$\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive Codes

Cristina Fernández-Córdoba

UAB

Universitat Autònoma
de Barcelona
NonCommutative rings and their Applications, VII
July 5-7, 2021

CCSG: J. Borges; C. Fernández; J. Pujol; J. Rifà; M. Villanueva

Outline

(1) Introduction
(2) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes
(3) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

(5) ACD codes

(6) Maximum Distance Separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

4 Linearity, Rank and Kernel
(1) Introduction

- Codes over rings
- Binary codes
- Quaternary codes
(1) Introduction
- Codes over rings
- Binary codes
- Quaternary codes

Consider a principal ideal ring R.
A code C of length n is a subset of R^{n}. If C is a subgroup, then C is an additive code over R.

The dual code of C is defined in the standard way by

$$
C^{\perp}=\left\{\mathbf{v} \in R^{n} \mid \mathbf{u} \cdot \mathbf{v}=0, \text { for all } \mathbf{u} \in C\right\}
$$

where $\mathbf{u} \cdot \mathbf{v}=\sum_{i=0}^{n-1} u_{i} v_{i} \in R$.

What rings are we interested on?

(1) Binary linear codes; $R=\mathbb{Z}_{2}$.
(2) Quaternary linear codes; $R=\mathbb{Z}_{4}$
\square [HKC+94] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A.

The \mathbb{Z}_{4}-linearity of kerdock, preparata, goethals and related codes.
(3) Codes having binary and quaternary coordinates!

What rings are we interested on?

(1) Binary linear codes; $R=\mathbb{Z}_{2}$.
(2) Quaternary linear codes; $R=\mathbb{Z}_{4}$.
[HKC+94] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé.
The \mathbb{Z}_{4}-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Info. Theory, vol. 40, pp. 301-319, 1994.
(3) Codes having binary and quaternary coordinates!

What rings are we interested on?

(1) Binary linear codes; $R=\mathbb{Z}_{2}$.
(2) Quaternary linear codes; $R=\mathbb{Z}_{4}$.
[HKC+94] A.R. Hammons, P.V. Kumar, A.R. Calderbank, N.J.A. Sloane, P. Solé.
The \mathbb{Z}_{4}-linearity of kerdock, preparata, goethals and related codes. IEEE Trans. Info. Theory, vol. 40, pp. 301-319, 1994.
(3) Codes having binary and quaternary coordinates!

Why only binary and quaternary coordinates?

A little bit of history...

1973 Additive codes were defined by Delsarte in terms of association schemes $\left(X, R=\left\{R_{0}, \ldots, R_{d}\right\}\right)$.
\square [Del73] P. Delsarte.
An algebraic approach to the association schemes of coding theory.
Philips Res. Rep. Suppl., vol. 10, pp. iv-97, 1973.
[DL98] P. Delsarte, V. I. Levenshtein.
Association schemes and coding theory,
IEEE Transactions on Information Theory, vol. 44, pp. 2477-2504, 1998.
An additive code is a subgroup of the underlying abelian group in a translation-invariant association scheme:

- X has abelian group structure,
- $(x, y) \in R_{i} \longrightarrow(x+z, y+z) \in R_{i}$, for $i \in\{1, \ldots, d\}$, $x, y, z \in X$.

A little bit of history...

1997 Translation-invariant propelinear codes were defined by Rifà and Pujol.

```
[RP97] J. Rifà, J. Pujol.
```

Translation-invariant propelinear codes
IEEE Transactions on Information Theory, vol. 43, pp. 590-598, 1997.
$C \subseteq \mathbb{Z}_{2}^{n}$ is called a propelinear code if $\forall v \in C$ there exists $\pi_{v} \in S_{n}$ such that:
i) $\forall c \in C: v+\pi_{v}(c) \in C$,
ii) $\forall c \in C: \pi_{v} \circ \pi_{c}=\pi_{m}$, where $m=v+\pi_{v}(c)$.

These codes are group-ismorphic to subgroups of

where \mathbb{Q}_{8} is the non-abelian quaternion group on 8 elements.

A little bit of history...

1997 Translation-invariant propelinear codes were defined by Rifà and Pujol.
[RP97] J. Rifà, J. Pujol.
Translation-invariant propelinear codes
IEEE Transactions on Information Theory, vol. 43, pp. 590-598, 1997.
$C \subseteq \mathbb{Z}_{2}^{n}$ is called a propelinear code if $\forall v \in C$ there exists $\pi_{v} \in S_{n}$ such that:
i) $\forall c \in C: v+\pi_{v}(c) \in C$,
ii) $\forall c \in C: \pi_{v} \circ \pi_{c}=\pi_{m}$, where $m=v+\pi_{v}(c)$.

These codes are group-ismorphic to subgroups of

$$
\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \times \mathbb{Q}_{8}^{\sigma}
$$

where \mathbb{Q}_{8} is the non-abelian quaternion group on 8 elements.

From [RP97] and [DL98]...
...codes that are subgroups of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ are the only additive codes in the binary
Hamming scheme.

(1) Introduction

- Codes over rings
- Binary codes
- Quaternary codes

Binary codes

Let $C \subseteq \mathbb{Z}_{2}^{n}$ be a binary code.
If C is a subgroup of \mathbb{Z}_{2}^{n}, then C is a binary linear code.

Two binary codes C_{1} and C_{2} of length n are equivalent if there exists a vector $a \in \mathbb{Z}_{2}^{n}$ and a coordinate permutation $\pi \in S_{n}$ such that $C_{2}=\left\{a+\pi(c) \mid c \in C_{1}\right\}$.

They are permutation-equivalent or isomorphic if there exists a coordinate permutation $\pi \in S_{n}$ such that $C_{2}=\left\{\pi(c) \mid c \in C_{1}\right\}$.

Example 1.

Let C be a binary linear code of length 5 and dimension 2 , with generator matrix

$$
G=\left(\begin{array}{lllll}
1 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 1
\end{array}\right)
$$

The dual code $C^{\perp}=\left\{v \in \mathbb{Z}_{2}^{n} \mid u \cdot v=0\right.$ for all $\left.u \in C\right\}$ is a binary linear code of length 5 and dimension 3, with generator matrix

$$
H=\left(\begin{array}{lllll}
1 & 0 & 1 & 0 & 0 \\
1 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

The matrix H is a generator matrix of C^{\perp} and a parity-check matrix of C.
The code C has 2^{2} codewords and its dual code C^{\perp} has 2^{3} codewords, so $|C| \cdot\left|C^{\perp}\right|=2^{2} \cdot 2^{3}=2^{5}$.
(1) Introduction

- Codes over rings
- Binary codes
- Quaternary codes

Quaternary codes

A quaternary linear code \mathcal{C} is a subgroup of \mathbb{Z}_{4}^{n}.
Since \mathcal{C} is a subgroup of \mathbb{Z}_{4}^{n}, it is isomorphic to an abelian structure like $\mathbb{Z}_{2}^{\gamma} \times \mathbb{Z}_{4}^{\delta}$.

Its order is a power of two and its type is of the form $2^{\gamma} 4^{\delta}$.

- The number of codewords is $|\mathcal{C}|=2^{\gamma} 4^{\delta}$.
- The number of order two codewords is $2^{\gamma+\delta}$.

Proposition 1 (HKC+94).

Any quaternary linear code \mathcal{C} of length n and type $4^{\delta} 2^{\gamma}$ is permutation equivalent to a quaternary linear code with generator matrix of the form

$$
\mathcal{G}_{S}=\left(\begin{array}{ccc}
2 T & 2 I_{\gamma} & \mathbf{0} \tag{1}\\
S & R & I_{\delta}
\end{array}\right)
$$

where R, T are matrices over \mathbb{Z}_{2} of size $\delta \times \gamma$ and $\gamma \times(n-\gamma-\delta)$, respectively; and S is a matrix over \mathbb{Z}_{4} of size $\delta \times(n-\gamma-\delta)$.

Proposition 2 (HKC+94).

The quaternary dual code \mathcal{C}^{\perp} of the quaternary linear code \mathcal{C} of length n with generator matrix \mathcal{G}_{S} as (1) has generator matrix

$$
\mathcal{H}_{S}=\left(\begin{array}{ccc}
\mathbf{0} & 2 I_{\gamma} & 2 R^{t} \tag{2}\\
I_{n-\gamma-\delta} & T^{t} & -(S+R T)^{t}
\end{array}\right),
$$

where R, T are matrices over \mathbb{Z}_{2} of size $\delta \times \gamma$ and $\gamma \times(n-\gamma-\delta)$, respectively; and S is a matrix over \mathbb{Z}_{4} of size $\delta \times(n-\gamma-\delta)$.

Gray map. \mathbb{Z}_{4}-linear codes

The usual Gray map $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}^{2}$ is defined as

$$
\phi(0)=00, \quad \phi(1)=01, \quad \phi(2)=11, \quad \phi(3)=10 .
$$

Then, the (exended) Gray map is $\phi: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{Z}_{2}^{2 n}$

$$
\phi\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(\phi\left(x_{1}\right), \ldots \phi\left(x_{n}\right)\right)
$$

Quaternary linear codes can be viewed as binary codes under the usual Gray map. If \mathcal{C} is a quaternary linear code, then the corresponding binary code $C=\phi(\mathcal{C})$ is said to be a \mathbb{Z}_{4}-linear code.

Gray map. \mathbb{Z}_{4}-linear codes

The usual Gray map $\phi: \mathbb{Z}_{4} \rightarrow \mathbb{Z}_{2}^{2}$ is defined as

$$
\phi(0)=00, \quad \phi(1)=01, \quad \phi(2)=11, \quad \phi(3)=10 .
$$

Then, the (exended) Gray map is $\phi: \mathbb{Z}_{4}^{n} \rightarrow \mathbb{Z}_{2}^{2 n}$

$$
\phi\left(x_{1}, \ldots, x_{n}\right) \rightarrow\left(\phi\left(x_{1}\right), \ldots \phi\left(x_{n}\right)\right)
$$

Quaternary linear codes can be viewed as binary codes under the usual Gray map. If \mathcal{C} is a quaternary linear code, then the corresponding binary code $C=\phi(\mathcal{C})$ is said to be a \mathbb{Z}_{4}-linear code.

Two quaternary codes \mathcal{C}_{1} and \mathcal{C}_{2} both of length n are monomially equivalent if one can be obtained from the other by permutating the coordinates and (if necessary) changing the signs of certain coordinates.

They are permutation equivalent if they differ only by a permutation of coordinates.

If \mathcal{C}_{1} and \mathcal{C}_{2} both of length n are monomially equivalent, then $\phi\left(\mathcal{C}_{1}\right)$ and $\phi\left(\mathcal{C}_{2}\right)$ are permutation equivalent.
(2) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Definitions
- Generator matrices
- Dual codes. Parity-check matrices
- Coding and decoding

Bibliography

[BFR+10] J. Borges, C. Fernández-Córdoba, J. Rifà, J. Pujol and M. Villanueva.
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: generator matrices and duality
Designs, Codes and Cryptography, vol. 54, pp. 167-179, 2010.

(2) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Definitions
- Generator matrices
- Dual codes. Parity-check matrices
- Coding and decoding

Definitions

If \mathcal{C} is a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, then \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code.
For a vector $\mathbf{u} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, we write $\mathbf{u}=\left(u \mid u^{\prime}\right)$, where $u \in \mathbb{Z}_{2}^{\alpha}$ and $u^{\prime} \in \mathbb{Z}_{4}^{\beta}$.
A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, so it is also isomorphic to an abelian structure like $\mathbb{Z}_{2}^{\gamma} \times \mathbb{Z}_{4}^{\delta}$.
Let \mathcal{C}_{b} be the subcode of \mathcal{C} which contains all codewords of order at most 2 .

- The order of \mathcal{C} is $|\mathcal{C}|=2^{\gamma} 4^{\delta}$.
- The number codewords of order at most two in \mathcal{C} is

$$
\left|\mathcal{C}_{b}\right|=2^{\gamma+\delta}
$$

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 2.

$$
\begin{aligned}
& \mathcal{C}_{1}=\{ (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
&(10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\} \\
&\left(\mathcal{C}_{1}\right)_{b}=\{(00 \mid 0000),(00 \mid 0022),(10 \mid 2020),(10 \mid 2002)\}
\end{aligned}
$$

- $\mathcal{C}_{1} \subseteq \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}^{4}$,
- $\left|\mathcal{C}_{1}\right|=2^{\gamma+2 \delta}=8$,
- $\left|\left(\mathcal{C}_{1}\right)_{b}\right|=2^{\gamma+\delta}=4$.

$$
\Longrightarrow \alpha=2, \beta=4, \gamma=2, \delta=2
$$

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 2.

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\} \\
\left(\mathcal{C}_{1}\right)_{b}= & \{(00 \mid 0000),(00 \mid 0022),(10 \mid 2020),(10 \mid 2002)\}
\end{aligned}
$$

- $\mathcal{C}_{1} \subseteq \mathbb{Z}_{2}^{2} \times \mathbb{Z}_{4}^{4}$,
- $\left|\mathcal{C}_{1}\right|=2^{\gamma+2 \delta}=8$,
- $\left|\left(\mathcal{C}_{1}\right)_{b}\right|=2^{\gamma+\delta}=4$.

$$
\Longrightarrow \alpha=2, \beta=4, \gamma=2, \delta=2
$$

Let X (respectively Y) be the set of \mathbb{Z}_{2} (respectively \mathbb{Z}_{4}) coordinate positions, so $|X|=\alpha$ and $|Y|=\beta$. Unless otherwise stated, the set X corresponds to the first α coordinates and Y corresponds to the last β coordinates.

Call \mathcal{C}_{X} (respectively \mathcal{C}_{Y}) the punctured code of \mathcal{C} by deleting the coordinates out of X (respectively Y).

Let κ be the dimension of $\left(\mathcal{C}_{b}\right)_{X}$, which is a binary linear code. For the case $\alpha=0$, we will write $\kappa=0$.

Then, we will say that \mathcal{C} is of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$.

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 3 (Cont. Example 1).

$$
\begin{gathered}
\mathcal{C}_{1}=\{(00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
(10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\} \\
\left(\mathcal{C}_{1}\right)_{b}=\{(00 \mid 0000),(00 \mid 0022),(10 \mid 2020),(10 \mid 2002)\} \\
\left(\left(\mathcal{C}_{1}\right)_{b}\right)_{X}=\{(00),(10)\} \\
\mathcal{C}_{1} \text { is of type }(2,4 ; 2,2 ; 1)
\end{gathered}
$$

Example 3 (Cont. Example 1).

$$
\begin{gathered}
\mathcal{C}_{1}=\{(00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
(10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\} \\
\left(\mathcal{C}_{1}\right)_{b}=\{(00 \mid 0000),(00 \mid 0022),(10 \mid 2020),(10 \mid 2002)\} \\
\left(\left(\mathcal{C}_{1}\right)_{b}\right)_{X}=\{(00),(10)\} \\
\mathcal{C}_{1} \text { is of type }(2,4 ; 2,2 ; 1)
\end{gathered}
$$

The $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ are a generalization of binary linear codes and quaternary linear codes.

- If $\beta=0$, the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code is a binary linear code. In general, any binary linear code of length n and dimension k, an $[n, k]$ code, is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type ($n, 0 ; k, 0 ; k$).
- If $\alpha=0$, the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code is a quaternary linear code. In general, any quaternary linear code of length n and type $2^{\gamma} 4^{\delta}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(0, n ; \gamma, \delta ; 0)$.

Counting $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Theorem 4 (DS15).

The number of distinct $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ is

$$
2^{(\alpha+\beta-\gamma-\delta) \delta+(\beta-\delta-\gamma+\kappa) \kappa}\left[\begin{array}{l}
\beta \\
\delta
\end{array}\right]_{2}\left[\begin{array}{l}
\alpha \\
\kappa
\end{array}\right]_{2}\left[\begin{array}{l}
\beta-\delta \\
\gamma-\kappa
\end{array}\right]_{2},
$$

where $\left[\begin{array}{l}x \\ k\end{array}\right]_{2}$ is the binary Gaussian binomial coefficient for $k \geq 0$ and x a real number.
[[DS15] S.T. Dougherty, E. Salturk.
Counting $\mathbb{Z}_{2} \mathbb{Z}_{4}$-Additive Codes.
NoncommutativeRings and Their Applications, Contemporary
Mathematics, vol. 634, pp. 137-147, 2015.

Separable codes

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is said to be separable if $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Example 5.

Let \mathcal{C} be the code

We have

$$
\begin{aligned}
\mathcal{C}_{X} & =\{00,11\} \\
\mathcal{C}_{Y} & =\{00,12,20,32\}
\end{aligned}
$$

Then, \mathcal{C} is separable: $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Definitions

Separable codes

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is said to be separable if $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Example 5.

Let \mathcal{C} be the code

$$
\begin{aligned}
\mathcal{C}=\{ & (00 \mid 00),(00 \mid 12),(00 \mid 20),(00 \mid 32) \\
& (11 \mid 00),(11 \mid 12),(11 \mid 20),(11 \mid 32)\}
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathcal{C}_{X} & =\{00,11\}, \\
\mathcal{C}_{Y} & =\{00,12,20,32\} .
\end{aligned}
$$

Then, \mathcal{C} is separable: $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Definitions

Separable codes

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is said to be separable if $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Example 5.

Let \mathcal{C} be the code

$$
\begin{aligned}
\mathcal{C}=\{ & (00 \mid 00),(00 \mid 12),(00 \mid 20),(00 \mid 32) \\
& (11 \mid 00),(11 \mid 12),(11 \mid 20),(11 \mid 32)\}
\end{aligned}
$$

We have

$$
\begin{aligned}
& \mathcal{C}_{X}=\{00,11\} \\
& \mathcal{C}_{Y}=\{00,12,20,32\} .
\end{aligned}
$$

Then, \mathcal{C} is separable: $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$

Separable codes

A $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} is said to be separable if $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Example 5.

Let \mathcal{C} be the code

$$
\begin{aligned}
\mathcal{C}=\{ & (00 \mid 00),(00 \mid 12),(00 \mid 20),(00 \mid 32) \\
& (11 \mid 00),(11 \mid 12),(11 \mid 20),(11 \mid 32)\}
\end{aligned}
$$

We have

$$
\begin{aligned}
\mathcal{C}_{X} & =\{00,11\} \\
\mathcal{C}_{Y} & =\{00,12,20,32\}
\end{aligned}
$$

Then, \mathcal{C} is separable: $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$.

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 6.

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left(\mathcal{C}_{1}\right)_{X}= & \{00,10,01,11\}, \\
\left(\mathcal{C}_{1}\right)_{Y}= & \{0000,2211,0022,2233, \\
& 2020,0231,2002,0213\} .
\end{aligned}
$$

Then, \mathcal{C}_{1} is not separable: $\mathcal{C}_{1} \neq\left(\mathcal{C}_{1}\right)_{X} \times\left(\mathcal{C}_{1}\right)_{Y}$

Definitions

Example 6.

