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Problem

Problem. Let R be a ring of order 4. Then what is the number of linear
(additive) codes over R containing a hull of given size?

When R is a field, the number for linear codes is given by Sendrier[11].
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Codes over Rings
Linear codes

• A linear code over a ring R is a submodule of Rn.

Euclidean inner product
[v,w] = ∑ viwi.

The orthogonal of C

C⊥ = {x ∈ Rn
∣[x,y] = 0 for all y ∈ C}.

If R is a finite commutative Frobenius ring, then ∣C∣∣C⊥∣ = ∣R∣n, by Wood[13].
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Hull of a Code

The Hull of a linear code C is

Hull(C) = C ∩C⊥.

• So, it is a self-orthogonal code.

• The hull satisfies 1 ≤ ∣Hull(C)∣ ≤
√
∣R∣n.

Important for. Determining the complexity of algorithms for permutation
equivalence of linear codes and the automorphism group of a linear code.

These algorithms are very effective if the size of the hull is small.
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Hull of a Code

• It was first introduced in the work of Assmus and Key to study the codes
of finite projective and affine planes, 1990, [1].

• Dougherty used the hull for finite nets, 1993, 1994, [3], [4].

• Sendrier, calculated the number of distinct linear codes over finite fields
which have a hull of given dimension were given. He also proved that
the expected dimension of the hull of a linear code is a constant when
the parameters n and k go to infinity, 1997, [11].



Codes over Rings
Additive codes

• An additive code over a ring R is an additive subgroup of Rn.

• Let G be a group. Then the set of all characters of G is denoted by Ĝ.

• Then ϕ ∶ G→ Ĝ is an isomorphism, with ϕ(gi) = χgi , gi ∈ G.

Let C be a code over G with a duality M (a group isomorphism)

[g, c]M =∏χgi(ci).

The orthogonal of C

CM
= {(g1,g2, . . . ,gn)∣

n
∏
i=1
χgi(ci) = 1 for all (c1, . . . , cn) ∈ C}

We have ∣C∣∣CM ∣ = ∣G∣n, Dougherty[2].
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• Then ϕ ∶ G→ Ĝ is an isomorphism, with ϕ(gi) = χgi , gi ∈ G.

Let C be a code over G with a duality M (a group isomorphism)

[g, c]M =∏χgi(ci).

The orthogonal of C

CM
= {(g1,g2, . . . ,gn)∣

n
∏
i=1
χgi(ci) = 1 for all (c1, . . . , cn) ∈ C}

We have ∣C∣∣CM ∣ = ∣G∣n, Dougherty[2].



Codes over Rings
Additive codes

• An additive code over a ring R is an additive subgroup of Rn.

• Let G be a group. Then the set of all characters of G is denoted by Ĝ.
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Hull of a Code
Additive codes

The Hull of an additive code C is

HullM(C) = C ∩CM.



Rings of order 4



Rings and Gray maps

Rings ∶ F4, Z4, F2[u]/⟨u2⟩, F2[v]/⟨v2 + v⟩.

• Codes over F4

Generating matrix (Ik ∣A).

α ∶ F4 → F2
2 such that α(a + bω) = (a,b).

α(C⊥) = α(C)⊥.

• Codes over Z4

Generating matrix G = (
Ik0 A0,1 A0,2

0 2Ik1 2A1,2
) .

Type: (k0, k1)

Gray map: ϕ ∶ Z4 → F2
2 such that ϕ(a + 2b) = (b,a + b) (non-linear)
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Rings and Gray maps

• Codes over F2[u]/⟨u2⟩ = F2 + uF2

Generating matrix G = (
Ik0 A0,1 A0,2

0 uIk1 uA1,2
)

Type: (k0, k1)

Gray map: ψ ∶ F2[u]/⟨u2⟩ → F2
2 such that ψ(a + bu) = (b,a + b) (linear)

ψ(C⊥) = ψ(C)⊥.

• Codes over F2[v]/⟨v2 + v⟩ = F2 + vF2

No generating matrix in standard form. No type.

Gray map: β ∶ F2[v]/⟨v2 + v⟩ → F2
2 such that β(a + bv) = (a,a + b).

(isomorphism)
β(C⊥) = β(C)⊥.
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Number of Codes



Number of Codes over Fields
Gaussian binomials

The number of subcodes of dimension k of a code of dimension n is given by
a well-known formula:

[
n
k
]

q

=
(qn − 1)(qn−1 − 1)⋯(qn−k+1 − 1)
(qk − 1)(qk−1 − 1)⋯(q − 1)

.



Number of Codes over Rings
Gaussian multinomials

Theorem

[6] Let R be one of the rings Z4 or F2 + uF2, u2 = 0, with type (k0, k1), with
maximal ideal ∣R/m∣ = q = 2 and nilpotency e = 2. The number of linear
codes over R is given by the following formula,

[
n

k0, k1
]

q,e

= [
n

k0, k1
]

2,2

=
∏

k0−1
i=0 (2

2n − 2n+i)∏
k1−1
j=0 (2

n − 2k0+j)

∏
k0−1
i=0 (22k0+k1 − 2k0+k1+i)∏

k1−1
j=0 (2k0+k1 − 2k0+j)

.



