Noetherian rings with small profiles (joint with S. R. López-Permouth)

Bülent Saraç

Hacettepe University

NCRA, VII, 5-7th July 2021

Definition

The (right) profile of a ring R is the lattice of all hereditary pretorsion classes \mathscr{T} such that SSMod- $R \subseteq \mathscr{T}$, where SSMod-R denotes the class of all semisimple right R-modules. We will denote the profile of R by $\mathcal{P}(R)$. Any element of the profile is called a portfolio.

Definition

The (right) profile of a ring R is the lattice of all hereditary pretorsion classes \mathscr{T} such that SSMod- $R \subseteq \mathscr{T}$, where SSMod-R denotes the class of all semisimple right R-modules. We will denote the profile of R by $\mathcal{P}(R)$. Any element of the profile is called a portfolio.

This notion was first defined by Alahmadi, Alkan, and López-Permouth in 2010 in conjunction with the concept of injectivity domains.

• $\mathcal{P}(R)$ is the sublattice [SSMod-*R*, Mod-*R*] of the lattice of all hereditary pretorsion classes.

- $\mathcal{P}(R)$ is the sublattice [SSMod-*R*, Mod-*R*] of the lattice of all hereditary pretorsion classes.
- $\mathcal{P}(R) = \{ \text{Mod}-R \}$ if and only if R is semisimple Artinian.

- *P*(*R*) is the sublattice [SSMod-*R*, Mod-*R*] of the lattice of all hereditary pretorsion classes.
- $\mathcal{P}(R) = \{ \text{Mod} R \}$ if and only if R is semisimple Artinian.
- If \$\mathcal{P}(R) = {SSMod-R, Mod-R}, then we say that R has no right middle class (or briefly, R is a right NMC-ring).

- Alahmadi & Alkan & López-Permouth, Poor modules: the opposite of injectivity, Glasg. Math. J., 2010.
- Er & López-Permouth & Sökmez, Rings whose modules have maximal or minimal injectivity domains, J. Algebra, 2011.
- López-Permouth & Simental, Characterizing rings in terms of the extent of the injectivity and projectivity of their modules, J. Algebra, 2012.
- Aydoğdu & S., On Artinian rings with restricted class of injectivity domains. J. Algebra 377, 49–65 (2013)
- S. & López-Permouth & Zamora-Erazo, Rings Without a Middle Class from a Lattice-Theoretic Perspective, Mediterr. J. Math., 2020.
- S., On rings whose quasi-injective modules are injective or semisimple, submitted.

Sing-R

The class of singular right *R*-modules

Sing-R

The class of singular right *R*-modules

The class of semiartinian right *R*-modules

Sing-R

The class of singular right *R*-modules

The class of semiartinian right R-modules

The class of right R-modules whose finitely generated submodules are all Noetherian

Sing-R

The class of singular right *R*-modules

The class of semiartinian right R-modules

The class of right R-modules whose finitely generated submodules are all Noetherian

The class of right R-modules subgenerated by M

Sing-R

The class of singular right *R*-modules

The class of semiartinian right R-modules

The class of right R-modules whose finitely generated submodules are all Noetherian

$\sigma[M]$

The class of right R-modules subgenerated by M

Mod-(R/A)

The category of right modules over R/A, where A is an ideal of R

Lemma (S. et al, 2020)

Let $\mathcal T$ be hereditary pretorsion classes of right R-modules. Then the class

 $\mathscr{T}^* = \{M \in Mod-R : M/\mathscr{T}(M) \text{ is semisimple and } \mathscr{T}\text{-torsion-free}\}$

is a portfolio containing \mathcal{T} .

Proposition (S. et al., 2020)

Let R be a right NMC-ring. Then every singular right R-module is semisimple. If, in addition, R is right nonsingular, then it is a right SI-ring.

Theorem (S. et al., 2020)

A ring R is a right NMC-ring if and only if one of the following conditions holds for any hereditary pretorsion class \mathcal{T} containing Sing-R:

- (i) Every \mathcal{T} -torsion module is semisimple, or
- (ii) \mathcal{T} is a torsion class and every \mathcal{T} -torsion-free module is semisimple and injective.

Corollary (S. et al., 2020)

Let R be any ring which is not semisimple Artinian. Then R is an indecomposable right NMC-ring if and only if SSMod-R is the unique coatom in the lattice of hereditary pretorsion classes.

Proposition (Er et al., 2011; S. et al., 2020)

Let R be a right NMC-ring. Then R is either a right Noetherian, right V-ring or a right semiartinian ring.

Proposition (Er et al., 2011; S. et al., 2020)

Let R be a right NMC-ring. Then R is either right Artinian or a right V-ring. Moreover, if $Z(R_R) \neq 0$, then R is right Artinian.

Proposition (S. et al., 2020)

If R is a right NMC-ring and if $R = A \times B$ is a ring decomposition, then either A or B is semisimple Artinian.

Lemma (Er et al., 2011; S. et al., 2020)

Let R be a right NMC-ring. If A is a nonzero ideal of R, then either R/A or R/ann_IA is a semisimple Artinian ring.

Proposition (S. et al, 2020)

Let R be a right NMC-ring which is not semisimple Artinian. Then the following hold:

- (i) If $A \leq R$ and R/A is not semisimple Artinian, then $R = A \oplus ann_I(A)$.
- (ii) If A_1 and A_2 are nonzero two-sided ideals of R such that $A_1 \cap A_2 = 0$, then $R = A_i \oplus ann_i(A_i)$ for at least one i = 1, 2.
- (iii) If R is indecomposable, then either $Soc(R_R) = 0$ or $Soc(R_R)$ is homogeneous and essential in R_R .