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left(\mathcal{C}_{1}\right)_{X}= & \{00,10,01,11\} \\
\left(\mathcal{C}_{1}\right)_{Y}= & \{0000,2211,0022,2233 \\
& 2020,0231,2002,0213\}
\end{aligned}
$$

Then， \mathcal{C}_{1} is not separable： $\mathcal{C}_{1} \neq\left(\mathcal{C}_{1}\right)_{X} \times\left(\mathcal{C}_{1}\right)_{Y}$ ．

Definitions

Example 6.

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{aligned}
$$

We have

$$
\begin{aligned}
\left(\mathcal{C}_{1}\right)_{X}= & \{00,10,01,11\} \\
\left(\mathcal{C}_{1}\right)_{Y}= & \{0000,2211,0022,2233 \\
& 2020,0231,2002,0213\}
\end{aligned}
$$

Then, \mathcal{C}_{1} is not separable: $\mathcal{C}_{1} \neq\left(\mathcal{C}_{1}\right)_{X} \times\left(\mathcal{C}_{1}\right)_{Y}$.

...some more parameters

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Let $\kappa_{1} \leq \kappa$ and $\delta_{2} \leq \delta$ such that
(1) $\{(u \mid \mathbf{0}) \in \mathcal{C}\}$ is of type $\left(\alpha, \beta ; \kappa_{1}, 0 ; \kappa_{1}\right)$,
(2) $\left\langle\left\{\left(\mathbf{0} \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=\mathbf{0}\right.\right.$ or the order of u^{\prime} is four $\left.\}\right\rangle$ is of type $\left(\alpha, \beta ; \gamma^{\prime}, \delta_{2} ; 0\right)$ for an integer $\gamma^{\prime} \leq \gamma$.
Consider the values κ_{2} and δ_{1} such that

$$
\begin{equation*}
\kappa=\kappa_{1}+\kappa_{2} \quad \text { and } \quad \delta=\delta_{1}+\delta_{2} \tag{3}
\end{equation*}
$$

(1) \mathcal{C}_{X} is a binary linear $\left[\alpha, \kappa+\delta_{1}\right]$ code.
(3) \mathcal{C}_{Y} is a quaternary linear code of length β and type $2^{\gamma-\kappa_{1}} 4^{\delta}$.
(3) \mathcal{C} is separable if and only if κ_{2} and δ_{1} are zero; that is, $\kappa=\kappa_{1}$ and $\delta=\delta_{2}$.
(1) \mathcal{C}_{X} is a binary linear $\left[\alpha, \kappa+\delta_{1}\right]$ code.
(2) \mathcal{C}_{Y} is a quaternary linear code of length β and type $2^{\gamma-\kappa_{1}} 4^{\delta}$.
(3) \mathcal{C} is separable if and only if κ_{2} and δ_{1} are zero; that is, $\kappa=\kappa_{1}$ and $\delta=\delta_{2}$.
(1) \mathcal{C}_{X} is a binary linear $\left[\alpha, \kappa+\delta_{1}\right]$ code.
(2) \mathcal{C}_{Y} is a quaternary linear code of length β and type $2^{\gamma-\kappa_{1}} 4^{\delta}$.
(3) \mathcal{C} is separable if and only if κ_{2} and δ_{1} are zero; that is, $\kappa=\kappa_{1}$ and $\delta=\delta_{2}$.

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 7.

Let \mathcal{C} be the code of type $(2,2 ; 1,1 ; 1)$

$$
\begin{aligned}
\mathcal{C}=\{ & (00 \mid 00),(00 \mid 12),(00 \mid 20),(00 \mid 32) \\
& (11 \mid 00),(11 \mid 12),(11 \mid 20),(11 \mid 32)\}
\end{aligned}
$$

- $\{(u \mid 0) \in \mathcal{C}\}=\{(00 \mid 00),(11 \mid 00)\}$ is of type $(2,2 ; 1,0 ; 1)$; $\kappa_{1}=1, \kappa_{2}=0$.
- $\left\langle\left\{\left(\mathbf{0} \mid u^{\prime}\right) \in \mathcal{C} \cdot u^{\prime}=0\right.\right.$ or the order of u^{\prime} is four $\left.\}\right\rangle=\langle\{(00 \mid 00),(00$ $12)\})$ is of type $(2,2 ; 0,1 ; 0) ; \delta_{2}=1, \delta_{1}=0$.
- $\mathcal{C}_{X}=\{00,11\}$ is a linear $[2,1+0]$ code.
- $\mathcal{C}_{Y}=\{00,12,20,32\}$ is a quaternary linear code of lenght 2 and type
- Since $\kappa=\kappa_{1}$ and $\delta=\delta_{2}, \mathcal{C}$ is separable.

Definitions

Example 7.

Let \mathcal{C} be the code of type $(2,2 ; 1,1 ; 1)$

$$
\begin{aligned}
\mathcal{C}=\{ & (00 \mid 00),(00 \mid 12),(00 \mid 20),(00 \mid 32) \\
& (11 \mid 00),(11 \mid 12),(11 \mid 20),(11 \mid 32)\}
\end{aligned}
$$

- $\{(u \mid \mathbf{0}) \in \mathcal{C}\}=\{(00 \mid 00),(11 \mid 00)\}$ is of type $(2,2 ; \mathbf{1}, 0 ; \mathbf{1})$;
$\kappa_{1}=1, \kappa_{2}=0$.
- $\left\langle\left\{\left(\mathbf{0} \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=\mathbf{0}\right.\right.$ or the order of u^{\prime} is four $\left.\}\right\rangle=\langle\{(00 \mid 00),(00 \mid$ $12)\}\rangle$ is of type $(2,2 ; 0, \mathbf{1} ; 0) ; \delta_{2}=1, \delta_{1}=0$.
- $C_{X}=\{00,11\}$ is a linear $[2,1+0]$ code.
- $\mathcal{C}_{Y}=\{00,12,20,32\}$ is a quaternary linear code of lenght 2 and type - Since $\kappa=\kappa_{1}$ and $\delta=\delta_{2}, \mathcal{C}$ is separable.

Example 7.

Let \mathcal{C} be the code of type $(2,2 ; 1,1 ; 1)$

$$
\begin{aligned}
\mathcal{C}=\{ & (00 \mid 00),(00 \mid 12),(00 \mid 20),(00 \mid 32) \\
& (11 \mid 00),(11 \mid 12),(11 \mid 20),(11 \mid 32)\}
\end{aligned}
$$

- $\{(u \mid \mathbf{0}) \in \mathcal{C}\}=\{(00 \mid 00),(11 \mid 00)\}$ is of type $(2,2 ; \mathbf{1}, 0 ; \mathbf{1})$;
$\kappa_{1}=1, \kappa_{2}=0$.
- $\left\langle\left\{\left(\mathbf{0} \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=\mathbf{0}\right.\right.$ or the order of u^{\prime} is four $\left.\}\right\rangle=\langle\{(00 \mid 00),(00 \mid$ $12)\}\rangle$ is of type $(2,2 ; 0, \mathbf{1} ; 0) ; \delta_{2}=1, \delta_{1}=0$.
- $\mathcal{C}_{X}=\{00,11\}$ is a linear $[2,1+0]$ code.
- $\mathcal{C}_{Y}=\{00,12,20,32\}$ is a quaternary linear code of lenght 2 and type $2^{1-1} 4^{1}$.
- Since $\kappa=\kappa_{1}$ and $\delta=\delta_{2}, \mathcal{C}$ is separable.

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 8.

Let \mathcal{C}_{1} be the code of type $(2,4 ; 1,1 ; 1)$

$$
\begin{aligned}
& \mathcal{C}_{1}=\{(00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\} \\
& \{(u \mid 0) \in \mathcal{C}\}=\{(00 \mid 0000)\} \text { is of type }(2,4 ; 0,0 ; 0) ; k_{1}=0, \kappa_{2}=1 . \\
& \left\langle\left\{\left(0 \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=0 \text { or the order of } u^{\prime} \text { is four }\right\}\right\rangle=\langle\{(00 \mid 0000)\}\rangle \text { is of } \\
& \text { type }(2,4 ; 0,0 ; 0) ; \delta_{2}=0, \delta_{1}=1 . \\
& \left(C_{1}\right) x=\{00,10,01,11\} \text { is a linear }[2,1+1] \text { code. } \\
& \left(C_{1}\right) y=\{0000,2211,0022,2233,2020,0231,2002,0213\} \text { is a quaternary } \\
& \text { linear code of lenght } 2 \text { and type } 2^{1-0} 4^{1} .
\end{aligned}
$$

- Since $\kappa \neq \kappa_{1}\left(\right.$ or $\left.\delta \neq \delta_{2}\right), \mathcal{C}_{1}$ is not separable.

Definitions

Generator matrices
Dual codes. Parity-check matrices
Coding and decoding

Example 8.

Let \mathcal{C}_{1} be the code of type $(2,4 ; 1,1 ; 1)$

$$
\begin{aligned}
& \mathcal{C}_{1}=\{(00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\} \\
& \{(u \mid 0) \in \mathcal{C}\}=\{(00 \mid 0000)\} \text { is of type }(2,4 ; 0,0 ; 0) ; k_{1}=0, \kappa_{2}=1 . \\
& \left\langle\left\{\left(0 \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=0 \text { or the order of } u^{\prime} \text { is four }\right\}\right\rangle=\langle\{(00 \mid 0000)\}\rangle \text { is of } \\
& \text { type }(2,4 ; 0,0 ; 0) ; \delta_{2}=0, \delta_{1}=1 . \\
& \left(C_{1}\right) x=\{00,10,01,11\} \text { is a linear }[2,1+1] \text { code. } \\
& \left(C_{1}\right) y=\{0000,2211,0022,2233,2020,0231,2002,0213\} \text { is a quaternary } \\
& \text { linear code of lenght } 2 \text { and type } 2^{1-0} 4^{1} .
\end{aligned}
$$

- Since $\kappa \neq \kappa_{1}\left(\right.$ or $\left.\delta \neq \delta_{2}\right), \mathcal{C}_{1}$ is not separable.

Definitions

Example 8.

Let \mathcal{C}_{1} be the code of type $(2,4 ; 1,1 ; 1)$

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{aligned}
$$

- $\{(u \mid \mathbf{0}) \in \mathcal{C}\}=\{(00 \mid 0000)\}$ is of type $(2,4 ; \mathbf{0}, 0 ; \mathbf{0}) ; \kappa_{1}=0, \kappa_{2}=1$.
- $\left\langle\left\{\left(\mathbf{0} \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=\mathbf{0}\right.\right.$ or the order of u^{\prime} is four $\left.\}\right\rangle=\langle\{(00 \mid 0000)\}\rangle$ is of type $(2,4 ; 0, \mathbf{0} ; 0) ; \delta_{2}=0, \delta_{1}=1$.
$\left(C_{1}\right)_{X}=\{00,10,01,11\}$ is a linear $[2,1+1]$ code.
- $\left(\mathcal{C}_{1}\right)_{y}=\{0000,2211,0022,2233,2020,0231,2002,0213\}$ is a quaternary linear code of lenght 2 and type $2^{1-0} 4^{1}$.
- Since $\kappa \neq \kappa_{1}\left(\right.$ or $\left.\delta \neq \delta_{2}\right), C_{1}$ is not separable.

Example 8.

Let \mathcal{C}_{1} be the code of type $(2,4 ; 1,1 ; 1)$

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{aligned}
$$

- $\{(u \mid \mathbf{0}) \in \mathcal{C}\}=\{(00 \mid 0000)\}$ is of type $(2,4 ; \mathbf{0}, 0 ; \mathbf{0}) ; \kappa_{1}=0, \kappa_{2}=1$.
- $\left\langle\left\{\left(\mathbf{0} \mid u^{\prime}\right) \in \mathcal{C}: u^{\prime}=\mathbf{0}\right.\right.$ or the order of u^{\prime} is four $\left.\}\right\rangle=\langle\{(00 \mid 0000)\}\rangle$ is of type $(2,4 ; 0, \mathbf{0} ; 0) ; \delta_{2}=0, \delta_{1}=1$.
- $\left(\mathcal{C}_{1}\right)_{X}=\{00,10,01,11\}$ is a linear $[2,1+1]$ code.
- $\left(\mathcal{C}_{1}\right)_{Y}=\{0000,2211,0022,2233,2020,0231,2002,0213\}$ is a quaternary linear code of lenght 2 and type $2^{1-0} 4^{1}$.
- Since $\kappa \neq \kappa_{1}\left(\right.$ or $\left.\delta \neq \delta_{2}\right), \mathcal{C}_{1}$ is not separable.

Two $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes \mathcal{C}_{1} and \mathcal{C}_{2} are monomially equivalent if one can be obtained from the other by permutating the coordinates and (if necessary) changing the signs of certain coordinates over \mathbb{Z}_{4}.

They are permutation equivalent if they differ only by a permutation of coordinates.

Gray map. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes

The Gray map is $\Phi: \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \rightarrow \mathbb{Z}_{2}^{\alpha+2 \beta}$:

$$
\begin{aligned}
& \Phi\left(x_{1}, \ldots, x_{\alpha}, x_{\alpha+1}, \ldots, x_{\alpha+\beta}\right) \rightarrow \\
& \quad\left(x_{1}, \ldots, x_{\alpha}, \phi\left(x_{\alpha+1}\right), \ldots \phi\left(x_{\alpha+\beta}\right)\right) .
\end{aligned}
$$

As for quaternary linear codes, $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes can be view as binary codes under the Gray map.

If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code, then the corresponding binary code $C=\Phi(\mathcal{C})$ is said to be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of length $n=\alpha+2 \beta$ and type ($\alpha, \beta ; \gamma, \delta ; \kappa$), where γ, δ and κ are defined as above.

If two $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes \mathcal{C}_{1} and \mathcal{C}_{2} are monomially equivalent, then, after the Gray map, the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes $C_{1}=\Phi\left(\mathcal{C}_{1}\right)$ and $C_{2}=\Phi\left(\mathcal{C}_{2}\right)$ are permutation equivalent as binary codes.

Note that the inverse statement is not always true.

(2) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Definitions
- Generator matrices
- Dual codes. Parity-check matrices
- Coding and decoding

Generator matrices

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. Although \mathcal{C} is not a free module, every codeword is uniquely expressible in the form

$$
\sum_{i=1}^{\gamma} \lambda_{i} u_{i}+\sum_{j=1}^{\delta} \mu_{j} v_{j}
$$

where $\lambda_{i} \in \mathbb{Z}_{2}$ for $1 \leq i \leq \gamma, \mu_{j} \in \mathbb{Z}_{4}$ for $1 \leq j \leq \delta$ and $u_{i}, v_{j} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ of order two and order four, respectively.

The vectors $\left\{u_{i}\right\}_{i=1}^{\gamma},\left\{v_{j}\right\}_{j=1}^{\delta}$ give us a generator matrix \mathcal{G} of \mathcal{C} of size $(\gamma+\delta) \times(\alpha+\beta)$ and of the form

$$
\mathcal{G}=\left(\begin{array}{c|c}
B_{1} & 2 B_{3} \\
B_{2} & Q
\end{array}\right),
$$

where B_{1}, B_{2} are matrices over \mathbb{Z}_{2} of size $\gamma \times \alpha$ and $\delta \times \alpha$, resp.; and B_{3}, Q are matrices over \mathbb{Z}_{4} of size $\gamma \times \beta$ and $\delta \times \beta$, resp. In B_{3} all entries are in $\{0,1\}$ and in Q all row vector is of order four.

Theorem 3 (BFR+10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then, \mathcal{C} is permutation equivalent to a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix in standard the form

$$
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \tag{4}\\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

where T_{b}, S_{b} are matrices over \mathbb{Z}_{2} and S_{q}, T_{1}, T_{2}, R is a matrix over \mathbb{Z}_{4}, and all the entries of T_{1}, T_{2} and R are in $\{0,1\}$.

Lemma 4 (BFR+10).

There exists a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ if and only if

$$
\begin{gather*}
\alpha, \beta, \gamma, \delta, \kappa \geq 0, \quad \alpha+\beta>0 \tag{5}\\
0<\delta+\gamma \leq \beta+\kappa \quad \text { and } \quad \kappa \leq \min (\alpha, \gamma)
\end{gather*}
$$

Example 9.

Let \mathcal{C}_{1} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(2,4 ; 1,1 ; 1)$

$$
\begin{aligned}
\mathcal{C}_{1}=\{ & (00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
& (10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{aligned}
$$

We have that \mathcal{C}_{1} is generated by

$$
\mathcal{G}_{1}=\left(\begin{array}{ll|llll}
\mathbf{1} & 0 & 2 & 0 & 2 & 0 \\
1 & 1 & 2 & 2 & 1 & \mathbf{1}
\end{array}\right)
$$

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix in standard form

$$
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

Then, \mathcal{C} is permutation equivalent to a code with generator matrix as

$$
\mathcal{G}^{\prime}=\left(\begin{array}{cccc|ccccc}
I_{\kappa_{1}} & T_{b_{1}} & T_{b_{2}} & T_{b_{3}} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} \tag{6}\\
\mathbf{0} & I_{\kappa_{2}} & T_{b_{4}} & T_{b_{5}} & 2 T_{2} & 2 T_{2}^{\prime} & \mathbf{0} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 2 T_{1} & 2 T_{1}^{\prime} & 2 I_{\gamma-\kappa} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & S_{b_{1}} & S_{b_{2}} & S_{q_{1}} & S_{q_{2}} & R_{1} & I_{\delta_{1}} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & S_{q_{3}} & S_{q_{4}} & R_{2} & R_{3} & I_{\delta_{2}}
\end{array}\right) \text {, }
$$

where $T_{b_{i}}, S_{b_{j}}$ are matrices over $\mathbb{Z}_{2}, S_{q_{k}}, R_{s}, T_{t}$ are quaternary matrices, and all the entries of T_{t} are in $\{0,1\}$.

Example 10.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix in standard form \mathcal{G}_{S}

$$
\mathcal{G}_{S}=\left(\begin{array}{l|l}
1111 & 000000 \\
0101 & 220000 \\
0000 & 202000 \\
0101 & 000200 \\
0101 & 111010 \\
0011 & 101101
\end{array}\right) ; \mathcal{G}^{\prime}=\left(\begin{array}{l|l}
1111 & 000000 \\
0101 & 220000 \\
0000 & 202000 \\
0101 & 000200 \\
0011 & 101110 \\
0000 & 111201
\end{array}\right)
$$

\mathcal{C} is permutation equivalent to a code generated by \mathcal{G}^{\prime}. Therefore, $\kappa_{1}=1$ and $\delta_{2}=1$.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive separable code; $\kappa=\kappa_{1}$, $\delta=\delta_{2}$

$$
\begin{aligned}
& \Downarrow \\
& \mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 0 & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & S_{q} & R & I_{\delta}
\end{array}\right),
\end{aligned}
$$

(2) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Definitions
- Generator matrices
- Dual codes. Parity-check matrices
- Coding and decoding

Duality of codes over rings.

