics, Coding and Security Group) 161/204 161 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Linearity
Rank
Kernel
Paris (r,k)

Proposition 43 (FPV10).

Let C be a Z2Z4-linear code of type (α, β; γ, δ;κ) with
ker(C) = γ + 2δ − k̄ and rank(C) = γ + 2δ + r̄. Then, for any
k̄ ∈ {0} ∪ {2, . . . , δ},

r̄ = 0, if k̄ = 0,

r̄ ∈
{

2, . . . ,min{β − (γ − κ)− δ,
(
k̄
2

)
}
}

, if k̄ is odd,

r̄ ∈
{

1, . . . ,min{β − (γ − κ)− δ,
(
k̄
2

)
}
}

, if k̄ > 0 is even.
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Existence

Theorem 44 (FPV10).

Let α, β, γ, δ, κ be allowable parameters. Then, there exists a
Z2Z4-linear code C of type (α, β; γ, δ;κ) with ker(C) = γ+ 2δ− k̄
and rank(C) = γ + 2δ + r̄ if and only if k̄ ∈ {0} ∪ {2, . . . , δ} and

r̄ = 0, if k̄ = 0,

r̄ ∈
{

2, . . . ,min{β − (γ − κ)− δ,
(
k̄
2

)
}
}

, if k̄ is odd,

r̄ ∈
{

1, . . . ,min{β − (γ − κ)− δ,
(
k̄
2

)
}
}

, if k̄ > 0 is even.
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Example 45.

The possible pairs of rank and dimension of the kernel, (r, k) for
Z2Z4-linear codes of type (α, 9; 2, 5; 1), are the ones given in the
following table:

k \ r 12 13 14 15

12 *
10 *
9 * *
8 * * *
7 * *
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Example 46 (cont.).

For each possible pair (r, k), we can construct a Z2Z4-linear code
Cr,k with rank(Cr,k) = r and ker(Cr,k) = k, taking the following
generator matrix of Cr,k = Φ−1(Cr,k):

Gr,k =

 1 Tb 0 0 0
0 0 0 2 0

0 Sb Sr,k 0 I5

 ,

where Tb, Sb are matrices over Z2; and the matrices Sr,k, for each
(r, k) ∈ {(12, 12), (13, 10), (13, 8), (14, 9), (14, 8), (14, 7),
(15, 9), (15, 8), (15, 7)}, are the following: S12,12 = (0),

©CCSG (Combinatorics, Coding and Security Group) 165/204 165 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Linearity
Rank
Kernel
Paris (r,k)

Example 47 (cont.).

Gr,k =

 1 Tb 0 0 0
0 0 0 2 0

0 Sb Sr,k 0 I5



S13,10 =


1 0 0
1 0 0
0 0 0
0 0 0
0 0 0

 , S13,8 =


1 0 0
1 0 0
1 0 0
1 0 0
0 0 0

 ,
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Example 48 (cont.).

S14,9 =


1 1 0
1 1 0
1 0 0
0 0 0
0 0 0

 , S14,8 =


1 1 0
1 1 0
1 0 0
1 0 0
0 0 0

 , S14,7 =


1 1 0
1 1 0
1 0 0
1 0 0
1 0 0

 ,

S15,9 =


1 1 0
1 1 1
1 0 1
0 0 0
0 0 0

 , S15,8 =


1 1 0
1 1 1
1 0 1
1 0 0
0 0 0

 , S15,7 =


1 1 0
1 1 1
1 0 1
1 0 0
1 0 0

 .
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Magma. Computational Algebra System

http://magma.maths.usyd.edu.au/magma/

http://www.ccsg.uab.cat (Downloads/Z2Z4-Additive Codes version 4.0)

Some functions for linearity, rank and kernel of Z2Z4-additive codes:
HasZ2Z4LinearGrayMapImage(C)

Z2Z4SpanZ2Code(C)

Z2Z4KernelZ2Code(C)

Z2Z4KernelCosetRepresentatives(C)

Z2Z4DimensionOfSpanZ2(C)

Z2Z4RankZ2(C)

Z2Z4DimensionOfKernelZ2(C)
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LCD and ACD codes

A binary (or quaternary) code C is said to be linear complementary
dual (LCD) if it is linear and C ∩ C⊥ = {0} [Mas92].