Theorem (Er et al., 2011; S. et al., 2020)

Let R be an indecomposable ring with $Soc(R_R) = 0$. Then R is a right NMC-ring if and only if it is Morita equivalent to a right SI-domain.

Theorem (Er et al., 2011; S. et al., 2020)

A ring R is a right NMC-ring if and only if there exists a ring decomposition $R = A \times B$, where A is a semisimple Artinian ring and B = 0 or B is an indecomposable right NMC-ring.

Summary

R : right NMC-ring

Theorem (S. et al., 2020)

If R is a right and left NMC-ring, then R must be Noetherian.

Theorem (S. et al., 2020)

If R is a right and left NMC-ring, then R must be Noetherian.

Theorem (S. et al., 2020)

Let R be an indecomposable ring which is not right Noetherian. Then R is a right NMC-ring if and only if there exists a division ring D and a countably infinite dimensional right vector space V over D such that R is Morita equivalent to a subring T of $Q = End(V_D)$ with the following properties:

(i) T contains $Soc(Q_Q)$, the set of all endomorphisms of V with finite rank, (ii) T/ $Soc(Q_Q)$ is a division ring, and (iii) for every $q \in Q \setminus Soc(Q_Q)$, we have Q = QqT.

If *R* is a right nonsingular ring such that $\mathcal{P}(R) = \{SSMod-R, Sing-R, Mod-R\}$, then every quasi-injective right *R*-module is either injective or semisimple.

If *R* is a right nonsingular ring such that $\mathcal{P}(R) = \{SSMod-R, Sing-R, Mod-R\}$, then every quasi-injective right *R*-module is either injective or semisimple.

Definition

We call a ring right QIS if its every quasi-injective right module is either injective or semisimple.

If *R* is a right nonsingular ring such that $\mathcal{P}(R) = \{SSMod-R, Sing-R, Mod-R\}$, then every quasi-injective right *R*-module is either injective or semisimple.

Definition

We call a ring right QIS if its every quasi-injective right module is either injective or semisimple.

• Every right QI-ring is right QIS.

If *R* is a right nonsingular ring such that $\mathcal{P}(R) = \{SSMod-R, Sing-R, Mod-R\}$, then every quasi-injective right *R*-module is either injective or semisimple.

Definition

We call a ring right QIS if its every quasi-injective right module is either injective or semisimple.

- Every right QI-ring is right QIS.
- Every right NMC-ring is right QIS.

Proposition

Let R be any ring. If $Soc(R_R) \leq_e R_R$, then R is a right NMC-ring if and only if it is a right QIS-ring.

Proposition

Let R be any ring. If $Soc(R_R) \leq_e R_R$, then R is a right NMC-ring if and only if it is a right QIS-ring.

Corollary

Let R be an indecomposable ring with nonzero right socle. Then R is right NMC if and only if it is right QIS.

Theorem

Let R be any ring. Then R is a right QIS-ring if and only if one of the following conditions hold:

- (i) R is a right QI-ring.
- (ii) R is a right NMC-ring.
- (iii) There exists a ring decomposition $R = S \times T$ such that S is either zero or a semisimple Artinian ring and T is a right strongly prime right QIS-ring.

Definition (C. Faith, 1976)

We say that a ring R satisfies the restricted right socle condition if, whenever I is a proper essential right ideal of R, then R/I has at least one simple submodule.

Right SI-rings, hereditary prime Noetherian rings (HNP for short) and right NMC-rings satisfy this condition.

Definition (C. Faith, 1976)

We say that a ring R satisfies the restricted right socle condition if, whenever I is a proper essential right ideal of R, then R/I has at least one simple submodule.

Right SI-rings, hereditary prime Noetherian rings (HNP for short) and right NMC-rings satisfy this condition.

Proposition

Let R be a right strongly prime ring with restricted right socle condition. Then R is a right QIS-ring if and only if $\mathcal{P}(R) = \{SSMod-R, Sing-R, Mod-R\}.$ Given a ring S and a right ideal A in S, one can form the largest subring of S, denoted $\mathbb{I}_{S}(A)$, containing A as a two-sided ideal. If A is such that SA = S and $(S/A)_{S}$ is homogeneous semisimple, then the ring $\mathbb{I}_{S}(A)$ is called a basic idealizer.

Given a ring S and a right ideal A in S, one can form the largest subring of S, denoted $\mathbb{I}_{S}(A)$, containing A as a two-sided ideal. If A is such that SA = S and $(S/A)_{S}$ is homogeneous semisimple, then the ring $\mathbb{I}_{S}(A)$ is called a basic idealizer.

Proposition

Let S be an indecomposable right SI-ring with $Soc(R_R) = 0$. If $R = I_S(A)$ is a basic idealizer for a right ideal A of S, then R is a right QIS-ring which is neither right QI nor right NMC.

Theorem

Let R be an HNP ring which is not simple. Then the following statements are equivalent:

- (i) R is a right QIS-ring which is neither right QI nor right NMC.
- (ii) There is exactly one isomorphism class of non-injective simple right R-modules and if W is a non-injective simple module, then E(W) is a uniserial module of length 2.
- (iii) *R* is a basic idealizer ring from a right *QI* overring that is not simple *Artinian*.

THANK YOU!