Let R be a principal ideal ring.
The inner product for any two vectors $u, v \in R^{n}$ is defined as:

$$
u \cdot v=u_{1} v_{1}+u_{2} v_{2}+\cdots+u_{n} v_{n} \in R
$$

Let $\mathcal{C} \subseteq R^{n}$ be a linear code of length n over R. The dual code of \mathcal{C}, denoted by \mathcal{C}^{\perp}, is defined in the standard way:

$$
\mathcal{C}^{\perp}=\left\{v \in R^{n} \mid u \cdot v=0 \text { for all } u \in \mathcal{C}\right\} .
$$

It is easy to see that \mathcal{C}^{\perp} is a subgroup of R^{n}, so \mathcal{C}^{\perp} is also a quaternary linear code.

Dual of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes. Parity-check matrices

What if we have a code $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$????

Fundamental theorem of finite Abelian groups

The fundamental theorem of finite Abelian groups states that a finite Abelian group G is isomorphic to

$$
\left\langle p_{1}^{\alpha_{1}}\right\rangle \times \cdots \times\left\langle p_{k}^{\alpha_{k}}\right\rangle
$$

where p_{1}, \ldots, p_{k} are not necessarily distinct prime numbers, and $\alpha_{i} \geq 1$ for any $i \in\{1, \ldots, k\}$.

- The decomposition is unique up to the order in which the factors are written.
- $\left\{p_{1}^{\alpha_{1}}, \ldots, p_{k}^{\alpha_{k}}\right\}$ is a basis.
- The exponent of G is $m=\operatorname{lcm}\left\{p_{i}{ }^{\alpha^{i}} \mid i=1, \ldots, k\right\}$.

Fundamental theorem of finite Abelian groups

For $i \in\{i, \ldots, k\}$, select s_{i} such that $m=s_{i} p_{i}{ }^{\alpha_{i}}$ (s_{i} is the order of $p_{i}{ }^{\alpha_{i}}$ in \mathbb{Z}_{m}).

The inner product of elements $u=\left(u_{1}, u_{2}, \ldots, u_{k}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{k}\right) \in G$ is uniquely defined as the equivalence class of

$$
\sum_{i=1}^{k} s_{i} u_{i} v_{i} \in \mathbb{Z}_{m}
$$

Fundamental theorem of finite Abelian groups:

$G=\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$

$$
G=\mathbb{Z}_{2} \times \cdots \times \mathbb{Z}_{2} \times \mathbb{Z}_{4} \times \cdots \times \mathbb{Z}_{4} .
$$

(1) The exponent of G is $m=4$.
(2) $m=s_{i} \cdot 2$, for $i \in\{1, \ldots, \alpha\} \Rightarrow s_{i}=2$,
(3) $m=s_{j} \cdot 4$, for $j \in\{\alpha+1, \ldots, \alpha+\beta\} \Rightarrow s_{j} \in\{1,3\}$.

For $u=\left(u_{1}, u_{2}, \ldots, u_{\alpha+\beta}\right)$ and $v=\left(v_{1}, v_{2}, \ldots, v_{\alpha+\beta}\right) \in G$,

$$
u \cdot v=\sum_{i=1}^{\alpha+\beta} s_{i} u_{i} v_{i}=\sum_{i=1}^{\alpha} 2 u_{i} v_{i}+\sum_{j=\alpha+1}^{\alpha+\beta} u_{j} v_{j} \in \mathbb{Z}_{4}
$$

Dual of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes. Parity-check matrices

The inner product for any two vectors $u, v \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is defined as:

$$
u \cdot v=2\left(\sum_{i=1}^{\alpha} u_{i} v_{i}\right)+\sum_{j=\alpha+1}^{\alpha+\beta} u_{j} v_{j} \in \mathbb{Z}_{4}
$$

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. The additive dual code of \mathcal{C}, denoted by \mathcal{C}^{\perp}, is defined in the standard way:

$$
\mathcal{C}^{\perp}=\left\{v \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \mid u \cdot v=0 \text { for all } u \in \mathcal{C}\right\}
$$

It is easy to see that \mathcal{C}^{\perp} is a subgroup of $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, so \mathcal{C}^{\perp} is also a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code.

- If $\mathcal{C} \subset \mathcal{C}^{\perp}, \mathcal{C}$ is called an additive self-orthogonal code.
- If $\mathcal{C}=\mathcal{C}^{\perp}, \mathcal{C}$ is called an additive self-dual code.

One could think on $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes only as quaternary linear codes, changing ones by twos in the coordinates over \mathbb{Z}_{2}.

Example 11.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by

$$
\begin{gathered}
\mathcal{G}=\left(\begin{array}{ll|llll}
1 & 0 & 2 & 0 & 2 & 0 \\
1 & 1 & 2 & 2 & 1 & 1
\end{array}\right) . \\
\mathcal{C}=\{(00 \mid 0000),(11 \mid 2211),(00 \mid 0022),(11 \mid 2233) \\
(10 \mid 2020),(01 \mid 0231),(10 \mid 2002),(01 \mid 0213)\}
\end{gathered}
$$

The code \mathcal{C} can be seen as the quaternary linear code generated by

$$
\begin{gathered}
\left(\begin{array}{cccccc}
2 & 0 & 2 & 0 & 2 & 0 \\
2 & 2 & 2 & 2 & 1 & 1
\end{array}\right) \\
\mathcal{C}=\left\{\begin{array}{c}
\{(000000),(222211),(000022),(222233) \\
\\
\\
(202020),(020231),(202002),(020213)\}
\end{array}\right.
\end{gathered}
$$

However...

...these quaternary linear codes are not equivalent to the quaternary linear codes!!

Note that the inner product defined in $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ gives us that the dual code of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code is not equivalent to the dual code of the corresponding quaternary linear code.

Example 12.

Taking $\alpha=\beta=1$ and the vectors $\mathbf{v}=(1 \mid 3)$ and $\mathbf{w}=(1 \mid 2)$, it is easy to check that $\mathbf{v} \cdot \mathbf{w}=0$, so \mathbf{v} and \mathbf{w} are orthogonal.

Taking $\beta=2$ and changing the ones by twos in the coordinates over \mathbb{Z}_{2} of these vectors, we get $\bar{v}=(23)$ and $\bar{w}=(22)$, which are not orthogonal in the quaternary sense.

Example 13 (cont.).

- Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by

$$
(1 \mid 3)
$$

Then, $\mathcal{C}=\{(0 \mid 0),(1 \mid 3),(0 \mid 2),(1 \mid 1)\}$ and $\mathcal{C}^{\perp}=\{(0 \mid 0),(1 \mid 2)\}$.
Note that \mathcal{C} is of type $(1,1 ; 0,1 ; 0)$ and \mathcal{C}^{\perp} is of type $(1,1 ; 1,0 ; 1)$.

- The corresponding quaternary linear code \mathcal{D} is generated by

$$
\left(\begin{array}{ll}
2 & 3
\end{array}\right)
$$

Then, $\mathcal{D}=\{(00),(23),(02),(21)\}$ and $\mathcal{D}^{\perp}=\{(00),(32),(20),(12)\}$.
Note that \mathcal{D} is of type $(0,2 ; 0,1 ; 0)$ and \mathcal{D}^{\perp} is of type $(0,2 ; 0,1 ; 0)$.

Proposition 5 (HKC+94).

The quaternary dual code \mathcal{C}^{\perp} of the quaternary linear code \mathcal{C} of length n with generator matrix

$$
\mathcal{G}_{S}=\left(\begin{array}{ccc}
2 T & 2 I_{\gamma} & \mathbf{0} \tag{7}\\
S & R & I_{\delta}
\end{array}\right)
$$

has generator matrix

$$
\mathcal{H}_{S}=\left(\begin{array}{ccc}
\mathbf{0} & 2 I_{\gamma} & 2 R^{t} \tag{8}\\
I_{n-\gamma-\delta} & T^{t} & -(S+R T)^{t}
\end{array}\right)
$$

where R, T, S are matrices over \mathbb{Z}_{4} of size $\delta \times \gamma, \gamma \times(n-\gamma-\delta)$, and $\delta \times(n-\gamma-\delta)$ respectively; and all the entries in R and T are in $\{0,1\}$.

In order to construct the additive dual code of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code, we will need the following maps:

- The usual one modulo two, $\xi: \mathbb{Z}_{4} \longrightarrow \mathbb{Z}_{2}$, that is $\xi(0)=0, \xi(1)=1, \xi(2)=0, \xi(3)=1$.
- The identity map, $\iota: \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{4}$, that is $\iota(0)=0, \iota(1)=1$.
- The normal inclusion from the additive structure in \mathbb{Z}_{2} to \mathbb{Z}_{4}, $\chi: \mathbb{Z}_{2} \longrightarrow \mathbb{Z}_{4}$, that is $\chi(0)=0, \chi(1)=2$.

These maps can be extended to the maps:

- $(\xi, I d): \mathbb{Z}_{4}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \longrightarrow \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ denoted also by ξ.
- $(\iota, I d): \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \longrightarrow \mathbb{Z}_{4}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ denoted also by ι.
- $(\chi, I d): \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \longrightarrow \mathbb{Z}_{4}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ denoted also by χ.

Let $(u \cdot v)_{4}$ denote the standard inner product for quaternary vectors u, v and $\mathbf{u} \cdot \mathbf{v}$ the inner product for vectors $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$.

Lemma 6 (BFR+10).

If $\mathbf{u} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}, v \in \mathbb{Z}_{4}^{\alpha+\beta}$, then $(\chi(\mathbf{u}) \cdot v)_{4}=\mathbf{u} \cdot \xi(v)$.

Lemma 7 (BFR+10).

If $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, then $(\chi(\mathbf{u}) \cdot \iota(\mathbf{v}))_{4}=\mathbf{u} \cdot \mathbf{v}$.

Proposition 8 (BFR+10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then,

$$
\mathcal{C}^{\perp}=\xi\left(\chi(\mathcal{C})^{\perp}\right) \quad \text { and } \quad \mathcal{C}^{\perp}=\chi^{-1}\left(\xi^{-1}(\mathcal{C})^{\perp}\right)
$$

Theorem 9 (BFR+10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix in standard form

$$
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \tag{9}\\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

Then, the generator matrix of \mathcal{C}^{\perp} is

$$
\mathcal{H}_{S}=\left(\begin{array}{cc|ccc}
T_{b}^{t} & I_{\alpha-\kappa} & \mathbf{0} & \mathbf{0} & 2 \iota\left(S_{b}\right)^{t} \tag{10}\\
\mathbf{0} & \mathbf{0} & \mathbf{0} & 2 I_{\gamma-\kappa} & 2 R^{t} \\
\xi\left(T_{2}\right)^{t} & \mathbf{0} & I_{\beta+\kappa-\gamma-\delta} & T_{1}^{t} & -\left(S_{q}+R T_{1}\right)^{t}
\end{array}\right)
$$

where T_{b}, S_{b} are matrices over \mathbb{Z}_{2} and T_{1}, T_{2}, R, S_{q} are matrices over \mathbb{Z}_{4} and all the entries in T_{1} and T_{2} are in $\{0,1\}$.

Theorem 10 (BFR+10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. The additive dual code \mathcal{C}^{\perp} is then of type $(\alpha, \beta ; \bar{\gamma}, \bar{\delta} ; \bar{\kappa})$, where

$$
\begin{align*}
& \bar{\gamma}=\alpha+\gamma-2 \kappa \\
& \bar{\delta}=\beta-\gamma-\delta+\kappa \tag{11}\\
& \bar{\kappa}=\alpha-\kappa
\end{align*}
$$

Corollary 11 (BFR+10).

If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then $|\mathcal{C}| \cdot\left|\mathcal{C}^{\perp}\right|=2^{\alpha} 4^{\beta}$.

Example 14.

Let \mathcal{C}_{1} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(2,4 ; 2,1 ; 1)$ with generator matrix \mathcal{G}_{1}. The additive dual code \mathcal{C}_{1}^{\perp} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix \mathcal{H}_{1}.

$$
\mathcal{G}_{1}=\left(\begin{array}{ll|llll}
1 & 0 & 2 & 2 & 0 & 0 \\
0 & 0 & 2 & 0 & 2 & 0 \\
0 & 1 & 3 & 1 & 1 & 1
\end{array}\right) \quad \mathcal{H}_{1}=\left(\begin{array}{ll|llll}
0 & 1 & 0 & 0 & 0 & 2 \\
0 & 0 & 0 & 0 & 2 & 2 \\
1 & 0 & 1 & 0 & 1 & 0 \\
1 & 0 & 0 & 1 & 0 & 3
\end{array}\right)
$$

- \mathcal{H}_{1} is a generator matrix of \mathcal{C}_{1}^{\perp} and a parity-check matrix of \mathcal{C}_{1}.
- The code \mathcal{C}_{1} is of type $(2,4 ; 2,1 ; 1)$ and \mathcal{C}_{1}^{\perp} is of type $(2,4 ; 2,2 ; 1)$.
- The code \mathcal{C}_{1} has $2^{2} 4=2^{4}$ codewords and \mathcal{C}_{1}^{\perp} has $2^{2} 4^{2}=2^{6}$ codewords, so $\left|\mathcal{C}_{1}\right| \cdot\left|\mathcal{C}_{1}^{\perp}\right|=2^{2} 4^{4}=2^{10}$.

Again, in general the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code $C=\Phi(\mathcal{C})$ is not linear, so it need not have a dual. However, the corresponding binary code $C_{\perp}=\Phi\left(\mathcal{C}^{\perp}\right)$ is called $\mathbb{Z}_{2} \mathbb{Z}_{4}$-dual code of C.

$$
\begin{aligned}
\mathcal{C} & \xrightarrow{\Phi} C
\end{aligned}=\Phi(\mathcal{C})
$$

- If $C \subset C_{\perp}, C$ is called a self $\mathbb{Z}_{2} \mathbb{Z}_{4}$-orthogonal code.
- If $C=C_{\perp}, C$ is called a self $\mathbb{Z}_{2} \mathbb{Z}_{4}$-dual code.

Definitions

Example 15.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(1,2 ; 0,2 ; 0)$

- $\mathcal{C}=\{(0 \mid 000),(0 \mid 323),(1 \mid 330),(1 \mid 231),(1 \mid 132),(1 \mid 033),(0 \mid 220),(1 \mid 312)$, (0|121), (0|022), (1|213), (0|301), (0|202), (1|110), (0|103), (1|011)\}.
We have that
- $\mathcal{C}^{\perp}=\{(0 \mid 000),(1 \mid 020),(1 \mid 111),(1 \mid 202),(0 \mid 131),(0 \mid 222),(0 \mid 313),(1 \mid 333)\}$,
- $C=\Phi(\mathcal{C})=\{(0000000),(1000101),(0010010),(1010100),(0110011)$, (1110110), (0100001), (1100111), (0001111), (1001010), (0011101), (1011011), (0111100), (1111001), (0101110), (1101000)\} is a binary non-linear code, and
- $C_{\perp}=\Phi\left(\mathcal{C}^{\perp}\right)=\{(0000000),(1001100),(0011001),(1010101)$, $(0111111),(1110011),(0100110),(1101010)\}$ is a binary linear code.

(2) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Definitions
- Generator matrices
- Dual codes. Parity-check matrices
- Coding and decoding

Binary coding. Example.

Let C be a binary Hamming code (linear 1-perfect code) of length 7 and dimension 4 , that is, a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type (7,$0 ; 4,0 ; 4$) generated by

$$
\mathcal{G}_{S}=\left(\begin{array}{lllllll}
1 & 0 & 0 & 0 & 0 & 1 & 1 \\
0 & 1 & 0 & 0 & 1 & 0 & 1 \\
0 & 0 & 1 & 0 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 1 & 1 & 1
\end{array}\right)
$$

- Information: $10111110 \ldots \rightarrow i_{1}=(1011), i_{2}=(1110) \ldots$
- Encoding: $v_{j}=i_{j} \cdot \mathcal{G}_{S}$.
- Encoded info.: $v_{1}=1011010, v_{2}=1110000 \ldots \rightarrow 10110101110000 \ldots$

Binary decoding: syndrome table.

Let C be an $[n, k, d]$ code with parity check matrix H with error correcting capability t. Consider $\left\{e_{i}\right\}_{i=1}^{r}$ all error vectors with $w_{t}\left(e_{i}\right) \leq t$.

error $\subseteq \mathbb{Z}_{2}^{n}$	syndrome $\subseteq \mathbb{Z}_{2}^{n-k}$
$\mathbf{0}$	$\mathbf{0}$
e_{1}	$s_{1}=e_{1} \cdot H^{t}$
\vdots	\vdots
e_{r}	$s_{r}=e_{r} \cdot H^{t}$

- For a received w, compute $s=w \cdot H^{t}$.
- If $s=s_{j}$, then decode by $v^{\prime}=w-e_{j}$.

Binary decoding. Example of a perfect code.

The parity-check matrix of C is

$$
\mathcal{H}_{S}=\left(\begin{array}{lllllll}
0 & 1 & 1 & 1 & 1 & 0 & 0 \\
1 & 0 & 1 & 1 & 0 & 1 & 0 \\
1 & 1 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

- Received data: 10100101110000 ...
$\rightarrow w_{1}=(1010010), w_{2}=(1110000), \ldots$
- Syndrome: $s_{j}=w_{j} \cdot \mathcal{H}_{S}^{t} ; s_{1}=(111), s_{2}=(000)$
- The error vectors are $e_{1}=(0001000)$ and $e_{2}=(0000000)$.
- The corrected codewords are $v_{1}^{\prime}=(1011010)$ and $v_{2}^{\prime}=(1110000)$.

$\mathbb{Z}_{2} \mathbb{Z}_{4}$ coding. Example.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(7,4 ; 5,3 ; 5), \Phi(\mathcal{C})$ is perfect, generated by

$$
\mathcal{G}_{S}=\left(\begin{array}{lllllll|llll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 1 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 1 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

- Binary Information: $i_{b}=(10111110110)$
- Information (over $\mathbb{Z}_{2}^{\gamma} \times \mathbb{Z}_{4}^{\delta}$): $i=\Phi^{-1}\left(i_{b}\right)=(10111 \mid 213)$.

$\mathbb{Z}_{2} \mathbb{Z}_{4}$ coding. Example.

