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Degröbnerization

This conference is part of a series of articles and conferences in
the context of Degröbnerization prepared with Michela Ceria,
Samuel Lundqvist and Andrea Visconti.

Degröbnerization was introduced for the first time in 2010 into a
course at Trento’s Cryptolab, implicitly in a commutative setting,
but later explicitly in a non-commutative settings at ACA2018 and
UMI2019 and was definitely formalized in a conference at
ACA2021.



Degröbnerization

Gröbner bases’s theory plays an important role in Computer
Algebra and many applications have been solved by considering
them as a preprocessing, and saying ”if we have the Gröbner
basis, then the problem is easily solved”. This is undoubtedly true,
but it does not take into account that finding a Gröbner basis is not
always an easy task. The computation can become
computationally hard and there are cases in which it is even
infeasible.



Degröbnerization

In short the approach consists in finding new ways to solve
practical problems that have been originally solved using Gröbner
basis computation and Buchberger’s reduction, leaving the use of
the latter only to the cases where it is really necessary.
Degröbnerization consists

in using linear algebra and
combinatorial methods and avoiding the concept of Gröbner bases,
in favourof methods relying on linear algebra and combinatorics.
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Möller Algorithm

This conference is devoted to the main tool of Degröbnerization:

the original Möller Algorithm proceeding by induction on the
points of which we presented in ACA2023 and ISSAC’22 a version
available for each ideal defined by (not necessarily commutative)
functionals over any effective ring politically opposed to the
weaker Buchberger-Möller Algorithm which proceeds by
induction on terms, using any total ordering (not necessarily a
semigroup one) for ordering the terms T needed to express the
wanted vector-space basis with the only requirement that 1 be
connected to T.
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weaker Buchberger-Möller Algorithm which proceeds by
induction on terms,

using any total ordering (not necessarily a
semigroup one) for ordering the terms T needed to express the
wanted vector-space basis with the only requirement that 1 be
connected to T.
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Political Issue

Our variation

takes as input a set of functionals ordered in such a way that
each initial segment defines a zero-dimensional ideal thus
producing a Macaulay chain of such ideal,

which is easily produced for a 0-dimensional ideal of
polynomials;

produces for each ideal in the Macaulay chain not only its
representation as a quotient algebra expressed via a
vector-space and Auzinger–Stetter multiplication matrices,

but also triangular and separator polynomials can be derived,
as in the original version, as well as the transformation matrix
linking them and

requires at most the evaluation of each such functional to
each term needed to express the wanted vector-space basis .
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Setting

T := {xγ1
1 · · · x

γn
n | γ1, ..., γn ∈ N} ⊂ S = ⟨x1, ..., xn⟩

ordered by a total ordering (not necessarily a semigroup one)
P := k[x1, ..., xn] = Spank T and Q := k⟨x1, ..., xn⟩ = Spank S ⊇ P.
An effective ring A given as a k-submodule of either P or Q via an
ordered subsetU of terms of either T or S

A finite (not necessarily linearly indipendet) set
L = {Li , 1 ≤ i ≤ s} ⊂ Homk(U, k) of k-linear fuctionals Li : U → k



Aim

For I := {f ∈ U : Li(f) = 0} our combinatorial tools return an order
ideal N such thatU/I � Spank N where

#(N(I)) = deg(I) = dimk (L)=: r ≤ s =#L.



Aim

For I := {f ∈ U : Li(f) = 0} produce

an integer r ∈ N,

an order ideal N := {t1, . . . , tr } ⊂ T ,

an ordered subset Λ := {λ1, . . . , λr } ⊂ L

an ordered set q := {q1, . . . , qr } ⊂ P

such that it holds:

r = deg(I) = dimk (L),

N(I) = N,

Spank (Λ) = Spank (L),

Spank {t1, . . . , tσ} = Spank {q1, . . . , qσ},∀σ ≤ r ,

{q1, . . . , qσ}, {λ1, . . . , λσ} are triangular, ∀σ ≤ r .



Tool
L = {Li , 1 ≤ i ≤ s} ⊂ Homk(U, k), I := {f ∈ U : Li(f) = 0}
N(I) = {t1, . . . , tr }
Consider the s × r matrix ℓi(tj) whose columns are the vectors
v(tj ,L) and are linearly independent, since any relation∑

j cjv(tj ,L) = 0 would imply

ℓi(
∑

j

cj tj) =
∑

j

cjℓi(tj) = 0 and
∑

j

cj tj ∈ {f ∈ U : Li(f) = 0} = I

contradicting the definition of N(I).
The matrix ℓi(tj) has rank r ≤ s and it is possible to extract an
ordered subset

Λ := {λ1, . . . , λr } ⊂ L, Spank{Λ} = Spank{L}

and to re-enumerate the terms in N(I) in such a way that each
principal minor λi(tj), 1 ≤ i, j ≤ σ ≤ r is invertible.



Tool:Border

The border of N is the set of terms B := {xi t : t ∈ N} \ N. With this
notation, the related border bases are the sets B{t − Nf(t) : t ∈ B}
andA := {t −Nf(t) : t ∈ B∪N} where Nf(t) is the normal form of t ,
the only polynomail t −

∑
τ∈N(I) cττ ∈ I.