Number of Self-Orthogonal Codes

Theorem

[8, 9, 10] Let n and q be positive even integers and k ≤ n/2. The number of
self-orthogonal codes over Fq of length n and dimension k is

σn,k =
qn−k − 1
qn − 1

k
∏
i=1

qn−2i+2 − 1
qi − 1

.



The Number of Codes with the Hull of Given Dimension

Lemma

[11] Let C be a linear code over Fq of length n and dimension k. The number
of self-orthogonal codes V of length n and dimension l such that

V ⊆ Hull(C) is the Gaussian binomial [
dim(Hull(C))

l
]

q

.

Lemma

[11] Let V be a self-orthogonal code over Fq of length n and dimension l.
The number of linear codes C over Fq of length n and dimension k such that

V ⊆ Hull(C) is [
n − 2l
k − l

]

q

.



The Number of Codes with the Hull of Given Dimension

Theorem

[11] Let σn,i denote the number of self-orthogonal codes over Fq of length n
and dimension i. Let k ≤ n/2 and l ≤ k. The number of linear codes over Fq of
length n and dimension k where the dimension of the hull is l is

k
∑
i=l
[

n − 2i
k − i

]

q

[
i
l
]

q

(−1)i−lq(
i−l
2 )σn,i.



Results I
Number of Additive Codes



Counting Codes over F4

Additive codes

Duality on the additive group of F4

ME 0 1 ω 1 + ω
0 1 1 1 1
1 1 −1 1 −1
ω 1 1 −1 −1

1 + ω 1 −1 −1 1

00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

Lemma
Let x,y ∈ Fn

4. Then [v,w]ME = 1 if and only if [α(v), α(w)] = 0.

Theorem
Let C be an additive code over F4. Then

Hull(α(C)) = α(HullME(C)).



Counting Codes over F4

Additive codes

Duality on the additive group of F4

ME 0 1 ω 1 + ω
0 1 1 1 1
1 1 −1 1 −1
ω 1 1 −1 −1

1 + ω 1 −1 −1 1

00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

Lemma
Let x,y ∈ Fn

4. Then [v,w]ME = 1 if and only if [α(v), α(w)] = 0.

Theorem
Let C be an additive code over F4. Then

Hull(α(C)) = α(HullME(C)).



Counting Codes over F4

Additive codes

Duality on the additive group of F4

ME 0 1 ω 1 + ω
0 1 1 1 1
1 1 −1 1 −1
ω 1 1 −1 −1

1 + ω 1 −1 −1 1

00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

Lemma
Let x,y ∈ Fn

4. Then [v,w]ME = 1 if and only if [α(v), α(w)] = 0.

Theorem
Let C be an additive code over F4. Then

Hull(α(C)) = α(HullME(C)).



Counting Codes over F4

Additive codes

Duality on the additive group of F4

ME 0 1 ω 1 + ω
0 1 1 1 1
1 1 −1 1 −1
ω 1 1 −1 −1

1 + ω 1 −1 −1 1

00 10 01 11
00 0 0 0 0
10 0 1 0 1
01 0 0 1 1
11 0 1 1 0

Lemma
Let x,y ∈ Fn

4. Then [v,w]ME = 1 if and only if [α(v), α(w)] = 0.

Theorem
Let C be an additive code over F4. Then

Hull(α(C)) = α(HullME(C)).



Counting Codes over F4

Additive codes

Theorem

The number of additive codes over F4 of length n where HullME(C) has size
2k is equal to the number of binary linear codes of length 2n with hulls of
dimension k.

Theorem

The number of additive codes over F4 of length n and size 2k whose hull
with respect to ME has size 2l with l ≤ k and k ≤ 2n/2 is

k
∑
i=l
[

2n − 2i
k − i

]

2

[
i
l
]

2

(−1)i−l2(
i−l
2 )σ2n,i,

where σn,i is the number of binary self-orthogonal codes of length n
and dimension i.



Counting Codes over F4

Additive codes

Theorem

The number of additive codes over F4 of length n where HullME(C) has size
2k is equal to the number of binary linear codes of length 2n with hulls of
dimension k.

Theorem

The number of additive codes over F4 of length n and size 2k whose hull
with respect to ME has size 2l with l ≤ k and k ≤ 2n/2 is

k
∑
i=l
[

2n − 2i
k − i

]

2

[
i
l
]

2

(−1)i−l2(
i−l
2 )σ2n,i,

where σn,i is the number of binary self-orthogonal codes of length n
and dimension i.



Example

Let n = 2, k = 2 and l = 1. σ4,1 = 7 and σ4,2 = 3. The number of additive codes
over F4 = {0,1,w,1+w} of length 2 and size 22 whose hull has size 21 is 12 ∶

(
1 0
w 1

) ,(
1 0
w w

) ,(
1 0
0 1 +w

) ,(
w 0
1 1

) ,(
w 0
1 w

) ,(
w 0
0 1 +w

) ,

(
0 1

1 +w 0
) ,(

0 1
1 w

) ,(
0 1
w w

) ,(
0 w

1 +w 0
) ,(

0 w
1 1

) ,(
0 w
w 1

) .