- $i=(10111 \mid 213)$

$$
\chi\left(\mathcal{G}_{S}\right)=\left(\begin{array}{lllllllllll}
2 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 2 & 0 & 0 & 0 & 2 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 2 & 0 & 0 & 2 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 & 2 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 2 & 2 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 2 & 3 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 2 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 2 & 1 & 0 & 0 & 1
\end{array}\right)
$$

- Codeword (over $\left.\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}\right): \mathbf{v}=\chi^{-1}\left(\iota(i) \cdot \chi\left(\mathcal{G}_{S}\right)\right)=$

$$
=\chi^{-1}\left((10111213) \cdot \chi\left(\mathcal{G}_{S}\right)\right)=\chi^{-1}(2022222213)=(1011111 \mid 2213)
$$

- Codeword (binary): $v_{b}=\Phi(\mathbf{v})=101111111110110$

$\mathbb{Z}_{2} \mathbb{Z}_{4}$ decoding: syndrome table

Let $C=\Phi(\mathcal{C})$ be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code with error correcting capability t. Consider $\left\{e_{i}\right\}_{i=1}^{r}$ all error vectors with $w_{t}\left(e_{i}\right) \leq t$. Let \mathcal{H} be the parity check matrix of \mathcal{C}.

error $\subseteq \mathbb{Z}_{2}^{\alpha+2 \beta}$	syndrome $\subseteq \mathbb{Z}_{4}^{\bar{\gamma}+\delta}$
$\mathbf{0}$	$\mathbf{0}$
e_{1}	$s_{1}=\iota\left(\Phi^{-1}\left(e_{1}\right)\right) \cdot \chi(\mathcal{H})^{t}$
\vdots	\vdots
e_{r}	$s_{r}=\iota\left(\Phi^{-1}\left(e_{r}\right)\right) \cdot \chi(\mathcal{H})^{t}$

- For a received binary w, compute $s=\iota\left(\Phi^{-1}(w)\right) \cdot \chi(\mathcal{H})^{t}$.
- If $s=s_{j}$, then decode by $v^{\prime}=w-e_{j}$.

$\mathbb{Z}_{2} \mathbb{Z}_{4}$ decoding. Example of a perfect code.

The parity-check matrix of \mathcal{C} is

$$
\mathcal{H}_{S}=\left(\begin{array}{lllllll|llll}
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 2 & 2 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 3 & 3
\end{array}\right)
$$

- Binary received vector: 100111111110110.
- Received vector (over $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$): $\mathbf{w}=(1001111 \mid 2213)$.
- Syndrome: $s=\iota(\mathbf{w}) \cdot \chi\left(\mathcal{H}_{S}\right)^{t}=(222)$ is $(+/-)$ a column in $\chi\left(\mathcal{H}_{S}\right)$.
- The error is $e=(0010000 \mid 0000)$ and the codeword is $\mathbf{v}^{\prime}=(1011111 \mid 2213) \rightarrow$ binary codeword 101111111110110.

$\mathbb{Z}_{2} \mathbb{Z}_{4}$ decoding. Example of a perfect code.

The parity-check matrix of \mathcal{C} is

$$
\mathcal{H}_{S}=\left(\begin{array}{lllllll|llll}
0 & 1 & 1 & 1 & 0 & 1 & 0 & 0 & 2 & 2 & 0 \\
0 & 1 & 1 & 0 & 1 & 0 & 1 & 0 & 2 & 0 & 2 \\
1 & 0 & 1 & 1 & 1 & 0 & 0 & 1 & 1 & 3 & 3
\end{array}\right)
$$

- Binary received vector: 101111111110111
- Received vector (over $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$): $\mathbf{v}=(1011111 \mid 2212)$
- Syndrome: $s=\iota(\mathbf{v}) \cdot \chi\left(\mathcal{H}_{S}\right)^{t}=(021)$ is $(+/-)$ a column in $\chi\left(\mathcal{H}_{S}\right)$.
- The error is $e=(0000000 \mid 0003)$ and the codeword is $\mathbf{v}^{\prime}=(1011111 \mid 2213) \rightarrow$ binary codeword 101111111110110.

Permutation Decoding

$\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes are also systematic codes and can be decoded by using permutation decoding.
[BBFV15] J. J. Bernal, J. Borges, C. Fernández-Córdoba, M. Villanueva.
Permutation Decoding of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear Codes Designs, Codes and Cryptography, vol. 76, pp. 269-277, 2015.

Magma. Computational Algebra System

http://magma.maths.usyd.edu.au/magma/
http://www.ccsg.uab.cat (Downloads/Z2Z4-Additive Codes version 4.0)

Some functions for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes:

- Z2Z4AdditiveCode(L : Alpha:=0, OverZ2:=false) List \rightarrow Rec
- Z2Z4Type (C) : Rec \rightarrow [RngIntElt]
- Z2Z4GeneratorMatrix(C) : Rec \rightarrow ModMatRngElt
- Z2Z4ParityCheckMatrix (C) : Rec \rightarrow ModMatRngElt
- Z2Z4MinRowsGeneratorMatrix (C) : Rec \rightarrow ModMatRngElt
- Z2Z4MinRowsParityCheckMatrix (C) : Rec -> ModMatRngElt
- Z2Z4StandardForm(C) : Rec \rightarrow Rec, Map, ModMatRngElt, GrpPermElt
- Z2Z4Dual (C) : Rec \rightarrow Rec
- Z2Z4DualType (C) : Rec -> [RngIntElt]
- IsZ2Z4SelfOrthogonal (C) : Rec \rightarrow BoolElt
- IsZ2Z4SelfDual (C) : Rec -> BoolElt
- Z2Z4GrayMap(C) : Rec -> Map
- Z2Z4GrayMapImage(C) : Rec -> [ModTupRngElt]
(3) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes
- Classification of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes
- Allowable α and β values
- Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Bibliography

[i- [BDF12] J. Borges, S. T. Dougherty, C. Fernández-Córdoba. Characterization and Constructions of Self-Dual codes over $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$.
Advances in Mathematics of Communications, vol. 6, n. 3, pp. 287-303, 2012.
(3) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

- Classification of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes
- Allowable α and β values
- Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Examples 16.

Consider the matrices

$$
\mathcal{G}_{1}=\left(\begin{array}{c|c}
1010 & 2000 \\
0101 & 2000 \\
0000 & 2200 \\
0000 & 2020 \\
0011 & 1111
\end{array}\right) ; \mathcal{G}_{2}=\left(\begin{array}{c|c}
1010 & 00 \\
0101 & 00 \\
0000 & 20 \\
0000 & 02
\end{array}\right) .
$$

The codes generated by these matrices are $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual. The code generated by \mathcal{G}_{1} is non-separable and the code generated by \mathcal{G}_{2} is separable.

The following theorem show some properties of separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes.

Theorem 12 (BDF12).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of type
$(2 \kappa, \beta ; \beta+\kappa-2 \delta, \delta ; \kappa)$. The following statements are equivalent:
(i) \mathcal{C}_{X} is a binary self-orthogonal code.
(ii) \mathcal{C}_{X} is a binary self-dual code.
(iii) $\left|\mathcal{C}_{X}\right|=2^{\kappa}$.
(iv) \mathcal{C}_{Y} is a quaternary self-orthogonal code.
(v) \mathcal{C}_{Y} is a quaternary self-dual code.
(vi) $\left|\mathcal{C}_{Y}\right|=2^{\beta}$.
(vii) \mathcal{C} is separable.

Classification of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes Allowable α and β values
Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Theorem 13 (BDF12).

If C is a binary self-dual code of length α and \mathcal{D} is a quaternary self-dual code of length β, then $C \times \mathcal{D}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of length $\alpha+\beta$.

Antipodality

A binary code C is antipodal if for any codeword $z \in C, z+\mathbf{1} \in C$. If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code, we say that \mathcal{C} is antipodal if $\Phi(\mathcal{C})$ is antipodal.
Clearly, a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code is antipodal iff $\left(\mathbf{1}^{\alpha} \mid \mathbf{2}^{\beta}\right) \in \mathcal{C}$.

Examples 17.

Let \mathcal{C}_{1} and \mathcal{C}_{2} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes generated by

$$
\mathcal{G}_{1}=\left(\begin{array}{ll|ll}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) ; \mathcal{G}_{2}=\left(\begin{array}{cc|c}
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

Both codes are $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual. The code \mathcal{C}_{1} is non-antipodal and the code \mathcal{C}_{2} is antipodal.

Type of a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual.

- If \mathcal{C} has odd weights, then it is Type 0 .
- If it has only even weights, then the \mathcal{C} is Type I.
- If all the codewords have doubly-even weight, then \mathcal{C} is Type II.

Classification of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes Allowable α and β values
Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Examples 18.

Let \mathcal{C}_{1} and \mathcal{C}_{2} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes generated by

$$
\mathcal{G}_{1}=\left(\begin{array}{ll|ll}
1 & 1 & 2 & 0 \\
0 & 1 & 1 & 1
\end{array}\right) ; \mathcal{G}_{2}=\left(\begin{array}{cc|c}
1 & 1 & 0 \\
0 & 0 & 2
\end{array}\right) .
$$

The codes \mathcal{C}_{1} and \mathcal{C}_{2} are $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual. The code \mathcal{C}_{1} is Type 0 and the code \mathcal{C}_{2} is Type I.

Examples 19.

The code \mathcal{C}_{3} generated by

$$
\mathcal{G}_{3}=\left(\begin{array}{c|c}
10001110 & 0000 \\
01001101 & 0000 \\
00101011 & 0000 \\
00010111 & 0000 \\
00000000 & 0202 \\
00000000 & 2020 \\
00000000 & 1111
\end{array}\right)
$$

is $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual and of Type II.

Relationship among separability, antipodality and Type

The following table shows the relations among Type, separability and antipodality.

	Type 0	Type I	Type II
	non-separable	separable	separable
separability		or non-separable	or non-separable

Now we will see some examples that show the existence of all possible cases described in the above table.

Type 0

Examples 20.

The code \mathcal{C}_{1} generated by the matrix

$$
\mathcal{G}_{1}=\left(\begin{array}{l|l}
11 & 20 \\
01 & 11
\end{array}\right)
$$

is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of Type 0 ; the vector ($01 \mid 11$) is an odd weight vector. Since it is Type $0, \mathcal{C}_{1}$ is non-separable and non-antipodal.

Type I, separable

Examples 21.

Consider the code \mathcal{C}_{2} generated by the matrix

$$
\mathcal{G}_{2}=\left(\begin{array}{l|l}
11 & 0 \\
00 & 2
\end{array}\right) .
$$

Notice that for $\alpha=2$ and $\beta=1$, it is not possible to have odd weight codewords. Thus, the code must be of Type I and antipodal. Also, we have that the code restricted to the quaternary coordinates is $\{\mathbf{0}, \mathbf{2}\}$ which is self-dual and hence, \mathcal{C}_{2} is separable.

Type I, non-separable

Examples 22.

Consider the following matrices:

$$
\mathcal{G}_{3}=\left(\begin{array}{c|c}
1111 & 0000 \\
0101 & 2000 \\
0101 & 0200 \\
0101 & 0020 \\
0011 & 1111
\end{array}\right) ; \quad \mathcal{G}_{4}=\left(\begin{array}{c|c}
1111 & 000000 \\
0101 & 220000 \\
0000 & 202000 \\
0101 & 000200 \\
0101 & 111010 \\
0011 & 101101
\end{array}\right)
$$

The codes \mathcal{C}_{3} and \mathcal{C}_{4} generated by \mathcal{G}_{3} and \mathcal{G}_{4}, respectively, are non-separable Type I.

Type II, separable

Examples 23.

As we have seen previously, the code defined in Example 19, generated by
$\left(\begin{array}{l|l}10001110 & 0000 \\ 01001101 & 0000 \\ 00101011 & 0000 \\ 00010111 & 0000 \\ 00000000 & 0202 \\ 00000000 & 2020 \\ 00000000 & 1111\end{array}\right)$.
is $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual, separable and of Type II.

Type II, non-separable

Examples 24.

The code \mathcal{C}_{6} generated by the following matrix

$$
\left(\begin{array}{l|l}
10010110 & 0000 \\
01001110 & 0000 \\
00100111 & 0000 \\
00000110 & 2000 \\
00000110 & 0200 \\
00000110 & 0020 \\
00011011 & 1111
\end{array}\right)
$$

is non-separable, since $\left(\mathcal{C}_{6}\right)_{X}$ is not self-orthogonal. On the other hand, it can be checked that all weights are doubly-even.
(3) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

- Classification of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes
- Allowable α and β values
- Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Allowable α and β values

Proposition 14 (BDF12).

There exist $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ for all even α and all β.

Theorem 15.

If \mathcal{C} is a Type I/ $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then

$$
\alpha \equiv 0 \quad(\bmod 8), \text { and } \beta \equiv 0 \quad(\bmod 4)
$$

Theorem 16 (BDF12).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of type ($\alpha, \beta ; \gamma, \delta ; \kappa$), with $\alpha, \beta>0$.
(i) If \mathcal{C} is Type 0 , then $\alpha \geq 2, \beta \geq 2$.
(ii) If \mathcal{C} is Type I and separable, then $\alpha \geq 2, \beta \geq 1$.
(iii) If \mathcal{C} is Type I and non-separable, then $\alpha \geq 4, \beta \geq 4$.
(iv) If \mathcal{C} is Type II, then $\alpha \geq 8, \beta \geq 4$.

We define $\alpha_{\text {min }}$ and $\beta_{\text {min }}$ to the minimum values of α and β for each Type of code and separability condition.

Example 25.

Theorem 17 (BDF12).

Let $\alpha_{\text {min }}$ and $\beta_{\text {min }}$ be as defined above.
(i) There exist a Type 0 or Type I code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ if and only if $\alpha=\alpha_{\text {min }}+2 a, a \geq 0, \beta \geq \beta_{\text {min }}$.
(ii) There exist a Type II code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ if and only if $\alpha=\alpha_{\text {min }}+8 a, \beta=\beta_{\text {min }}+4 b, a, b \geq 0$.

The following table sumarizes the allowable values of α and β deppending on the Type of the code and the separability.

	Type 0	Type I	Type II
separable	-	$\alpha=2+2 a$	$\alpha=8+8 a$
$\alpha, \beta ; a, b \geq 0$	-	$\beta=1+b$	$\beta=4+4 b$
non-separable	$\alpha=2+2 a$	$\alpha=4+2 a$	$\alpha=8+8 a$
$\alpha, \beta ; a, b \geq 0$	$\beta=2+b$	$\beta=4+b$	$\beta=4+4 b$

(3) $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

- Classification of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes
- Allowable α and β values
- Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Constructions of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Three different constructions:

- Product of codes.
- Neighbor contruction.
- Extending the length.

Product of codes

Proposition 18 (BDF12).

If \mathcal{C} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ and \mathcal{D} is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of type ($\alpha^{\prime}, \beta^{\prime} ; \gamma^{\prime}, \delta^{\prime} ; \kappa^{\prime}$) then
$\mathcal{C} \times \mathcal{D}$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code of type
$\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime} ; \gamma+\gamma^{\prime}, \delta+\delta^{\prime} ; \kappa+\kappa^{\prime}\right)$.

Examples 26.

$$
\begin{gathered}
\mathcal{G}_{C}=\left(\begin{array}{l|l}
11 & 20 \\
01 & 11
\end{array}\right) ; \quad \mathcal{G}_{D}=\left(\begin{array}{c|c|c}
1010 & 2000 \\
0101 & 2000 \\
0101 & 0200 \\
0101 & 0020 \\
0011 & 1111
\end{array}\right) ; \\
\mathcal{G}_{C x D}=\left(\begin{array}{ll|ll}
11 & 0000 & 20 & 0000 \\
01 & 0000 & 11 & 0000 \\
00 & 1010 & 00 & 0000 \\
00 & 0101 & 00 & 2000 \\
00 & 0101 & 00 & 0200 \\
00 & 0101 & 00 & 0020 \\
00 & 0011 & 00 & 1111
\end{array}\right) ; \quad \mathcal{G}_{C x D}^{\prime}=\left(\begin{array}{l|l}
100001 & 200000 \\
010100 & 000000 \\
001010 & 020000 \\
001010 & 002000 \\
001010 & 000200 \\
000110 & 011110 \\
000001 & 300001
\end{array}\right) ;
\end{gathered}
$$

C is of type $(2,2 ; 1,1 ; 1), D$ is of type $(4,4 ; 4,1 ; 2)$ and $C \times D$ is of type (5,5; 5, 2; 3).

Neighbor construction

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code and let $\mathbf{v} \notin \mathcal{C}$ be a self-orthogonal vector. Let $\mathcal{C}_{\mathbf{v}}$ be the subcode of \mathcal{C} of vectors orthogonal to \mathbf{v}

$$
\mathcal{C}_{\mathbf{v}}=\{\mathbf{u} \in \mathcal{C} \mid \mathbf{u} \cdot \mathbf{v}=0\}
$$

Theorem 19 (BDF12).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code and let \mathbf{v} be a self-orthogonal vector that is not an element of \mathcal{C}. Then

$$
N(\mathcal{C}, \mathbf{v})=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{v}\right\rangle
$$

is a self-dual code.

Examples 27.

Let \mathcal{C} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by the matrix

$$
\mathcal{G}=\left(\begin{array}{l|l}
11 & 20 \\
01 & 11
\end{array}\right)
$$

and let $\mathbf{v}=(00 \mid 20)$.
$\mathcal{C}=\{(00 \mid 00),(11 \mid 20),(01 \mid 11),(00 \mid 22),(01 \mid 33),(10 \mid 31),(11 \mid 02),(10 \mid 13)\}$.
Then, $\mathcal{C}_{\mathbf{v}}=\{(00 \mid 00),(11, \mid 20),(00 \mid 22),(11 \mid 02)\}$, is generated by

$$
\mathcal{G}_{\mathbf{v}}=\left(\begin{array}{l|l}
11 & 20 \\
00 & 22
\end{array}\right)
$$

Then, the code $N(\mathcal{C}, \mathbf{v})=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{v}\right\rangle$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code generated by

$$
\mathcal{G}_{N(\mathcal{C}, \mathbf{v})}=\left(\begin{array}{c|c}
11 & 00 \\
00 & 20 \\
00 & 02
\end{array}\right)
$$

Extending the length

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code, $\mathbf{v} \notin \mathcal{C} . \mathcal{C}_{\mathbf{v}}$ is a subgroup of \mathcal{C} and $\mathcal{C} \stackrel{\perp}{\mathbf{v}}=\langle\mathcal{C}, \mathbf{v}\rangle$. Moreover,

$$
\frac{|\mathcal{C}|}{\left|\mathcal{C}_{\mathbf{v}}\right|}=\frac{|\mathcal{C} \stackrel{\perp}{\mathbf{v}}|}{|\mathcal{C}|} \in\{2,4\} .
$$

Let \mathbf{w} be the vector such that $\mathcal{C}=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{w}\right\rangle$. Then

$$
\mathcal{C}_{\mathbf{v}}^{\perp}=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{w}, \mathbf{v}\right\rangle
$$

Examples 28.