A code C ⊆ Zα2 × Zβ4 is additive complementary dual (briefly ACD)
if it is a Z2Z4-additive code such that C ∩ C⊥ = {0} [BBD+20].

[Mas92] J.L. Massey.

Linear Codes with Complementary Duals

Disc. Math, 106/107, pp. 337-342, 1992.
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What may be interesting on ACD codes?

Characterization of ACD codes.

Relationship between complemantary duality of C, CX and CY .

Relationship between complemantary duality of C and Φ(C).
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Characterization of ACD codes.

Lemma 49 (Mas92).

Let C be a binary LCD code. Then Zn2 = C ⊕ C⊥. That is, any
vector w in Zn2 can be written uniquely as w1 + w2, for w1 ∈ C
and w2 ∈ C⊥.

Proposition 45 (Mas92).

Let C be a binary (n, k) linear code with generator matrix G and
parity-check matrix H. The following statements are equivalent:

1 C is an LCD code,

2 the k × k matrix GGT is nonsingular,

3 the (n− k)× (n− k) matrix HHT is nonsingular.
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Characterization of ACD codes.

Lemma 50 (BBD+20).

Let C ⊆ Zα2 × Zβ4 be an ACD code. Then any vector w ∈ Zα2 × Zβ4
can be written uniquely as w1 + w2, for w1 ∈ C and w2 ∈ C⊥.

Let C be a Z2Z4-additive code with generator matrix
G = (GX | GY ). We define the product

G · Gt =
(
GX GY

)
·
(
GtX
GtY

)
= 2ι(GX)ι(GX)t +GYG

t
Y .
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Characterization of ACD codes.

Proposition 46 (BBD+20).

Let G be a generator matrix for a Z2Z4-additive code C and
consider the matrix G ·GT = (wij)1≤i,j≤r with entries from Z4. If
wij ∈ {0, 2} and wii /∈ {0, 2} for all i, j = 1, . . . , r such that i 6= j,
then C is an ACD code and CY is a quaternary LCD code.

The reverse is not true in general.
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5 ACD codes
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Complemantary duality of C, CX and CY .
Binary LCD codes from ACD codes

Proposition 47 (BBD+20).

Let C be a Z2Z4-additive code. If C is separable, then C is an ACD
code if and only if CX is a binary LCD code and CY is a quaternary
LCD code.

What happens if C is not separable?
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CX and CY LCD

Example 51.

Let C be a Z2Z4-additive code generated by(
Iα Iα
1 2

)
.

CX = Zα2 is an LCD code.

CY = Zα4 is also LCD.

(1 | 2) ∈ C ∩ C⊥ and C is not ACD.
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Non-separable ACD codes

Given a non-separable ACD code C there are examples of all
possible situations:

Both CX and CY are LCD codes.

Both CX and CY are not LCD codes.

CX is a LCD code and CY is not.

CY is a LCD code and CX is not.
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C ACD, CX , CY LCD

Example 52.

Let C be a Z2Z4-additive code generated by

G =

 1 0 0 1 2 0
0 1 0 0 2 1
0 0 1 2 1 2

 .

G · Gt =

 3 0 0
0 3 0
0 0 3

 .

Therefore, C is ACD. Moreover, CX and CY are both LCD codes.
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C ACD and neither CX nor CY LCD

Example 53.

Let C be the Z2Z4-code with generator matrix, and parity check
matrix

G =

(
1 1 1 2 0
0 0 1 2 1

)
, H =

 1 0 1 0 2
0 1 1 0 2
0 0 1 1 0

 ,

respectively.