Pistone G., Riccomagno E., RogantinM.P., Methods in
algebraic statistics for the design of experiments in Optimal
Design and Related Areas in Optimization and Statistics,
97–132, 2009, Springer

Another class of statistical models we shall consider are
linear models whose vector space basis is formed by
polynomials vj which are not monomials In Example 7 we
show that the model 1, x1, x2

1 , x2, x2
2 is not a corner cut 1

model. owever, it is the most symmetric of the models in the
statistical fan. In fact, to distroy symmetry is a feature of
Gröbner basis computation, as term orderings intrinsically do
not preserve symmetries, which are often preferred in
statistical models

That’s why you should never think of using Gröbner bases in
Algebraic Statistics

1Corner cut: a Hierarchical monomial basis which is the normal set-escalier
related to a Gröbner basis
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Example

P := Q[x, y].
The design ideal I(F ) with

F = {(0, 0), (1,−1), (−1, 1), (0, 1), (1, 0)}

and the Hierarchical monomial basis {1, x1, x2
1 , x2, x2

2 }.



Example

P := Q[x, y].
Let us consider the five points

P1 = (0, 0),P2 = (1,−1),P3 = (−1, 1),P4 = (0, 1),P5 = (1, 0)

and the related set of functionals L = {L1, ..., L5} such that Li is the
evaluation at Pi , for i = 1, ..., 5.
L = {Li , 1 ≤ i ≤ s} ⊂ HomQ(P,Q), I := {f ∈ P : Li(f) = 0}
N(I) = {t1, . . . , tr }.



Algorithm:Output

The algorithm is iterative on each point/functional. At the step i it
considers the data for the ideal Ii := {f ∈ P : f(Pj) = 0, 1 ≤ j ≤ i},
take the point Pi+1 and return the same data for
Ii+1 := {f ∈ P : f(Pj) = 0, 1 ≤ j < i}

the associated escalier N(L5) = {t1, t2, t3, t4, t5};

N(L5) = {t1 = 1, t2 = xt1 = x, t3 = xt2 = x2, t4 = yt1 =
y, t5 = yt4 = y2}

P1 = (0, 0),P2 = (1,−1),P3 = (−1, 1),P4 = (0, 1)
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the current border bases A

A = {v1 = 1, v2 = x, v3 = x2 − x = xv2 − v2 , v4 = y + x =

yv1 +v2 , v5 = y2 − y − x − x2 , xv4 − v4 − v5/2 =1/2x2 + xy − 1/2x + 1/2y2 − 1/2y =yv2 + v2 + v3 + v5/2,xv3 +v3 =

x3−x, xv5−v5 = −x3+xy2−xy+x−y2+y, yv3−v3 = x2y−xy−x2+x, yv4−v4 = y2+xy−x−y, yv5 = y3−x2y−xy−y2}
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yv1 + v2, v5 = y2 − y − x − x2



Algorithm:Output
The algorithm is iterative on each point/functional. At the step i it
considers the data for the ideal Ii := {f ∈ P : f(Pj) = 0, 1 ≤ j ≤ i},
take the point Pi+1 and return the same data for
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the Auzinger-Stetter matrices;

Ax =

v1 v2 v3 v4 v5

v1 = 1 0 1 0 0 0
v2 = x 0 1 1 0 0

v3 = x2 − x 0 0 −1 0 0
v4 = y + x 0 0 0 0 −1/2

v5 = y2 − y − x − x2 0 0 0 0 1

,

Ay =

v1 v2 v3 v4 v5

v1 = 1 0 −1 0 1 0
v2 = x 0 −1 −1 0 −1/2

v3 = x2 − x 0 0 1 0 0
v4 = y + x 0 0 0 1 0

v5 = y2 − y − x − x2 0 0 0 0 0
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a triangular set T of polynomials;

T = {w1 = v1 = 1,w2 = v2 = x,w3 = v3/2 = (x2 − x)/2,w4 =

v4 = y + x,w5 = −v5/2 = − y2−y−x−x2

2 }



Algorithm:Output

The algorithm is iterative on each point/functional. At the step i it
considers the data for the ideal Ii := {f ∈ P : f(Pj) = 0, 1 ≤ j ≤ i},
take the point Pi+1 and return the same data for
Ii+1 := {f ∈ P : f(Pj) = 0, 1 ≤ j < i}
P1 = (0, 0),P2 = (1,−1),P3 = (−1, 1),P4 = (0, 1)

a separator family S = {s1 = v1 − v2 − v3 − v4 − v5/2 =
−1/2 ∗ x2 − (1/2)x − (1/2)y2 − (1/2)y + 1, s2 =

v2 + v3/2 + v5/2 = (1/2)y2 − (1/2)y, s3 = v3/2 = x2−x
2 , s4 =

v4 + v5/2 = −(1/2)x2 + (1/2)x + (1/2)y2 + (1/2)y, s5 =

−v5/2 = − y2−y−x−x2

2 }



Λ := {λ1, . . . , λr } ⊂ L = {Li , 1 ≤ i ≤ s}

Finally column reduction allows to linearly express in terms of Λ
the elemens Li ∈ L \ Λ