Let \mathcal{C} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by the matrix

$$
\mathcal{G}=\left(\begin{array}{l|l}
11 & 20 \\
01 & 11
\end{array}\right)
$$

and let $\mathbf{v}=(00 \mid 20)$ as in Example 27. Then $\mathcal{C}_{\mathbf{v}}$ is generated by

$$
\mathcal{G}_{\mathbf{v}}=\left(\begin{array}{l|l}
11 & 20 \\
00 & 22
\end{array}\right)
$$

and $\mathcal{C}=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{w}\right\rangle$, where $\mathbf{w}=(01 \mid 11)$. The code $\mathcal{C}_{\mathbf{v}}^{\perp}$ is generated by

$$
\mathcal{H}_{\mathbf{v}}=\left(\begin{array}{l|l}
11 & 20 \\
00 & 22 \\
00 & 02 \\
01 & 11
\end{array}\right)
$$

Construction of $\overline{\mathcal{D}}$ by extending the length of $\mathcal{D}=\mathcal{C}_{v}^{\perp}$

For $\mathbf{u}=\left(u_{X}, u_{Y}\right) \in \mathcal{C}_{\mathbf{v}}^{\perp}$ we define the extension of \mathbf{u} as

$$
\overline{\mathbf{u}}=\left(u_{X}^{\prime}, u_{X}, u_{Y}, u_{Y}^{\prime}\right)
$$

If $\mathbf{u} \in \mathcal{C}_{\mathbf{v}}$, then $\overline{\mathbf{u}}=\left(\mathbf{0}, u_{X}, u_{Y}, \mathbf{0}\right)$.
Then

$$
\overline{\mathcal{D}}=\left\langle\left\{\overline{\mathbf{u}} \mid \mathbf{u} \in \mathcal{C}_{\mathbf{v}}^{\perp}\right\}\right\rangle .
$$

We choose u_{X}^{\prime} and u_{Y}^{\prime} so that $\overline{\mathcal{D}}$ is a self-orthogonal code. If $\overline{\mathcal{D}}$ is not self-dual we may need to add additional vectors to the code.

Theorem 20 (BDF12).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ and $\mathbf{v} \notin \mathcal{C}$. Let $\mathbf{w}, \mathcal{C}_{\mathbf{v}}$ be as before and $\mathcal{D}=\mathcal{C}_{\mathbf{v}}^{\perp}=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{w}, \mathbf{v}\right\rangle$. There exists a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual code $\langle\overline{\mathcal{D}}, V\rangle$ of type $\left(\alpha+\alpha^{\prime}, \beta+\beta^{\prime} ; \gamma^{\prime}, \delta^{\prime} ; \kappa^{\prime}\right)$, for some set of vectors V with the following conditions:
(i) $\alpha^{\prime} \neq 0$ and $\beta^{\prime}=0$ only if $\mathbf{v} \cdot \mathbf{w}=2$ and $\mathbf{v} \cdot \mathbf{v} \in\{0,2\}$,
(ii) $\alpha^{\prime}=0$ and $\beta^{\prime} \neq 0$ only if $\mathbf{v} \cdot \mathbf{w}=2$ or $\mathbf{v} \cdot \mathbf{w} \in\{1,3\}$ and $\mathbf{v} \cdot \mathbf{v} \in\{1,3\}$,
(iii) $\alpha^{\prime} \neq 0$ and $\beta^{\prime} \neq 0$.

Table: Case $\alpha^{\prime} \neq 0, \beta^{\prime}=0$.

$\mathbf{v} \cdot \mathbf{v}$	v_{X}^{\prime}	w_{X}^{\prime}	V
0	$(0,0,1,1)$	$(0,1,0,1)$	$\{(1,1,1,1, \mathbf{0})\}$
2	$(0,1)$	$(1,1)$	\emptyset

Table: Case $\alpha^{\prime}=0, \beta^{\prime} \neq 0, \mathbf{v} \cdot \mathbf{w}=2$.

$\mathbf{v} \cdot \mathbf{v}$	v_{Y}^{\prime}	w_{Y}^{\prime}	V
0	$(1,1,1,1)$	$(2,0,0,0)$	$\{(\mathbf{0}, 0,2,2,0),(\mathbf{0}, 0,0,2,2)\}$
1	$(1,1,1)$	$(2,0,0)$	$\{(\mathbf{0}, 0,2,2)\}$
2	$(1,1)$	$(2,0)$	\emptyset
3	(1)	(2)	\emptyset

Table: Case $\alpha^{\prime}=0, \beta^{\prime} \neq 0, \mathbf{v} \cdot \mathbf{w}=1$.

$\mathbf{v} \cdot \mathbf{v}$	v_{Y}^{\prime}	w_{Y}^{\prime}	V
1	$(1,1,1,0)$	$(1,1,1,1)$	$\{(\mathbf{0}, 0,2,2,0),(\mathbf{0}, 2,2,0,0)\}$
3	$(3,0,0,0)$	$(1,1,1,1)$	$\{(\mathbf{0}, 0,2,2,0),(\mathbf{0}, 0,0,2,2)\}$

Table: Case $\alpha^{\prime} \neq 0, \beta^{\prime} \neq 0, \mathbf{v} \cdot \mathbf{w}=1$.

$\mathbf{v} \cdot \mathbf{v}$	v_{X}^{\prime}	v_{Y}^{\prime}	w_{X}^{\prime}	w_{Y}^{\prime}	V
0	$(1,0)$	$(1,0,1)$	$(1,0)$	$(1,1,0)$	$\{(1,1, \mathbf{0}, 2,0,0),(1,1, \mathbf{0}, 0,2,0)\}$
1	$(1,0)$	$(1,0)$	$(1,0)$	$(1,1)$	$\{(1,1, \mathbf{0}, 2,0)\}$
2	$(1,1)$	$(0,1,1)$	$(1,0)$	$(1,1,0)$	$\{(1,1, \mathbf{0}, 2,0,0),(1,1, \mathbf{0}, 0,2,2)\}$
3	$(1,1)$	$(1,0)$	$(1,0)$	$(1,1)$	$\{(1,1, \mathbf{0}, 0,2)\}$

Table: Case $\alpha^{\prime} \neq 0, \beta^{\prime} \neq 0, \mathbf{v} \cdot \mathbf{w}=2$.

$\mathbf{v} \cdot \mathbf{v}$	v_{X}^{\prime}	v_{Y}^{\prime}	w_{X}^{\prime}	w_{Y}^{\prime}	V
0	$(1,0)$	$(1,1)$	$(1,1)$	$(2,2)$	$\{(1,1, \mathbf{0}, 2,0)\}$
1	$(1,0)$	$(1,0)$	$(1,1)$	$(0,2)$	$\{(1,1, \mathbf{0}, 2,0)\}$
2	$(1,1)$	$(1,3)$	$(1,0)$	$(1,1)$	\emptyset
3	$(0,0)$	$(0,1)$	$(1,1)$	$(0,2)$	$\{(1,1, \mathbf{0}, 2,0)\}$

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. To construct a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code D of type ($\left.\alpha+\alpha^{\prime}, \beta+\beta^{\prime} ; \gamma^{\prime}, \delta^{\prime} ; \kappa^{\prime}\right)$:

1) Select $\mathbf{v} \notin \mathcal{C}$ such that $\mathbf{v} \cdot \mathbf{v}$ is the approppriate value given in the previous tables.
2) Construct $\mathcal{C}_{\mathbf{v}}$ and determine \mathbf{w} such that $\mathcal{C}=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{w}\right\rangle$.
3) From previous tables, determine the values of $v_{X}^{\prime}, v_{Y}^{\prime}, w_{X}^{\prime}, w_{Y}^{\prime}, V$.
4) Define $\mathcal{D}=\mathcal{C}_{\mathbf{v}}^{\perp}=\left\langle\mathcal{C}_{\mathbf{v}}, \mathbf{w}, \mathbf{v}\right\rangle$. If $\mathcal{G}_{\mathbf{v}}$ is the generator matrix of $\mathcal{C}_{\mathbf{V}}$, then, the generator matrix of $\overline{\mathcal{D}}$ is:

$$
\mathcal{G}_{\overline{\mathcal{D}}}=\left(\begin{array}{ccc}
\mathbf{0} & \mathcal{G}_{\mathbf{v}} & \mathbf{0} \\
v_{X}^{\prime} & \mathbf{v} & v_{Y}^{\prime} \\
w_{X}^{\prime} & \mathbf{w} & w_{Y}^{\prime} \\
& V &
\end{array}\right) .
$$

Example 29.

Let \mathcal{C} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by the matrix

$$
\mathcal{G}=\left(\begin{array}{l|l}
11 & 20 \\
01 & 11
\end{array}\right)
$$

We want to extend the binary and also the quaternary coordinates. From Theorem 20 , there is no restriction to \mathbf{v} and \mathbf{w}.
Let $\mathbf{v}=(00 \mid 20), \mathbf{w}=(01 \mid 11)$ and, by Example 28,

$$
\mathcal{G}_{\mathbf{v}}=\left(\begin{array}{l|l}
11 & 20 \\
00 & 22
\end{array}\right)
$$

Note that $\mathbf{v} \cdot \mathbf{v}=0$ and $\mathbf{v} \cdot \mathbf{w}=2$

Example 30.

Table: Case $\alpha^{\prime} \neq 0, \beta^{\prime} \neq 0, \mathbf{v} \cdot \mathbf{w}=2$.

$\mathbf{v} \cdot \mathbf{v}$	v_{X}^{\prime}	v_{Y}^{\prime}	w_{X}^{\prime}	w_{Y}^{\prime}	V
0	$(1,0)$	$(1,1)$	$(1,1)$	$(2,2)$	$\{(1,1, \mathbf{0}, 2,0)\}$

The generator matrix of $\overline{\mathcal{D}}$ is:

$$
\mathcal{G}_{\overline{\mathcal{D}}}=\left(\begin{array}{ccc}
\mathbf{0} & \mathcal{G}_{\mathbf{v}} & \mathbf{0} \\
v_{X}^{\prime} & \mathbf{v} & v_{Y}^{\prime} \\
w_{X}^{\prime} & \mathbf{w} & w_{Y}^{\prime} \\
& V &
\end{array}\right)=\left(\begin{array}{cc|cc}
00 & 11 & 20 & 00 \\
00 & 00 & 22 & 00 \\
10 & 00 & 20 & 11 \\
11 & 01 & 11 & 22 \\
11 & 00 & 00 & 20
\end{array}\right)
$$

$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive formally self-dual

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. We say that \mathcal{C} is $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive formally self-dual if $W_{\mathcal{C}^{\perp}}(x, y)=W_{\mathcal{C}}(x, y)$.
[DF14] S. T. Dougherty, C. Fernández-Córdoba.
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive formally self-dual codes
Designs, Codes and Cryptography, vol. 72, pp. 435-453, 2014.
4. Linearity, Rank and Kernel

- Basic definitions
- Linearity
- Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Pairs of rank and dimension of the kernel

Bibliography

[呞 [FPV10] C. Fernández-Córdoba, J.Pujol, M. Villanueva. $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes: rank and kernel.
Designs, Codes and Cryptography, vol. 56, pp. 43-59, 2010.
[BDFT19] J. Borges, S. T. Dougherty, C. Fernández-Córdoba, R. Ten-Valls.
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive cyclic codes: kernel and rank.
IEEE Transactions on Information Theory, vol. 65, pp. 2119-2127, 2019.
4. Linearity, Rank and Kernel

- Basic definitions
- Linearity
- Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Pairs of rank and dimension of the kernel

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code and $C=\Phi(\mathcal{C})$.

Basic definitions

Example 31.

Consider the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C}_{15} of type $(3,5 ; 3,3 ; 3)$ generated by the following matrix:

$$
\left(\begin{array}{l}
\mathbf{u}_{1} \tag{13}\\
\mathbf{u}_{2} \\
\mathbf{u}_{3} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{lll|lllll}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$C_{15}=\Phi\left(\mathcal{C}_{15}\right)$ is not linear: $\Phi\left(\mathbf{v}_{2}\right)+\Phi\left(\mathbf{v}_{3}\right) \notin C_{15}$;

$$
\begin{gathered}
\Phi^{-1}\left(\Phi\left(\mathbf{v}_{2}\right)+\Phi\left(\mathbf{v}_{3}\right)\right)=\Phi^{-1}((0000001000100)+(0000001000001))= \\
\Phi^{-1}(0000000000101)=(000 \mid 00011) \notin \mathcal{C}_{15} .
\end{gathered}
$$

Definitions of rank and kernel

Let C be a binary code, $\mathbf{0} \in C$.

- Rank of $C: \operatorname{rank}(C)=\operatorname{dim}\langle C\rangle$.
- Kernel of $C: K(C)=\{x \in C \mid C=C+x\}$, $\operatorname{ker}(C)=\operatorname{dim}(K(C))$.

$$
K(C)=\bigcap_{i \in\{0, \cdots, s\}} D_{i}
$$

where $D_{0} \ldots, \mathcal{D}_{s}$ are all the maximal linear subspaces of C [PL95].
目 [PL95] K. T. Phelps, M. Levan.
Kernels of nonlinear Hamming codes
Designs, Codes and Cryptography, vol. 6, pp. 247-257, 1995.

Introduction
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes
Linearity, Rank and Kernel
ACD codes $\operatorname{MDS} \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Basic definitions

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code and $C=\Phi(\mathcal{C})$.

$$
K(C) \subseteq C \subseteq\langle C\rangle
$$

Basic definitions

Why do we study rank and kernel?

Let C_{i} be a binary code, with rank r_{i} and dimension of the kernel k_{i} for $i \in\{1,2\}$.

- If C_{i} is linear, then $K\left(C_{i}\right)=C_{i}=\left\langle C_{i}\right\rangle$.
- If $r_{1} \neq r_{2}$, then C_{1} is not equivalent to C_{2}
- If $k_{1} \neq k_{2}$, then C_{1} is not equivalent to C_{2}
- $C_{i}=\bigcup K\left(C_{i}\right)+v_{j}$, where $v_{0}=\mathbf{0}, v_{1}, \cdots, v_{t}$ are coset
representatives.

Basic definitions

Why do we study rank and kernel?

Let C_{i} be a binary code, with rank r_{i} and dimension of the kernel k_{i} for $i \in\{1,2\}$.

- If C_{i} is linear, then $K\left(C_{i}\right)=C_{i}=\left\langle C_{i}\right\rangle$.
- If $r_{1} \neq r_{2}$, then C_{1} is not equivalent to C_{2}.
- If $k_{1} \neq k_{2}$, then C_{1} is not equivalent to C_{2}.

representatives.

Basic definitions

Why do we study rank and kernel?

Let C_{i} be a binary code, with rank r_{i} and dimension of the kernel k_{i} for $i \in\{1,2\}$.

- If C_{i} is linear, then $K\left(C_{i}\right)=C_{i}=\left\langle C_{i}\right\rangle$.
- If $r_{1} \neq r_{2}$, then C_{1} is not equivalent to C_{2}.
- If $k_{1} \neq k_{2}$, then C_{1} is not equivalent to C_{2}.
- $C_{i}=\bigcup K\left(C_{i}\right)+v_{j}$, where $v_{0}=\mathbf{0}, v_{1}, \cdots, v_{t}$ are coset $j \in\{0, \cdots, t\}$
representatives.

4. Linearity, Rank and Kernel

- Basic definitions
- Linearity
- Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Pairs of rank and dimension of the kernel

Linearity

$$
\begin{aligned}
& \text { Let } \mathbf{u}=\left(u_{1}, \ldots, u_{\alpha+\beta}\right), \mathbf{v}=\left(v_{1}, \ldots, v_{\alpha+\beta}\right) \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta} \\
& \qquad \mathbf{u} * \mathbf{v}=\left(u_{1} v_{1}, \ldots, u_{\alpha+\beta} v_{\alpha+\beta}\right)
\end{aligned}
$$

Proposition 21.

Let $\mathbf{u}, \mathbf{v} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$. Then, $\Phi(\mathbf{u}+\mathbf{v})=\Phi(\mathbf{u})+\Phi(\mathbf{v})+\Phi(2 \mathbf{u} * \mathbf{v})$.

Introduction

Basic definitions Linearity
Rank
Kernel
Paris (r,k)

Linearity

Corollary 22 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. Then, $C=\Phi(\mathcal{C})$ is linear if and only if $2 \mathbf{u} * \mathbf{v} \in \mathcal{C} \forall \mathbf{u}, \mathbf{v} \in \mathcal{C}$.

Note that if $\mathbf{u} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is of order two, then $2 \mathbf{u} \star \mathbf{v}=\mathbf{0} \in \mathcal{C}$, for all $\mathbf{v} \in \mathcal{C}$

Linearity

Corollary 22 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. Then, $C=\Phi(\mathcal{C})$ is linear if and only if $2 \mathbf{u} * \mathbf{v} \in \mathcal{C} \forall \mathbf{u}, \mathbf{v} \in \mathcal{C}$.

Note that if $\mathbf{u} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is of order two, then $2 \mathbf{u} \star \mathbf{v}=\mathbf{0} \in \mathcal{C}$, for all $\mathbf{v} \in \mathcal{C}$.

Proposition 23 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix \mathcal{G}. Let $\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma}$ and $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ be the row vectors of order two and four in \mathcal{G}, respectively. Then, $C=\Phi(\mathcal{C})$ is linear if and only if $2 \mathbf{v}_{j} * \mathbf{v}_{k} \in \mathcal{C}$ for all j, k satisfying $1 \leq j<k \leq \delta$.

Corollary 24 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. If $\delta \leq 1$, then $\Phi(C)$ is linear.

Proposition 23 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix \mathcal{G}. Let $\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma}$ and $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ be the row vectors of order two and four in \mathcal{G}, respectively. Then, $C=\Phi(\mathcal{C})$ is linear if and only if $2 \mathbf{v}_{j} * \mathbf{v}_{k} \in \mathcal{C}$ for all j, k satisfying $1 \leq j<k \leq \delta$.

Corollary 24 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. If $\delta \leq 1$, then $\Phi(\mathcal{C})$ is linear.

Example 32.

Consider the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C}_{15} of type $(3,5 ; 3,3 ; 3)$ generated by the following matrix:

$$
\left(\mathcal{G}_{15}\right)_{S}=\left(\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{u}_{3} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

$\Phi\left(C_{15}\right)$ is not linear; $2 \mathbf{v}_{2} * \mathbf{v}_{3}=(000 \mid 02000) \notin \mathcal{C}_{15}$.

Example 33.