C is an ACD code since C ∩ C⊥ = {0}.
(1, 1, 0) ∈ CX ∩ C⊥X .

(2, 0) ∈ CY ∩ C⊥Y .
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C ACD and either CX or CY LCD

Example 54.

Let D1 be a binary (α, δ) self-orthogonal code with generator
matrix GX . Let C be the Z2Z4-additive code generatorated by

G = (GX | Iδ) .

CX is self-orthogonal and hence not LCD.

CY = Zα4 is LCD.

C is ACD.
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C ACD and either CX or CY LCD

Example 55.

Let C be the Z2Z4-additiv code generated by

G = (Iα | 2Iα) .

Then, CX is a binary LCD code and CY is not a quaternary LCD
code because it is a self-dual code.

CX is a binary LCD code.

CY is self-dual and hence not LCD.

C is ACD.
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Let C be a Z2Z4-additive code. When is C = Φ(C) an LCD code?

C Φ−−−−→ C = Φ(C)

⊥
y
C⊥ Φ−−−−→ C⊥ = Φ(C⊥)

Maybe the diagram does not commute.

Maybe C is not linear.

Maybe C⊥ is not linear.
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Theorem 56 (BBD+20).

Let C be an ACD code, C = Φ(C), C⊥ = Φ(C⊥) and

DC = {2u ∗ v | u ∈ C,v ∈ C⊥}.

The following statements are equivalents:

(i) C is linear and DC ⊆ C.

(ii) C⊥ is linear and DC ⊆ C⊥.

(iii) C and C⊥ are linear.

(iv) DC = {0}.
(v) C and C⊥ are LCD.

(vi) C⊥ = C⊥.
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Hamming,Lee distance

The Hamming distance dH(u, v) between two vectors
u = (u1, . . . , un), v = (v1 . . . , vn) ∈ Zn2 is

dH(u, v) = |{i ∈ {1, . . . , n} : ui 6= vi}|

The minimum Hamming distance dH(C) of a binary code C is

dH(C) = min{dH(u, v) : u, v ∈ C, u 6= v}.
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Lee distance

The Lee weights over the elements in Z4 are defined as
wtL(0) = 0, wtL(1) = wtL(3) = 1, and wtL(2) = 2. Then, the
Lee weight of a vector u = (u1 . . . , un) ∈ Zn4 is

wtL(u) =

n∑
i=1

wtL(ui).

The Lee distance dL(u, v) between two vectors u, v ∈ Zn4 is

dL(u, v) = wtL(u− v).

The minimum Lee distance dL(C) of a quaternary code C is

dL(C) = min{dL(u, v) : u, v ∈ C, u 6= v},
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Given two elements u = (u | u′),v = (v | v′) ∈ Zα2 × Zβ4 , we define
the distance between u and v as

d(u,v) = dH(u, v) + dL(u′, v′).

The minimum distance of C is defined as

d(C) = min{d(u,v) : u,v ∈ C and u 6= v}.

It is easy to see that

d(u,v) = dH(Φ(u),Φ(v)),

d(C) = dH(Φ(C)).
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Singleton bound for binary codes

Let C be a binary code of length n and dimension K. The usual
Singleton bound for C [Sing64] is

dH(C) ≤ n− log2 |C|+ 1 = n− k + 1.

The only binary codes achieving this bound are repetition codes
and universe codes [MS77].

[Sing64] R. Singleton.

Maximum distance q-nary codes

IEEE Transactions on Information Theory, vol. 10, pp. 116-118, 1964.

[MS77] F. J. MacWilliams, N. J. A. Sloane.

The Theory of Error-correcting Codes

Elsevier, 1977.
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Singleton bound for Z2Z4-additive codes

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ) and let
C = Φ(C). Since d(C) = d(C), we have [BBDF11]

d(C) ≤ α+ 2β − γ − 2δ + 1. (19)

(For quaternary linear codes in [DS01])

[DS01] S. T. Dougherty, K. Shiromoto.