L1 L2 L3 L4 L5 L6 L7 L8 L9
(0, 0) (1, 0) (−1, 0) (0, 1) (1, 1) (−1, 1) (0,−1) (1,−1) (−1,−1)

v1 1 1 1 1 1 1 1 1 1
v2 0 1 −1 0 1 −1 0 1 −1
v3 0 0 1 0 0 1 0 0 1
v4 0 0 0 1 1 1 −1 −1 −1
v5 0 0 0 0 1 −1 0 −1 1
v6 0 0 0 0 0 1 0 0 −1

0 = L7 + L4 − 2L1 = L8 + L5 − 2L2 = L9 + L6 − 2L3



Warning: Connected-to-1

Let us consider k[x, y] and denote t = xy. All terms of this ring will
be uniquely reprensented in the form x i t jyk : ik = 0.
Thus x i t jyk ≤ xa tbyc if

i + k < a + c or

i + k = a + c and j < b or

i + k = a + c and j = b and i > c.

So that we have 1 < xy < x2y2 < . . . < t j < t j+1 < . . . x < x2y <
. . . < x j+1y j < . . . y < xy2 < . . . < x jy j+1 < . . .

Let us consider the following point set
X = {(1, 0), (0, 1), (1, 1), (0, 0)}.



Warning: Connected-to-1

P1 = (1, 0),P2 = (0, 1),P3 = (1, 1),P4 = (0, 0)

L1 L2 L3 L4

(1, 0) (0, 1) (1, 1) (0, 0)
v1 = x 1
x2 − x 0 0 0 0
xy 0 0
v2 = y 0 1
y2 − y 0 0 0 0
v3 = xy 0 1
x2y − xy 0 0 0 0
xy2 − xy 0 0 0 0



Connected to E

LetV ⊂ P and denote

V+ := {v̄0 +
∑n

i=1 xi v̄i , v̄i ∈ V, 0 ≤ i ≤ n},

for each d ∈ N \ {0} setV[d] =
(
V[d−1]

)+
starting from

V[0] = Spank(V),

V[∗] :=
⋃

d≥0V
[d]

V[∗] coincides with the ideal generated byV.

Definition (Mourrain)
A vector spaceV ⊂ P is said to be connected to ē ∈ V if, denoting
E := Spank{ē}, for each v̄ ∈ V \ E, there exists l > 0 such that
v̄ ∈ E[l] and v̄ = v̄0 +

∑n
i=1 xi v̄i , with v̄i ∈ E

[l−1] ∩V, 0 ≤ i ≤ n. □
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Theorem
IfV is connected to ē, each element ofV satisfies any property if

it is satisfied by ē and

it is satisfied by each linear combination of elements on V
which satisfies it.



Theorem
IfV is connected to ē, each element ofV satisfies any property if

it is satisfied by ē and

it is satisfied by each linear combination of elements on V
which satisfies it.

Assume that the property is satisfied by each v̄ ∈ E[l−1] and let
w̄ ∈ E[l]. SinceV is connected to ē, we have
w̄ = v̄0 +

∑n
i=1 xi v̄i , v̄i ∈ E

[l−1], 0 ≤ i ≤ n. and, by linearity, the
property is satisfied also by w̄ ∈ E[l]. The claim then follows by
induction.



Warning: Connected-to-1
P1 = (1, 0),P2 = (0, 1),P3 = (1, 1),P4 = (0, 0) E = {x, y} 1 is not
connected to E whose elements vanish in P4

A finite (not necessarily linearly indipendet) set
L = {Li , 1 ≤ i ≤ s} ⊂ Homk(P, k) dimk (L) = r ≤ s

An ordered subsetU = {u1, . . . , ur } of terms of either T or S,
U = r such that 1 be connected toU
1 =
∑

j=1 ajuj

xhul =
∑i

j=1 αhljuj

w̄ = v̄0 +
n∑

h=1

xh v̄h , v̄h =
∑
j=1

ahjuj

=⇒ w̄ =
∑
j=1

a0j +
n∑

h=1

ahl

i∑
j=1

αhlj

 vj
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P1 = (1, 0),P2 = (0, 1),P3 = (1, 1),P4 = (0, 0) E = {x, y} 1 is not
connected to E whose elements vanish in P4

A finite (not necessarily linearly indipendet) set
L = {Li , 1 ≤ i ≤ s} ⊂ Homk(P, k) dimk (L) = r ≤ s

An ordered subsetU = {u1, . . . , ur } of terms of either T or S,
U = r such that 1 be connected toU
1 =
∑

j=1 ajuj

xhul =
∑i

j=1 αhljuj

w̄ = v̄0 +
n∑

h=1

xh v̄h , v̄h =
∑
j=1

ahjuj

=⇒ w̄ =
∑
j=1

a0j +
n∑

h=1

ahl

i∑
j=1

αhlj

 vj



Thank you!