Consider the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} of type $(3,3 ; 3,2 ; 3)$ generated by the following matrix:

$$
\mathcal{G}_{S}=\left(\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{u}_{3} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2}
\end{array}\right)=\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 2 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 & 0 & 1
\end{array}\right) .
$$

$C=\Phi(\mathcal{C})$ is linear: for all $\mathbf{v}_{i}, \mathbf{v}_{j} \in \mathcal{C}, 1 \leq j<k \leq \delta, 2 \mathbf{v}_{i} * \mathbf{v}_{j} \in \mathcal{C}$; that is, $2 \mathbf{v}_{1} * \mathbf{v}_{2}=\mathbf{0} \in \mathcal{C}$.

Introduction
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes

Linearity, Rank and Kernel
ACD codes $\operatorname{MDS} \mathbb{Z}, \mathbb{Z}_{A}$-additive codes

Basic definitions Linearity
Rank
Kernel
Paris (r,k)

Lemma 25.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. If $\Phi(\mathcal{C})$ is linear, then $\phi\left(\mathcal{C}_{Y}\right)$ is linear.

The converse is not true in general

Proposition 26 (BDFT19).

Let C be a separable $\mathbb{T}_{2} \mathbb{T}_{4}$-additive code. Then, $\Phi(C)$ is linear if and only if $\phi\left(\mathcal{C}_{Y}\right)$ is linear.

Lemma 25.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. If $\Phi(\mathcal{C})$ is linear, then $\phi\left(\mathcal{C}_{Y}\right)$ is linear.

The converse is not true in general.
Proposition 26 (BDFT19).
Let \mathcal{C} be a separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. Then, $\Phi(\mathcal{C})$ is linear if and only if $\phi\left(\mathcal{C}_{Y}\right)$ is linear.

Introduction
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive self-dual codes Linearity, Rank and Kernel

ACD codes $\operatorname{MDS} \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Basic definitions Linearity
Rank
Kernel
Paris (r,k)

Lemma 25.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. If $\Phi(\mathcal{C})$ is linear, then $\phi\left(\mathcal{C}_{Y}\right)$ is linear.

The converse is not true in general.

Proposition 26 (BDFT19).

Let \mathcal{C} be a separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. Then, $\Phi(\mathcal{C})$ is linear if and only if $\phi\left(\mathcal{C}_{Y}\right)$ is linear.

Example 34.

Let \mathcal{C}_{15} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code given in Example 32. We have seen that $\Phi\left(\mathcal{C}_{15}\right)$ is not linear.

$$
\left(\mathcal{G}_{15}\right)_{S}=\left(\begin{array}{c}
\left(u_{1} \mid u_{1}^{\prime}\right) \tag{15}\\
\left(u_{2} \mid u_{2}^{\prime}\right) \\
\left(u_{3} \mid u_{3}^{\prime}\right) \\
\left(v_{1} \mid v_{1}^{\prime}\right) \\
\left(v_{2} \mid v_{2}^{\prime}\right) \\
\left(v_{3} \mid v_{3}^{\prime}\right)
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

- $2 v_{1}^{\prime} * v_{2}^{\prime}=2 v_{1}^{\prime} * v_{3}^{\prime}=\mathbf{0} \in\left(\mathcal{C}_{15}\right)_{Y}$,
- $2 v_{2}^{\prime} * v_{3}^{\prime}=(0,2,0,0,0) \in\left(\mathcal{C}_{15}\right)_{Y}$.

Then, $\phi\left(\left(\mathcal{C}_{15}\right)_{Y}\right)$ is linear.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix in standard form,

$$
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

and let \mathcal{C}^{\prime} be the subcode generated by

$$
\mathcal{G}^{\prime}=\left(\begin{array}{cc|ccc}
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \tag{16}\\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

$$
\mathcal{G}^{\prime}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \emptyset & \emptyset \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

Proposition 27 (BDFT19).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix in standard form, and let \mathcal{C}^{\prime} be the subcode generated by \mathcal{G}^{\prime}. Then, $\Phi(\mathcal{C})$ is linear if and only if $\phi\left(\mathcal{C}_{Y}^{\prime}\right)$ is linear.

Example 35.

Let \mathcal{C}_{15} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code given in Example 32 genrated by $\left(\mathcal{C}_{15}\right)_{S}$. We have seen that $\Phi\left(\mathcal{C}_{15}\right)$ is not linear. Let

$$
\mathcal{G}_{15}^{\prime}=\left(\begin{array}{c}
\left(u_{1}+u_{1}^{\prime}\right) \\
\frac{\left(u_{2}+u_{2}^{\prime}\right)}{\left(u_{3}+u_{3}^{\prime}\right)} \\
\left(v_{1} \mid v_{1}^{\prime}\right) \\
\left(v_{2} \mid v_{2}^{\prime}\right) \\
\left(v_{3} \mid v_{3}^{\prime}\right)
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
\not 1 & \emptyset \\
\emptyset & 1 & \emptyset & \chi & \emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & 1 & \emptyset & \varnothing & \emptyset & \emptyset & \emptyset \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

- $2 v_{1}^{\prime} * v_{2}^{\prime}=2 v_{1}^{\prime} * v_{3}^{\prime}=\mathbf{0} \in\left(\mathcal{C}_{15}^{\prime}\right)_{Y}$,
- $2 v_{2}^{\prime} * v_{3}^{\prime}=(0,2,0,0,0) \notin\left(\mathcal{C}_{15}^{\prime}\right)_{Y}$.

Then, $\phi\left(\left(\mathcal{C}_{15}\right)_{Y}^{\prime}\right)$ is linear.

Introduction
$\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Basic definitions Linearity
4. Linearity, Rank and Kernel

- Basic definitions
- Linearity
- Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Pairs of rank and dimension of the kernel

Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. We define the code the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code

$$
\mathcal{R}(\mathcal{C})=\Phi^{-1}(\langle\Phi(\mathcal{C})\rangle)
$$

Proposition 28 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Let \mathcal{G} be a generator matrix of \mathcal{C}, and let $\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma}$ be the rows of order two and $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ the rows of order four in \mathcal{G}. Then,

$$
\begin{gathered}
\mathcal{R}(\mathcal{C})=\left\langle\mathcal{C},\left\{2 \mathbf{v}_{j} * \mathbf{v}_{k}\right\}_{1 \leq j<k \leq \delta}\right\rangle= \\
\left\langle\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma},\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta},\left\{2 \mathbf{v}_{j} * \mathbf{v}_{k}\right\}_{1 \leq j<k \leq \delta}\right\rangle .
\end{gathered}
$$

Corollary 29 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then, $\mathcal{R}(\mathcal{C})$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma+\bar{r}, \delta ; \kappa)$, with $\bar{r} \geq 0$, and $\operatorname{rank}(\Phi(\mathcal{C}))=\log _{2}(|\mathcal{R}(\mathcal{C})|)=\gamma+2 \delta+\bar{r}$.

Corollary 30 (FPV10).

If C is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code, then $\langle C\rangle$ is both linear and $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear.

Example 36.

Consider the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C}_{15} of type $(3,5 ; 3,3 ; 3)$ generated by the following matrix:

$$
\left(\mathcal{G}_{15}\right)_{S}=\left(\begin{array}{l}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{u}_{3} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right)
$$

Note that $2 \mathbf{v}_{1} * \mathbf{v}_{2}=2 \mathbf{v}_{1} * \mathbf{v}_{3}=\mathbf{0} \in \mathcal{C}_{15}$.
$\mathcal{R}\left(\mathcal{C}_{15}\right)=\left\langle\mathcal{C}_{15}, 2 \mathbf{v}_{2} * \mathbf{v}_{3}\right\rangle=\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, 2 \mathbf{v}_{2} * \mathbf{v}_{3}\right\rangle$.

Example 37.

\mathcal{C}_{15} of type $(3,5 ; 3,3 ; 3)$. We have that $\mathcal{R}\left(C_{15}\right)$ is generated by

$$
\begin{gathered}
\left(\mathcal{G}_{15}\right)_{S}=\left(\begin{array}{c}
\mathbf{u}_{1} \\
\mathbf{u}_{2} \\
\mathbf{u}_{3}-\left(2 \mathbf{v}_{2} \star \mathbf{v}_{3}\right) \\
\left(2 \mathbf{v}_{2} \star \mathbf{v}_{3}\right) \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) . \\
\operatorname{rank}\left(\mathcal{C}_{15}\right)=\gamma+2 \delta+1=3+2 \cdot 3+1=10 .
\end{gathered}
$$

If $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$, then it is easy to see that $2\left(u \mid u^{\prime}\right) \star\left(v \mid v^{\prime}\right) \in \mathcal{C}$ if and only if $2 u^{\prime} \star v^{\prime} \in \mathcal{C}_{Y}$.

Proposition 31 (BDFT19).

If C is a separable $\mathbb{T}_{2} \mathbb{T}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; k)$, then $\mathcal{R}(\mathcal{C})=\mathcal{C}_{X} \times \mathcal{R}\left(\mathcal{C}_{Y}\right)$ and $\operatorname{rank}(\Phi(\mathcal{C}))=\kappa+\operatorname{rank}\left(\phi\left(\mathcal{C}_{Y}\right)\right)$.

If \mathcal{C} is not separable, then it is not true in general.

Basic definitions

If $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$, then it is easy to see that $2\left(u \mid u^{\prime}\right) \star\left(v \mid v^{\prime}\right) \in \mathcal{C}$ if and only if $2 u^{\prime} \star v^{\prime} \in \mathcal{C}_{Y}$.

Proposition 31 (BDFT19).

If \mathcal{C} is a separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then $\mathcal{R}(\mathcal{C})=\mathcal{C}_{X} \times \mathcal{R}\left(\mathcal{C}_{Y}\right)$ and $\operatorname{rank}(\Phi(\mathcal{C}))=\kappa+\operatorname{rank}\left(\phi\left(\mathcal{C}_{Y}\right)\right)$.

If \mathcal{C} is not separable, then it is not true in general.

Basic definitions

If $\mathcal{C}=\mathcal{C}_{X} \times \mathcal{C}_{Y}$, then it is easy to see that $2\left(u \mid u^{\prime}\right) \star\left(v \mid v^{\prime}\right) \in \mathcal{C}$ if and only if $2 u^{\prime} \star v^{\prime} \in \mathcal{C}_{Y}$.

Proposition 31 (BDFT19).

If \mathcal{C} is a separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then $\mathcal{R}(\mathcal{C})=\mathcal{C}_{X} \times \mathcal{R}\left(\mathcal{C}_{Y}\right)$ and $\operatorname{rank}(\Phi(\mathcal{C}))=\kappa+\operatorname{rank}\left(\phi\left(\mathcal{C}_{Y}\right)\right)$.

If \mathcal{C} is not separable, then it is not true in general.

Example 38.

Consider the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C}_{15} of type $(3,5 ; 3,3 ; 3)$ generated by the following matrix:

$$
\left(\mathcal{G}_{15}\right)_{S}=\left(\begin{array}{c}
\left(u_{1} \mid u_{1}^{\prime}\right) \\
\left(u_{2} \mid u_{2}^{\prime}\right) \\
\left(u_{3} \mid u_{3}^{\prime}\right) \\
\left(v_{1} \mid v_{1}^{\prime}\right) \\
\left(v_{2} \mid v_{2}^{\prime}\right) \\
\left(v_{3} \mid v_{3}^{\prime}\right)
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

$\mathcal{R}\left(\mathcal{C}_{15}\right)=\left\langle\mathcal{C}_{15}, 2 \mathbf{v}_{2} * \mathbf{v}_{3}\right\rangle=\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, 2 \mathbf{v}_{2} * \mathbf{v}_{3}\right\rangle$.
We have seen that $\left(\mathcal{C}_{15}\right)_{Y}$ is linear, so

$$
\mathcal{R}\left(\left(\mathcal{C}_{15}\right)_{Y}\right)=\left\langle u_{2}^{\prime}, u_{3}^{\prime}, v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}\right\rangle .
$$

Basic definitions

$$
\mathcal{G}^{\prime}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \emptyset & \emptyset \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right) .
$$

Theorem 32 (BDFT19).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix in standard form, and let \mathcal{C}^{\prime} be the subcode generated by \mathcal{G}^{\prime}. Then,

$$
\operatorname{rank}(\Phi(\mathcal{C}))=\kappa+\operatorname{rank}\left(\phi\left(\mathcal{C}_{Y}^{\prime}\right)\right) .
$$

Example 39.

Let \mathcal{C}_{15} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code given in Example 32 genrated by $\left(\mathcal{G}_{15}\right)_{S}$. Let

$$
\left(\mathcal{G}_{15}^{\prime}\right)_{S}=\left(\begin{array}{c}
\left(u_{1}+u_{1}^{\prime}\right) \\
\left(u_{2}+u_{2}^{\prime}\right) \\
\hline\left(u_{3}+u_{3}^{\prime}\right) \\
\left(v_{1} \mid v_{1}^{\prime}\right) \\
\left(v_{2} \mid v_{2}^{\prime}\right) \\
\left(v_{3} \mid v_{3}^{\prime}\right)
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
\not & \emptyset \\
\emptyset & \not & \emptyset & \chi & \emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & \chi & \emptyset & \chi & \emptyset & \emptyset & \emptyset \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

$\mathcal{R}\left(\mathcal{C}_{15}\right)=\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}, 2 \mathbf{v}_{2} * \mathbf{v}_{3}\right\rangle ; \operatorname{rank}\left(\Phi\left(\mathcal{C}_{15}\right)\right)=10$.
$\mathcal{R}\left(\left(\mathcal{C}_{15}^{\prime}\right)_{Y}\right)=\left\langle v_{1}^{\prime}, v_{2}^{\prime}, v_{3}^{\prime}, 2 v_{2}^{\prime} \star v_{3}^{\prime}\right\rangle ; \mathcal{R}\left(\left(\mathcal{C}_{15}^{\prime}\right)_{Y}\right)=7$

$$
\mathcal{R}\left(\mathcal{C}_{15}\right)=\kappa+\mathcal{R}\left(\left(\mathcal{C}_{15}^{\prime}\right)_{Y}\right) .
$$

Bounds for the rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes

Proposition 33 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then, $\mathcal{R}(\mathcal{C})$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma+\bar{r}, \delta ; \kappa)$, with $\bar{r} \geq 0$, and $\operatorname{rank}(\Phi(\mathcal{C}))=\log _{2}(|\mathcal{R}(\mathcal{C})|)=\gamma+2 \delta+\bar{r}$, where

$$
\bar{r} \in\left\{0, \ldots, \min \left\{\beta-(\gamma-\kappa)-\delta,\binom{\delta}{2}\right\}\right\} .
$$

Theorem 34 (FPV10).

Let $\alpha, \beta, \gamma, \delta, \kappa$ be allowable parameters. Then, there exists a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code C of type ($\alpha, \beta ; \gamma, \delta ; \kappa$) and rank $r=\gamma+2 \delta+\bar{r}$, for any

$$
\bar{r} \in\left\{0, \ldots, \min \left\{\beta-(\gamma-\kappa)-\delta,\binom{\delta}{2}\right\}\right\} .
$$

Example 40.

- Let C be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of type $(\alpha, 5 ; 2,3 ; 1)$. Then, $r=8+\bar{r}$, $\bar{r} \in\{0, \ldots, \min (1,3)\}=\{0,1\} ; \quad r \in\{8,9\}$.
- Let C be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of type $(\alpha, 8 ; 2,3 ; 1)$. Then, $r=8+\bar{r}$, $\bar{r} \in\{0 \ldots, \min (4,3)\}=\{0,1,2,3\} ; r \in\{8,9,10,11\}$.

Example

For $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes \mathcal{C} of type $(\alpha, 8 ; 2,3 ; 1)$,
$r \in\{8,9,10,11\}$.
We obtain $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes $C=\Phi(\mathcal{C})$ for all possible ranks, taking the following generator matrix:

$$
\begin{gathered}
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
1 & T_{b} & \mathbf{0} & 0 & \mathbf{0} \\
0 & \mathbf{0} & \mathbf{0} & 2 & \mathbf{0} \\
\hline \mathbf{0} & S_{b} & S_{q} & \mathbf{0} & I_{3}
\end{array}\right) \\
r=8, \text { when } S_{q}=(\mathbf{0}) \\
r=10, \text { when } S_{q}=B \quad r=9, \text { when } S_{q}=A \\
A=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \quad B=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0
\end{array}\right) \quad C=\left(\begin{array}{llll}
1 & 0 & 1 & 0 \\
1 & 1 & 0 & 0 \\
0 & 1 & 1 & 0
\end{array}\right)
\end{gathered}
$$

4 Linearity, Rank and Kernel

- Basic definitions
- Linearity
- Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Pairs of rank and dimension of the kernel

Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. We define the kernel of \mathcal{C}, denoted by $\mathcal{K}(\mathcal{C})$, as the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code

$$
\mathcal{K}(\mathcal{C})=\Phi^{-1}(K(\Phi(\mathcal{C})))
$$

Proposition 35 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix \mathcal{G}. Let $\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma}$ and $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ be the row vectors of order two and four in \mathcal{G}, respectively. Then,

$$
\mathcal{K}(\mathcal{C})=\left\{\mathbf{u} \in \mathcal{C} \mid 2 \mathbf{u} * \mathbf{v}_{j} \in \mathcal{C}, \forall j \in\{1, \ldots, \delta\}\right\}
$$

Introduction

Corollary 36 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. We have that

$$
\mathcal{C}_{b} \subseteq \mathcal{K}(\mathcal{C})
$$

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix \mathcal{G}. Let $\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma}$ and $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ be the row vectors of order two and four in \mathcal{G}, respectively. Then,

$$
\left\langle\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma},\left\{2 \mathbf{v}_{j}\right\}_{j=1}^{\delta}\right\rangle \subseteq \mathcal{K}(\mathcal{C})
$$

Corollary 36 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. We have that

$$
\mathcal{C}_{b} \subseteq \mathcal{K}(\mathcal{C})
$$

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix \mathcal{G}. Let $\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma}$ and $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ be the row vectors of order two and four in \mathcal{G}, respectively. Then,

$$
\left\langle\left\{\mathbf{u}_{i}\right\}_{i=1}^{\gamma},\left\{2 \mathbf{v}_{j}\right\}_{j=1}^{\delta}\right\rangle \subseteq \mathcal{K}(\mathcal{C})
$$

Example 41.

