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Abstract

This paper is part of a series of articles in the context of Degröbnerization
[5, 6, 2, 7, 8, 9] and is devoted to give the best version of the original
Möller Algorithm [13] proceeding by induction on the points1 of which
we presented in ACA2023 [2] and ISSAC’22 [5] a version available for
each ideal defined by (not necessarily commutative) functionals over
any effective ring.

Gröbner bases’s theory plays an important role in Computer Alge-
bra and many applications have been solved by considering them as
a preprocessing, and saying “if we have the Gröbner basis, then the
problem is easily solved”. This is undoubtedly true, but it does not
take into account that finding a Gröbner basis is not always an easy
task.

Luckily, there are practical problems for which Gröbnerian technol-
ogy is not the only way to get a solution, and this allows us to switch
to a new paradigm: Degröbnerization [2].

Such paradigm consists in

� using linear algebra and combinatorial methods instead of Gröbner
basis computation and Buchberger’s reduction and

� completely change perspective in the algebraic representation of
our problems, substituting the Gröbnerian technology represen-
tation, based on polynomial ideals, to a representation given by
quotient algebras expressed via a vector-space basis and multipli-
cation (Auzinger-Stetter) matrices [1].

We recall that classical Möller Algorithm

⋄ takes as input a set of functionals ordered in such a way that each
initial segment defines a zero-dimensional ideal thus producing a
Macaulay chain [17] of such ideal,

⋄ which is easily produced for a 0-dimensional ideal of polynomials;

1in opposite to Buchberger-Möller Algorithm [15-17] which proceeds by induction on
terms.
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⋄ produces for each ideal in the Macaulay chain not only its repre-
sentation as a quotient algebra expressed via a vector-space and
Auzinger–Stetter multiplication matrices [1],

⋄ but also triangular and separator polynomials can be derived as
well as the transformation matrix linking them

⋄ and requires at most the evalauation of each such functional to
each term needed to express the wanted vector-space basis.

The new aspect of this reformulation is that the present version
is completely free with respect to term-orderings and can be applied
using any total ordering (not necessarily a semigroup one) for ordering
the terms needed to express the wanted results; actually we can apply
it to any finite set T of terms with the only requirement that 1 be
connected to T [18, 19, 20].

What oriented our investigation towards a version of the algo-
rithm which at the same time does not require a semigroup order-
ing and that covers a wide class of algebras was our intention to ap-
ply Degröbnerization techniques in the context of Algebraic Statistics.
This required us a careful reading of [3], which is the strongest sup-
porter of the application of both Gröbnerian technology and Buchberger-
Möller Algorithm toward Algebraic Statistics and where we read

� Another class of statistical models we shall consider are linear
models whose vector space basis is formed by polynomials which
are not monomials;

� Example 7 is not a corner cut2 model. However, it is the most
symmetric of the models in the statistical fan. In fact, to destroy
symmetry is a feature of Gröbner basis computation, as term or-
derings intrinsically do not preserve symmetries, which are often
preferred in statistical models .

Example 7 of [3] consists in considering as functionals the evaluation
of the 5 ordered points

F = {(0, 0), (1,−1), (−1, 1), (0, 1), (1, 0)} ⊂ Q2

and produce the desired data w.r.t. the algebra

SpanQ T ≡ P/I(F).

where we are denoting P := Q[x1, x2],

I(F) := {f(x1, x2) ∈ P : f(a, b) = 0, (a, b) ∈ F},

T the ordered set of terms

T := {1, x1, x2, x
2
1, x

2
2}.

Our algorithm produces the desired symmetric basis B = {x3 −
x, x2y − 1/2x2 + 1/2x + 1/2y2 − 1/2y, y3 − y, xy − 1/2x + 1/2y2 −
1/2y + 1/2x2, xy2 − 1/2x− 1/2y2 + 1/2y + 1/2x2}.

2Recall that a Monomial Basis of a 0-dimensional ideal of polynomials which is Hierar-
chical, i.e. an order ideal, is called a Corner Cut when it is the Gröbner escalier/normal
set modulo the Gröbner basis of such ideal w.r.t. a term ordering.

2



Keywords
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