Maximum distance codes over rings of order 4

IEEE Transactions on Information Theory, vol. 47, pp. 400-404, 2001.
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Rank related bound

From [DS01], if C is a code of length n over a ring R with
minimum distance d(C), then⌊

d(C)− 1

2

⌋
6 n− rank(C), (20)

where rank(C) is the minimal cardinality of a generating system
for C.

©CCSG (Combinatorics, Coding and Security Group) 196/204 196 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Characterization of MDS Z2Z4-additive codes

Theorem 48 (BBDF11).

Let C be a Z2Z4-additive code of type (α, β; γ, δ;κ). Then,

d(C)− 1

2
6
α

2
+ β − γ

2
− δ; (21)⌊

d(C)− 1

2

⌋
6 α+ β − γ − δ. (22)

Singleton bound −→ (21)

Rank related bound −→ (22)
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Let C be a Z2Z4-additive code. We say that C is

maximum distance separable (MDS) if d(C) meets the bound
given in (21) or (22).

MDS with respect to the Singleton bound (MDSS) if it meets
bound given in (21).

MDS with respect to the rank bound (MDSR) if it meets
bound given in (22).
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MDSS codes

Theorem 49 (BBDF11).

Let C be an MDSS Z2Z4-additive code of type (α, β; γ, δ;κ) such
that 1 < |C| < 2α+2β. Then, C is either

(i) the repetition code of type (α, β; 1, 0;κ) and minimum
distance d(C) = α+ 2β, where κ = 1 if α > 0 and κ = 0
otherwise; or

(ii) the even code with minimum distance d(C) = 2 and type
(α, β;α− 1, β;α− 1) if α > 0, or type (0, β; 1, β − 1; 0)
otherwise.
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Note that the codes described in (i) and (ii) of last theorem
Z2Z4-additive dual codes. Hence, the Z2Z4-additive dual of a
MDS code is also an MDS code.

This property is well known property for linear codes over finite
fields [MS77].
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MDSR codes

Theorem 50 (BBDF11).

Let C be an MDSR Z2Z4-additive code of type (α, β; γ, δ;κ) such
that 1 < |C| < 2α+2β. Then, either

(i) C is the repetition code as in with α ≤ 1; or

(ii) C is of type (α, β; γ, α+ β − γ − 1;α), where α ≤ 1 and
d(C) = 4− α ∈ {3, 4}; or

(iii) C is of type (α, β; γ, α+ β − γ;α), where α ≤ 1 and
d(C) ≤ 2− α ∈ {1, 2}.

©CCSG (Combinatorics, Coding and Security Group) 202/204 202 / 204



Introduction
Z2Z4-additive codes

Z2Z4-additive self-dual codes
Linearity, Rank and Kernel

ACD codes
MDS Z2Z4-additive codes

Basic definitions
Characterization of MDS Z2Z4-additive codes

Example 57.

Let C2 be the (1, 1; 0, 1; 0) Z2Z4-additive code of length 2 with
generator matrix

G2 = (1|1).

We have d(C2) = 2 and

d(C2)− 1

2
=
α

2
+ β − γ

2
− δ;⌊

d(C2)− 1

2

⌋
< α+ β − γ − δ.

and it is a MDSS code (it is the even code of lenght 3) and not an
MDSR code.
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Example 58 (cont.).

Its Z2Z4-additive dual code C⊥2 is the repetition code

{(0, 0), (1, 2)}

of type (ᾱ, β̄; γ̄, δ̄; κ̄) = (1, 1; 1, 0; 1). Note that

d(C⊥2 )− 1

2
=
ᾱ

2
+ β̄ − γ̄

2
− δ̄;

⌊
d(C⊥2 )− 1

2

⌋
= ᾱ+ β̄ − γ̄ − δ̄.

Then, C⊥2 is MDSS and MDSR.
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