Consider the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C}_{15} of type $(3,5 ; 3,3 ; 3)$ generated by the following matrix:

$$
\left(\mathcal{G}_{15}\right)_{S}=\left(\begin{array}{l}
\mathbf{u}_{1} \tag{17}\\
\mathbf{u}_{2} \\
\mathbf{u}_{3} \\
\mathbf{v}_{1} \\
\mathbf{v}_{2} \\
\mathbf{v}_{3}
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 2 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 2 & 0 & 0 & 0 \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

- $\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, 2 \mathbf{v}_{1}, 2 \mathbf{v}_{2}, 2 \mathbf{v}_{3}\right\rangle \subseteq \mathcal{K}\left(\mathcal{C}_{15}\right)$.
- $2 \mathbf{v}_{1} * \mathbf{v}_{2}=2 \mathbf{v}_{1} * \mathbf{v}_{3}=\mathbf{0} \in \mathcal{C}_{15} ; \mathbf{v}_{1} \in \mathcal{K}\left(\mathcal{C}_{15}\right)$.
- $2 \mathbf{v}_{2} * \mathbf{v}_{3} \notin \mathcal{C}_{15} ; \mathbf{v}_{2}, \mathbf{v}_{3}, \notin \mathcal{K}\left(\mathcal{C}_{15}\right)$.

$$
\mathcal{K}\left(\mathcal{C}_{15}\right)=\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, 2 \mathbf{v}_{2}, 2 \mathbf{v}_{3}\right\rangle ; \operatorname{ker}\left(\mathcal{C}_{15}\right)=7
$$

Introduction

Basic definitions

Proposition 37 (BDFT19).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then, $\mathcal{K}(\mathcal{C}) \subseteq \mathcal{C}_{X} \times \mathcal{K}\left(\mathcal{C}_{Y}\right)$ and $\operatorname{ker}(\Phi(\mathcal{C})) \leq \kappa+\operatorname{ker}\left(\phi\left(\mathcal{C}_{Y}\right)\right)$.

Proposition 38 (BDFT19).

If \mathcal{C} is a separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then $\mathcal{K}(\mathcal{C})=\mathcal{C}_{X}$

Proposition 37 (BDFT19).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then, $\mathcal{K}(\mathcal{C}) \subseteq \mathcal{C}_{X} \times \mathcal{K}\left(\mathcal{C}_{Y}\right)$ and $\operatorname{ker}(\Phi(\mathcal{C})) \leq \kappa+\operatorname{ker}\left(\phi\left(\mathcal{C}_{Y}\right)\right)$.

Proposition 38 (BDFT19).

If \mathcal{C} is a separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$, then $\mathcal{K}(\mathcal{C})=\mathcal{C}_{X} \times \mathcal{K}\left(\mathcal{C}_{Y}\right)$ and $\operatorname{ker}(\Phi(\mathcal{C}))=\kappa+\operatorname{ker}\left(\phi\left(\mathcal{C}_{Y}\right)\right)$.

Example 42.

Let \mathcal{C}_{15} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(3,5 ; 3,3 ; 3)$ given in Example 32 genrated by $\left(\mathcal{G}_{15}\right)_{S}$. Let

$$
\left(\mathcal{G}_{15}^{\prime}\right)_{S}=\left(\begin{array}{c}
\left(u_{1}+u_{1}^{\prime}\right) \\
\left(u_{2} \mid u_{2}^{\prime}\right) \\
\hline\left(u_{3}+u_{3}^{\prime}\right) \\
\left(v_{1} \mid v_{1}^{\prime}\right) \\
\left(v_{2} \mid v_{2}^{\prime}\right) \\
\left(v_{3} \mid v_{3}^{\prime}\right)
\end{array}\right)=\left(\begin{array}{ccc|ccccc}
\neq & \emptyset \\
\emptyset & 1 & \emptyset & 2 & \emptyset & \emptyset & \emptyset & \emptyset \\
\emptyset & \emptyset & 1 & \emptyset & \chi & \emptyset & \emptyset & \emptyset \\
0 & 0 & 1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 1
\end{array}\right) .
$$

$\mathcal{K}\left(\mathcal{C}_{15}\right)=\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, 2 \mathbf{v}_{2}, 2 \mathbf{v}_{3}\right\rangle ; \operatorname{ker}\left(\mathcal{C}_{15}\right)=7$.
$\mathcal{K}\left(\mathcal{C}_{15}^{\prime}\right)=\left\langle v_{1}^{\prime}, 2 v_{2}^{\prime}, 2 v_{3}^{\prime}\right\rangle ; \operatorname{ker}\left(\mathcal{C}_{15}\right)=4$.

$$
\mathcal{K}\left(\mathcal{C}_{15}\right)=\kappa+\mathcal{K}\left(\mathcal{C}_{15}^{\prime}\right)
$$

Bounds on the kernel dimension of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes

Proposition 39 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then, $\mathcal{K}(C)$ is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive subcode of \mathcal{C} of type $(\alpha, \beta ; \gamma+\bar{k}, \delta-\bar{k} ; \kappa)$ and $\operatorname{ker}(\Phi(C))=\gamma+2 \delta-\bar{k}$, where $\bar{k} \in\{0\} \cup\{2, \ldots, \delta\}$.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$ code with generator matrix:

$$
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
I_{\kappa} & T_{b} & 2 T_{2} & \mathbf{0} & \mathbf{0} \tag{18}\\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right)
$$

The available values for $\operatorname{ker}(\Phi(\mathcal{C}))$ depends on the number of columns of $S_{q}, s=\beta-(\gamma-\kappa)-\delta$.

$$
\mathcal{G}^{\prime}=\left(\begin{array}{cc|ccc}
I_{\kappa} & \mathcal{P}_{b} & 2 T_{2} & \emptyset & \emptyset \\
\mathbf{0} & \mathbf{0} & 2 T_{1} & 2 I_{\gamma-\kappa} & \mathbf{0} \\
\mathbf{0} & S_{b} & S_{q} & R & I_{\delta}
\end{array}\right) .
$$

Theorem 40 (BDFT19).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix in standard form, and let \mathcal{C}^{\prime} be the subcode generated by \mathcal{G}^{\prime}. Then,

$$
\operatorname{ker}(\Phi(\mathcal{C}))=\kappa+\operatorname{ker}\left(\phi\left(\mathcal{C}_{Y}^{\prime}\right)\right) .
$$

Kernel dimension of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes

Theorem 41 (FPV10).

Let $\alpha, \beta, \gamma, \delta, \kappa$ be allowable parameters. Then, there exists a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code C of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with $\operatorname{ker}(C)=\gamma+2 \delta-\bar{k}$ if and only if

$$
\begin{cases}\bar{k}=0, & \text { if } s=0, \\ \bar{k} \in\{0\} \cup\{2, \ldots, \delta\} \text { and } \bar{k} \text { even, } & \text { if } s=1, \\ \bar{k} \in\{0\} \cup\{2, \ldots, \delta\}, & \text { if } s \geq 2,\end{cases}
$$

and $s=\beta-(\gamma-\kappa)-\delta$.

Example 43.

- Let C be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of type $(\alpha, 7 ; 2,5 ; 1)$. Then, $s=1 \rightarrow \bar{k} \in\{0,2,4\}$ and $\operatorname{ker}(C) \in\{8,10,12\}$.
- Let C be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of type $(\alpha, 8 ; 2,5 ; 1)$. Then, $s=2 \rightarrow \bar{k} \in\{0,2,3,4,5\}$ and $; \operatorname{ker}(C) \in\{7,8,9,10,12\}$.

Example

For $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes \mathcal{C} of type $(\alpha, 8 ; 2,5 ; 1)$,
$k=\operatorname{ker}(\Phi(\mathcal{C})) \in\{7,8,9,10,-, 12\}$.
We obtain $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes $C=\Phi(\mathcal{C})$ for all possible k, taking:

$$
\mathcal{G}_{S}=\left(\begin{array}{cc|ccc}
1 & T_{b} & \mathbf{0} & 0 & \mathbf{0} \\
0 & \mathbf{0} & \mathbf{0} & 2 & \mathbf{0} \\
\hline \mathbf{0} & S_{b} & S_{q} & \mathbf{0} & I_{5}
\end{array}\right)
$$

$$
\begin{aligned}
& k=12, \text { when } S_{q}=(\mathbf{0}) \quad k=10, \text { when } S_{q}=A \quad k=9, \text { when } S_{q}=B \\
& k=8, \text { when } S_{q}=C \quad k=7, \text { when } S_{q}=D \\
& A=\left(\begin{array}{ll}
\mathbf{1} & 0 \\
\mathbf{1} & 0 \\
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}\right) \quad B=\left(\begin{array}{ll}
1 & 0 \\
1 & \mathbf{1} \\
0 & \mathbf{1} \\
0 & 0 \\
0 & 0
\end{array}\right) \quad C=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
\mathbf{1} & 1 \\
\mathbf{1} & 0 \\
0 & 0
\end{array}\right) \quad D=\left(\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1 \\
1 & \mathbf{1} \\
0 & \mathbf{1}
\end{array}\right)
\end{aligned}
$$

Let $\mathbf{v}_{1}, \ldots, \mathbf{v}_{m}$ in $\mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ and $I=\left\{i_{1}, \ldots, i_{l}\right\} \subseteq\{1, \ldots, m\}$.
Then, denote

$$
\mathbf{v}_{I}=\mathbf{v}_{i_{1}}+\cdots+\mathbf{v}_{i_{l}} .
$$

If $I=\emptyset$, then $\mathbf{v}_{I}=\mathbf{0}$.

Proposition 42 (FPV10).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with generator matrix \mathcal{G}, and let $C=\Phi(\mathcal{C})$ be the corresponding $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code with $\operatorname{ker}(C)=\gamma+2 \delta-\bar{k}$, where $\bar{k} \in\{2, \ldots, \delta\}$. Let $\left\{\mathbf{v}_{j}\right\}_{j=1}^{\delta}$ be the rows of order four in \mathcal{G}. Then, there exists a set $\left\{j_{1}, \ldots, j_{k}\right\} \subseteq\{1, \ldots, \delta\}$ such that

$$
C=\bigcup_{I \subseteq\left\{j_{1}, \ldots, j_{\bar{k}}\right\}}\left(K(C)+\Phi\left(\mathbf{v}_{I}\right)\right)
$$

Example 44.

Let \mathcal{C}_{15} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive defined before. We have that

$$
\begin{aligned}
\mathcal{C}_{15} & =\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, \mathbf{v}_{2}, \mathbf{v}_{3}\right\rangle \\
\mathcal{K}\left(\mathcal{C}_{15}\right) & =\left\langle\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}, \mathbf{v}_{1}, 2 \mathbf{v}_{2}, 2 \mathbf{v}_{3}\right\rangle .
\end{aligned}
$$

We can write $C_{15}=\Phi\left(\mathcal{C}_{15}\right)$ as the following union of cosets of $K\left(C_{15}\right)$:

$$
\begin{aligned}
C_{15}= & K\left(C_{15}\right) \cup \\
& \left(K\left(C_{15}\right)+\Phi\left(\mathbf{v}_{2}\right)\right) \cup \\
& \left(K\left(C_{15}\right)+\Phi\left(\mathbf{v}_{3}\right)\right) \cup \\
& \left(K\left(C_{15}\right)+\Phi\left(\mathbf{v}_{2}+\mathbf{v}_{3}\right)\right) .
\end{aligned}
$$

4. Linearity, Rank and Kernel

- Basic definitions
- Linearity
- Rank of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes
- Pairs of rank and dimension of the kernel

Proposition 43 (FPV10).

Let C be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ with $\operatorname{ker}(C)=\gamma+2 \delta-\bar{k}$ and $\operatorname{rank}(C)=\gamma+2 \delta+\bar{r}$. Then, for any $\bar{k} \in\{0\} \cup\{2, \ldots, \delta\}$, $\begin{cases}\bar{r}=0, & \text { if } \bar{k}=0, \\ \bar{r} \in\left\{2, \ldots, \min \left\{\beta-(\gamma-\kappa)-\delta,\binom{\bar{k}}{2}\right\}\right\}, & \text { if } \quad \bar{k} \text { is odd, } \\ \bar{r} \in\left\{1, \ldots, \min \left\{\beta-(\gamma-\kappa)-\delta,\binom{\bar{k}}{2}\right\}\right\}, & \text { if } \quad \bar{k}>0 \text { is even. }\end{cases}$

Existence

Theorem 44 (FPV10).

Let $\alpha, \beta, \gamma, \delta, \kappa$ be allowable parameters. Then, there exists a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code C of type ($\alpha, \beta ; \gamma, \delta ; \kappa$) with $\operatorname{ker}(C)=\gamma+2 \delta-\bar{k}$ and $\operatorname{rank}(C)=\gamma+2 \delta+\bar{r}$ if and only if $\bar{k} \in\{0\} \cup\{2, \ldots, \delta\}$ and

$$
\begin{cases}\bar{r}=0, & \text { if } \quad \bar{k}=0, \\ \bar{r} \in\left\{2, \ldots, \min \left\{\beta-(\gamma-\kappa)-\delta,\binom{\bar{k}}{2}\right\}\right\}, & \text { if } \quad \bar{k} \text { is odd }, \\ \bar{r} \in\left\{1, \ldots, \min \left\{\beta-(\gamma-\kappa)-\delta,\binom{\bar{k}}{2}\right\}\right\}, & \text { if } \quad \bar{k}>0 \text { is even. }\end{cases}
$$

Example 45.

The possible pairs of rank and dimension of the kernel, (r, k) for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear codes of type $(\alpha, 9 ; 2,5 ; 1)$, are the ones given in the following table:

$k \backslash r$	12	13	14	15
12	$*$			
10		$*$		
9			$*$	$*$
8		$*$	$*$	$*$
7			$*$	$*$

Example 46 (cont.).

For each possible pair (r, k), we can construct a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-linear code $C_{r, k}$ with $\operatorname{rank}\left(C_{r, k}\right)=r$ and $\operatorname{ker}\left(C_{r, k}\right)=k$, taking the following generator matrix of $\mathcal{C}_{r, k}=\Phi^{-1}\left(C_{r, k}\right)$:

$$
\mathcal{G}_{r, k}=\left(\begin{array}{cc|ccc}
1 & T_{b} & \mathbf{0} & 0 & \mathbf{0} \\
0 & \mathbf{0} & \mathbf{0} & 2 & \mathbf{0} \\
\hline \mathbf{0} & S_{b} & S_{r, k} & \mathbf{0} & I_{5}
\end{array}\right)
$$

where T_{b}, S_{b} are matrices over \mathbb{Z}_{2}; and the matrices $S_{r, k}$, for each $(r, k) \in\{(12,12),(13,10),(13,8),(14,9),(14,8),(14,7)$, $(15,9),(15,8),(15,7)\}$, are the following: $S_{12,12}=(\mathbf{0})$,

Introduction

Example 47 (cont.).

$$
\begin{gathered}
\mathcal{G}_{r, k}=\left(\begin{array}{cc|ccc}
1 & T_{b} & 0 & 0 & 0 \\
0 & 0 & 0 & 2 & 0 \\
\hline 0 & S_{b} & S_{r, k} & 0 & I_{5}
\end{array}\right) \\
S_{13,10}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{13,8}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),
\end{gathered}
$$

Example 48 (cont.).

$$
\begin{aligned}
& S_{14,9}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{14,8}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{14,7}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right), \\
& S_{15,9}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{15,8}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad S_{15,7}=\left(\begin{array}{lll}
1 & 1 & 0 \\
1 & 1 & 1 \\
1 & 0 & 1 \\
1 & 0 & 0 \\
1 & 0 & 0
\end{array}\right) .
\end{aligned}
$$

Magma. Computational Algebra System

http://magma.maths.usyd.edu.au/magma/
http://www.ccsg.uab.cat (Downloads/Z2Z4-Additive Codes version 4.0)

Some functions for linearity, rank and kernel of $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes:

- HasZ2Z4LinearGrayMapImage (C)
- Z2Z4SpanZ2Code (C)
- Z2Z4KernelZ2Code(C)
- Z2Z4KernelCosetRepresentatives(C)
- Z2Z4DimensionOfSpanZ2(C)
- Z2Z4RankZ2 (C)
- Z2Z4DimensionOfKernelZ2(C)
(5) ACD codes
- Basic definitions and characterization
- Complemantary duality of $\mathcal{C}, \mathcal{C}_{X}$ and \mathcal{C}_{Y}.
- Binary LCD codes from ACD codes

Bibliography

[BBD+20] N. Benbelkacem, J. Borges, S.T. Dougherty, C.
Fernández-Córdoba.
On $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive complementary dual codes and related LCD codes
Finite Fields Appl., vol. 62, 2020.

(5) ACD codes

- Basic definitions and characterization
- Complemantary duality of $\mathcal{C}, \mathcal{C}_{X}$ and \mathcal{C}_{Y}.
- Binary LCD codes from ACD codes

LCD and ACD codes

A binary (or quaternary) code C is said to be linear complementary dual (LCD) if it is linear and $C \cap C^{\perp}=\{\mathbf{0}\}$ [Mas92].

\square [Mas92] J.L. Massey.
Linear Codes with Complementary Duals

LCD and ACD codes

A binary (or quaternary) code C is said to be linear complementary dual (LCD) if it is linear and $C \cap C^{\perp}=\{\mathbf{0}\}$ [Mas92].

A code $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ is additive complementary dual (briefly ACD) if it is a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code such that $\mathcal{C} \cap \mathcal{C}^{\perp}=\{\mathbf{0}\}[B B D+20]$.
围 [Mas92] J.L. Massey.
Linear Codes with Complementary Duals
Disc. Math, 106/107, pp. 337-342, 1992.

What may be interesting on ACD codes?

- Characterization of ACD codes.
- Relationship between complemantary duality of $\mathcal{C}, \mathcal{C}_{X}$ and \mathcal{C}_{Y}.
- Relationship between complemantary duality of \mathcal{C} and $\Phi(\mathcal{C})$.

Characterization of ACD codes.

Lemma 49 (Mas92).

Let C be a binary $L C D$ code. Then $\mathbb{Z}_{2}^{n}=C \oplus C^{\perp}$. That is, any vector w in \mathbb{Z}_{2}^{n} can be written uniquely as $w_{1}+w_{2}$, for $w_{1} \in C$ and $w_{2} \in C^{\perp}$.

Proposition 45 (Mas92).

Let C be a binary (n, k) linear code with generator matrix G and parity-check matrix H. The following statements are equivalent:
(1) C is an LCD code,
(2) the $k \times k$ matrix $G G^{T}$ is nonsingular,
(3) the $(n-k) \times(n-k)$ matrix $H H^{T}$ is nonsingular.

Characterization of ACD codes.

Lemma 50 (BBD+20).

Let $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ be an $A C D$ code. Then any vector $\mathbf{w} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ can be written uniquely as $\mathbf{w}_{1}+\mathbf{w}_{2}$, for $\mathbf{w}_{1} \in \mathcal{C}$ and $\mathbf{w}_{2} \in \mathcal{C}^{\perp}$.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix $\mathcal{G}=\left(G_{X} \mid G_{Y}\right)$. We define the product

Characterization of ACD codes.

Lemma 50 (BBD+20).

Let $\mathcal{C} \subseteq \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ be an $A C D$ code. Then any vector $\mathbf{w} \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$ can be written uniquely as $\mathbf{w}_{1}+\mathbf{w}_{2}$, for $\mathbf{w}_{1} \in \mathcal{C}$ and $\mathbf{w}_{2} \in \mathcal{C}^{\perp}$.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code with generator matrix $\mathcal{G}=\left(G_{X} \mid G_{Y}\right)$. We define the product

$$
\mathcal{G} \cdot \mathcal{G}^{t}=\left(G_{X} \mid G_{Y}\right) \cdot\left(\frac{G_{X}^{t}}{G_{Y}^{t}}\right)=2 \iota\left(G_{X}\right) \iota\left(G_{X}\right)^{t}+G_{Y} G_{Y}^{t}
$$

Characterization of ACD codes.

Proposition 46 (BBD+20).

Let G be a generator matrix for a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} and consider the matrix $G \cdot G^{T}=\left(w_{i j}\right)_{1 \leq i, j \leq r}$ with entries from \mathbb{Z}_{4}. If $w_{i j} \in\{0,2\}$ and $w_{i i} \notin\{0,2\}$ for all $i, j=1, \ldots, r$ such that $i \neq j$, then \mathcal{C} is an $A C D$ code and \mathcal{C}_{Y} is a quaternary $L C D$ code.

The reverse is not true in general.

Characterization of ACD codes.

Proposition 46 (BBD+20).

Let G be a generator matrix for a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code \mathcal{C} and consider the matrix $G \cdot G^{T}=\left(w_{i j}\right)_{1 \leq i, j \leq r}$ with entries from \mathbb{Z}_{4}. If $w_{i j} \in\{0,2\}$ and $w_{i i} \notin\{0,2\}$ for all $i, j=1, \ldots, r$ such that $i \neq j$, then \mathcal{C} is an $A C D$ code and \mathcal{C}_{Y} is a quaternary $L C D$ code.

The reverse is not true in general.

(5) ACD codes

- Basic definitions and characterization
- Complemantary duality of $\mathcal{C}, \mathcal{C}_{X}$ and \mathcal{C}_{Y}.
- Binary LCD codes from ACD codes

Proposition 47 (BBD+20).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. If \mathcal{C} is separable, then \mathcal{C} is an $A C D$ code if and only if \mathcal{C}_{X} is a binary $L C D$ code and \mathcal{C}_{Y} is a quaternary LCD code.

What happens if \mathcal{C} is not separable?

Proposition 47 (BBD+20).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. If \mathcal{C} is separable, then \mathcal{C} is an $A C D$ code if and only if \mathcal{C}_{X} is a binary $L C D$ code and \mathcal{C}_{Y} is a quaternary LCD code.

What happens if \mathcal{C} is not separable?

\mathcal{C}_{X} and \mathcal{C}_{Y} LCD

Example 51.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by

$$
\left(\begin{array}{c|c}
I_{\alpha} & I_{\alpha} \\
1 & 2
\end{array}\right)
$$

- $\mathcal{C}_{X}=\mathbb{Z}_{2}^{\alpha}$ is an LCD code.
- $\mathcal{C}_{Y}=\mathbb{Z}_{4}^{\alpha}$ is also LCD.
- $(\mathbf{1} \mid \mathbf{2}) \in \mathcal{C} \cap \mathcal{C}^{\perp}$ and \mathcal{C} is not ACD.

Non-separable ACD codes

Given a non-separable ACD code \mathcal{C} there are examples of all possible situations:

- Both \mathcal{C}_{X} and \mathcal{C}_{Y} are LCD codes.
- Both \mathcal{C}_{X} and \mathcal{C}_{Y} are not LCD codes.
- \mathcal{C}_{X} is a LCD code and \mathcal{C}_{Y} is not.
- \mathcal{C}_{Y} is a LCD code and \mathcal{C}_{X} is not.

\mathcal{C} ACD $, \mathcal{C}_{X}, \mathcal{C}_{Y}$ LCD

Example 52.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generated by

$$
\begin{gathered}
\mathcal{G}=\left(\begin{array}{lll|lll}
1 & 0 & 0 & 1 & 2 & 0 \\
0 & 1 & 0 & 0 & 2 & 1 \\
0 & 0 & 1 & 2 & 1 & 2
\end{array}\right) . \\
\mathcal{G} \cdot \mathcal{G}^{t}=\left(\begin{array}{lll}
3 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 3
\end{array}\right) .
\end{gathered}
$$

Therefore, \mathcal{C} is ACD. Moreover, \mathcal{C}_{X} and \mathcal{C}_{Y} are both LCD codes.

Introduction

\mathcal{C} ACD and neither \mathcal{C}_{X} nor $\mathcal{C}_{Y} \mathrm{LCD}$

Example 53.

Let \mathcal{C} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-code with generator matrix, and parity check matrix

$$
\mathcal{G}=\left(\begin{array}{lll|ll}
1 & 1 & 1 & 2 & 0 \\
0 & 0 & 1 & 2 & 1
\end{array}\right), \quad \mathcal{H}=\left(\begin{array}{lll|ll}
1 & 0 & 1 & 0 & 2 \\
0 & 1 & 1 & 0 & 2 \\
0 & 0 & 1 & 1 & 0
\end{array}\right)
$$

respectively.

- \mathcal{C} is an ACD code since $\mathcal{C} \cap \mathcal{C}^{\perp}=\{\mathbf{0}\}$.
- $(1,1,0) \in \mathcal{C}_{X} \cap \mathcal{C}_{X}^{\perp}$.
- $(2,0) \in \mathcal{C}_{Y} \cap \mathcal{C}_{Y}^{\perp}$.

\mathcal{C} ACD and either \mathcal{C}_{X} or \mathcal{C}_{Y} LCD

Example 54.

Let D_{1} be a binary (α, δ) self-orthogonal code with generator matrix G_{X}. Let \mathcal{C} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code generatorated by

$$
\mathcal{G}=\left(G_{X} \mid I_{\delta}\right)
$$

- \mathcal{C}_{X} is self-orthogonal and hence not LCD.
- $\mathcal{C}_{Y}=\mathbb{Z}_{4}^{\alpha}$ is LCD.
- \mathcal{C} is ACD.

\mathcal{C} ACD and either \mathcal{C}_{X} or \mathcal{C}_{Y} LCD

Example 55.

Let \mathcal{C} be the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additiv code generated by

$$
\mathcal{G}=\left(I_{\alpha} \mid 2 I_{\alpha}\right) .
$$

Then, \mathcal{C}_{X} is a binary LCD code and \mathcal{C}_{Y} is not a quaternary LCD code because it is a self-dual code.

- \mathcal{C}_{X} is a binary LCD code.
- \mathcal{C}_{Y} is self-dual and hence not LCD.
- \mathcal{C} is ACD .

(5) ACD codes

- Basic definitions and characterization
- Complemantary duality of $\mathcal{C}, \mathcal{C}_{X}$ and \mathcal{C}_{Y}.
- Binary LCD codes from ACD codes

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. When is $\mathcal{C}=\Phi(\mathcal{C})$ an LCD code?

- Maybe the diagram does not commute.
- Maybe C is not linear.
- Maybe \mathcal{C}_{\perp} is not linear.

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. When is $\mathcal{C}=\Phi(\mathcal{C})$ an LCD code?

$$
\begin{aligned}
& \mathcal{C} \xrightarrow{\Phi} C=\Phi(\mathcal{C}) \\
& \perp \downarrow \\
& \mathcal{C}^{\perp} \xrightarrow{\Phi} C_{\perp}=\Phi\left(\mathcal{C}^{\perp}\right)
\end{aligned}
$$

- Maybe the diagram does not commute.
- Maybe C is not linear.
- Maybe \mathcal{C}_{\perp} is not linear.

Theorem 56 (BBD+20).

Let \mathcal{C} be an $A C D$ code, $C=\Phi(\mathcal{C}), C_{\perp}=\Phi\left(\mathcal{C}^{\perp}\right)$ and

$$
D_{\mathcal{C}}=\left\{2 \mathbf{u} * \mathbf{v} \mid \mathbf{u} \in \mathcal{C}, \mathbf{v} \in \mathcal{C}^{\perp}\right\}
$$

The following statements are equivalents:
(i) C is linear and $D_{\mathcal{C}} \subseteq \mathcal{C}$.
(ii) C_{\perp} is linear and $D_{\mathcal{C}} \subseteq \mathcal{C}^{\perp}$.
(iii) C and C_{\perp} are linear.
(iv) $D_{\mathcal{C}}=\{\mathbf{0}\}$.
(v) C and C_{\perp} are $L C D$.
(vi) $C_{\perp}=C^{\perp}$.
(6) Maximum Distance Separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Basic definitions
- Characterization of $\mathrm{MDS} \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Bibliography

(BBDF11] M. Bilal, J. Borges, S. T. Dougherty, C Fernández-Córdoba.
Maximum distance separable codes over \mathbb{Z}_{4} and $\mathbb{Z}_{2} \times \mathbb{Z}_{4}$ Designs, Codes and Cryptography, vol. 61, pp. 31-40, 2011.
(6) Maximum Distance Separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

- Basic definitions
- Characterization of MDS $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Hamming, Lee distance

The Hamming distance $d_{H}(u, v)$ between two vectors $u=\left(u_{1}, \ldots, u_{n}\right), v=\left(v_{1} \ldots, v_{n}\right) \in \mathbb{Z}_{2}^{n}$ is

$$
d_{H}(u, v)=\left|\left\{i \in\{1, \ldots, n\}: u_{i} \neq v_{i}\right\}\right|
$$

The minimum Hamming distance $d_{H}(C)$ of a binary code C is

$$
d_{H}(C)=\min \left\{d_{H}(u, v): u, v \in C, u \neq v\right\} .
$$

Lee distance

The Lee weights over the elements in \mathbb{Z}_{4} are defined as $\mathrm{wt}_{L}(0)=0, \mathrm{wt}_{L}(1)=\mathrm{wt}_{L}(3)=1$, and $\mathrm{wt}_{L}(2)=2$. Then, the Lee weight of a vector $u=\left(u_{1} \ldots, u_{n}\right) \in \mathbb{Z}_{4}^{n}$ is

$$
\mathrm{wt}_{L}(u)=\sum_{i=1}^{n} \mathrm{wt}_{L}\left(u_{i}\right)
$$

The Lee distance $d_{L}(u, v)$ between two vectors $u, v \in \mathbb{Z}_{4}^{n}$ is

$$
d_{L}(u, v)=\mathrm{wt}_{L}(u-v) .
$$

The minimum Lee distance $d_{L}(\mathcal{C})$ of a quaternary code \mathcal{C} is

$$
d_{L}(\mathcal{C})=\min \left\{d_{L}(u, v): u, v \in \mathcal{C}, u \neq v\right\}
$$

Given two elements $\mathbf{u}=\left(u \mid u^{\prime}\right), \mathbf{v}=\left(v \mid v^{\prime}\right) \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, we define the distance between \mathbf{u} and \mathbf{v} as

$$
d(\mathbf{u}, \mathbf{v})=d_{H}(u, v)+d_{L}\left(u^{\prime}, v^{\prime}\right)
$$

The minimum distance of \mathcal{C} is defined as

$$
d(\mathcal{C})=\min \{d(\mathbf{u}, \mathbf{v}): \mathbf{u}, \mathbf{v} \in \mathcal{C} \text { and } \mathbf{u} \neq \mathbf{v}\}
$$

It is easy to see that

$$
d(\mathbf{u}, \mathbf{v})=d_{H}(\Phi(\mathbf{u}), \Phi(\mathbf{v}))
$$

$$
d(\mathcal{C})=d_{H}(\Phi(\mathcal{C}))
$$

Given two elements $\mathbf{u}=\left(u \mid u^{\prime}\right), \mathbf{v}=\left(v \mid v^{\prime}\right) \in \mathbb{Z}_{2}^{\alpha} \times \mathbb{Z}_{4}^{\beta}$, we define the distance between \mathbf{u} and \mathbf{v} as

$$
d(\mathbf{u}, \mathbf{v})=d_{H}(u, v)+d_{L}\left(u^{\prime}, v^{\prime}\right)
$$

The minimum distance of \mathcal{C} is defined as

$$
d(\mathcal{C})=\min \{d(\mathbf{u}, \mathbf{v}): \mathbf{u}, \mathbf{v} \in \mathcal{C} \text { and } \mathbf{u} \neq \mathbf{v}\}
$$

It is easy to see that

$$
\begin{gathered}
d(\mathbf{u}, \mathbf{v})=d_{H}(\Phi(\mathbf{u}), \Phi(\mathbf{v})) \\
d(\mathcal{C})=d_{H}(\Phi(\mathcal{C}))
\end{gathered}
$$

Singleton bound for binary codes

Let C be a binary code of length n and dimension K. The usual Singleton bound for C [Sing64] is

$$
d_{H}(C) \leq n-\log _{2}|C|+1=n-k+1
$$

The only binary codes achieving this bound are repetition codes and universe codes [MS77].
: [Sing64] R. Singleton.
Maximum distance q-nary codes
IEEE Transactions on Information Theory, vol. 10, pp. 116-118, 1964.
圊 [MS77] F. J. MacWilliams, N. J. A. Sloane.
The Theory of Error-correcting Codes
Elsevier, 1977.

Singleton bound for $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ and let $C=\Phi(\mathcal{C})$. Since $d(\mathcal{C})=d(C)$, we have [BBDF11]

$$
\begin{equation*}
d(\mathcal{C}) \leq \alpha+2 \beta-\gamma-2 \delta+1 \tag{19}
\end{equation*}
$$

(For quaternary linear codes in [DS01])
[青 [DS01] S. T. Dougherty, K. Shiromoto.
Maximum distance codes over rings of order 4
IEEE Transactions on Information Theory, vol. 47, pp. 400-404, 2001.

Rank related bound

From [DS01], if \mathcal{C} is a code of length n over a ring R with minimum distance $d(\mathcal{C})$, then

$$
\begin{equation*}
\left\lfloor\frac{d(\mathcal{C})-1}{2}\right\rfloor \leqslant n-\operatorname{rank}(\mathcal{C}), \tag{20}
\end{equation*}
$$

where $\operatorname{rank}(\mathcal{C})$ is the minimal cardinality of a generating system for \mathcal{C}.

Theorem 48 (BBDF11).

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$. Then,

$$
\begin{align*}
& \frac{d(\mathcal{C})-1}{2} \leqslant \frac{\alpha}{2}+\beta-\frac{\gamma}{2}-\delta \tag{21}\\
& \left\lfloor\frac{d(\mathcal{C})-1}{2}\right\rfloor \leqslant \alpha+\beta-\gamma-\delta \tag{22}
\end{align*}
$$

- Singleton bound \longrightarrow (21)
- Rank related bound \longrightarrow (22)

Let \mathcal{C} be a $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code. We say that \mathcal{C} is

- maximum distance separable (MDS) if $d(\mathcal{C})$ meets the bound given in (21) or (22).
- MDS with respect to the Singleton bound (MDSS) if it meets bound given in (21).
- MDS with respect to the rank bound (MDSR) if it meets bound given in (22).
(6) Maximum Distance Separable $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes
- Basic definitions
- Characterization of $\mathrm{MDS} \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive codes

MDSS codes

Theorem 49 (BBDF11).

Let \mathcal{C} be an $M D S S \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type $(\alpha, \beta ; \gamma, \delta ; \kappa)$ such that $1<|\mathcal{C}|<2^{\alpha+2 \beta}$. Then, \mathcal{C} is either
(i) the repetition code of type $(\alpha, \beta ; 1,0 ; \kappa)$ and minimum distance $d(\mathcal{C})=\alpha+2 \beta$, where $\kappa=1$ if $\alpha>0$ and $\kappa=0$ otherwise; or
(ii) the even code with minimum distance $d(\mathcal{C})=2$ and type $(\alpha, \beta ; \alpha-1, \beta ; \alpha-1)$ if $\alpha>0$, or type $(0, \beta ; 1, \beta-1 ; 0)$ otherwise.

Note that the codes described in (i) and (ii) of last theorem $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive dual codes. Hence, the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive dual of a MDS code is also an MDS code.

This property is well known property for linear codes over finite fields [MS77]

Note that the codes described in (i) and (ii) of last theorem $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive dual codes. Hence, the $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive dual of a MDS code is also an MDS code.

This property is well known property for linear codes over finite fields [MS77].

MDSR codes

Theorem 50 (BBDF11).

Let \mathcal{C} be an MDSR $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of type ($\alpha, \beta ; \gamma, \delta ; \kappa$) such that $1<|\mathcal{C}|<2^{\alpha+2 \beta}$. Then, either
(i) \mathcal{C} is the repetition code as in with $\alpha \leq 1$; or
(ii) \mathcal{C} is of type $(\alpha, \beta ; \gamma, \alpha+\beta-\gamma-1 ; \alpha)$, where $\alpha \leq 1$ and $d(\mathcal{C})=4-\alpha \in\{3,4\}$; or
(iii) C is of type $(\alpha, \beta ; \gamma, \alpha+\beta-\gamma ; \alpha)$, where $\alpha \leq 1$ and $d(\mathcal{C}) \leq 2-\alpha \in\{1,2\}$.

Example 57.

Let \mathcal{C}_{2} be the $(1,1 ; 0,1 ; 0) \mathbb{Z}_{2} \mathbb{Z}_{4}$-additive code of length 2 with generator matrix

$$
\mathcal{G}_{2}=(1 \mid 1)
$$

We have $d\left(\mathcal{C}_{2}\right)=2$ and

$$
\begin{gathered}
\frac{d\left(\mathcal{C}_{2}\right)-1}{2}=\frac{\alpha}{2}+\beta-\frac{\gamma}{2}-\delta \\
\left\lfloor\frac{d\left(\mathcal{C}_{2}\right)-1}{2}\right\rfloor<\alpha+\beta-\gamma-\delta
\end{gathered}
$$

and it is a MDSS code (it is the even code of lenght 3) and not an MDSR code.

Example 58 (cont.).

Its $\mathbb{Z}_{2} \mathbb{Z}_{4}$-additive dual code \mathcal{C}_{2}^{\perp} is the repetition code

$$
\{(0,0),(1,2)\}
$$

of type $(\bar{\alpha}, \bar{\beta} ; \bar{\gamma}, \bar{\delta} ; \bar{\kappa})=(1,1 ; 1,0 ; 1)$. Note that

$$
\begin{aligned}
& \frac{d\left(\mathcal{C}_{2}^{\perp}\right)-1}{2}=\frac{\bar{\alpha}}{2}+\bar{\beta}-\frac{\bar{\gamma}}{2}-\bar{\delta} \\
& \left\lfloor\left.\frac{d\left(\mathcal{C}_{2}^{\perp}\right)-1}{2} \right\rvert\,=\bar{\alpha}+\bar{\beta}-\bar{\gamma}-\bar{\delta}\right.
\end{aligned}
$$

Then, \mathcal{C}_{2}^{\perp} is MDSS and MDSR.