Ratio of The Number of Linear Codes and
The Number of Additive Codes

Theorem

The ratio of the number of linear codes over F4 of length n and dimension k
and the number of additive codes over F4 of length n and size 4k goes to 0 as
n goes to infinity:

lim
n→∞

[
n
k
]

4

[
2n
2k
]

2

= 0.
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Ratio of The Number of Linear Codes and
The Number of Additive Codes

Theorem

The ratio of the number of linear codes over F4 of length n and dimension k
with a given hull of dimension l and the number of additive codes over F4 of
length n and size 4k whose hull with respect to ME has size 4l, l ≤ k, goes to 0
as n goes to infinity:

lim
n→∞

∑
k
i=l [

n − 2i
k − i

]

4

[
i
l
]

4

(−1)i−l4(
i−l
2 )σn,i

∑
k
j=l [

2n − 4j
2k − 2j

]

2

[
2j
2l
]

2

(−1)2j−2l2(
2j−2l

2 )σ2n,2j

= 0.
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i
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∑
k
j=l [

2n − 4j
2k − 2j
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2

[
2j
2l
]

2

(−1)2j−2l2(
2j−2l

2 )σ2n,2j

= 0.



Counting Codes over F2[v]/⟨v2
+ v⟩

Additive codes

Duality on the additive group of F2[v]/⟨v2 + v⟩

ME 0 1 v 1 + v
0 1 1 1 1
1 1 1 −1 −1
v 1 −1 −1 1

1 + v 1 −1 1 −1

0 11 01 10
0 0 0 0 0

11 0 0 1 1
01 0 1 1 0
10 0 1 0 1

Lemma
Let v,w ∈ F2[v]/⟨v2 + v⟩n. Then [v,w]M = 1 if and only if [β(v), β(w)] = 0.

Theorem
Let C be an additive code over F2[v]/⟨v2 + v⟩. Then

Hull(β(C)) = β(HullME(C)).
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Counting Codes over F2[v]/⟨v2
+ v⟩

Additive codes

Theorem
The number of additive codes over F2[v]/⟨v2 + v⟩ of length n where
HullME(C) has size 2k is equal to the number of binary linear codes of length
2n with hulls of dimension k.

Theorem

The number of additive codes over F2[v]/⟨v2 + v⟩ of length n and size 2k

whose hull size is 2l, l ≤ k, is

k
∑
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k − i

]

2

[
i
l
]

2
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where σn,i is the number of binary self-orthogonal codes of length n
and dimension i.
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Example

Let n = 2, k = 2 and l = 1. σ4,1 = 7 and σ4,2 = 3. The number of additive
codes over F2[v]/⟨v2 + v⟩ = {0,1, v,1 + v}, v2 = v, of length 2 and size 22

whose hull has size 21 is 12 ∶

(
1 + v 0

v 1 + v
) ,(

1 + v 0
v v

) ,(
1 + v 0

0 1
) ,(

v 0
1 + v 1 + v

) ,

(
v 0

1 + v v
) ,(

v 0
0 1

) ,(
0 1 + v
1 0

) ,(
0 1 + v

1 + v v
) ,

(
0 1 + v
v v

) ,(
0 v
1 0

) ,(
0 v

1 + v 1 + v
) ,(

0 v
v 1 + v

) .



Counting Codes over F2[u]/⟨u2
⟩

Additive codes

Duality on the additive group of F2[u]/⟨u2⟩
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Theorem
Let C be an additive code over F2[u]/⟨u2⟩. Then

Hull(ψ(C)) = ψ(HullME(C)).
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Hull(ψ(C)) = ψ(HullME(C)).
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Additive codes

Theorem

The number of additive codes over F2[u]/⟨u2⟩ of length n where HullME(C)
has size 2k is equal to the number of binary linear codes of length 2n with
hulls of dimension k.

Theorem

The number of additive codes over F2[u]/⟨u2⟩, u2 = 0, of length n and
size 2k whose hull size is 2l, l ≤ k, is

k
∑
i=l
[

2n − 2i
k − i

] [
i
l
] (−1)i−l2(

i−l
2 )σ2n,i,

where σn,i is the number of binary self-orthogonal codes of length n
and dimension i.
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Theorem

The number of additive codes over F2[u]/⟨u2⟩, u2 = 0, of length n and
size 2k whose hull size is 2l, l ≤ k, is

k
∑
i=l
[

2n − 2i
k − i

] [
i
l
] (−1)i−l2(

i−l
2 )σ2n,i,

where σn,i is the number of binary self-orthogonal codes of length n
and dimension i.



Example

Let n = 2, k = 2 and l = 1. σ4,1 = 7 and σ4,2 = 3. The number of additive
codes over F2[u]/⟨u2⟩ of length 2 and size 22 whose hull has size 21 is 12 ∶

(
1 + u 0

1 1 + u
) ,(

1 + u 0
1 1

) ,(
1 + u 0

0 u
) ,(

1 0
1 + u 1 + u

) ,

(
1 0

1 + u 1
) ,(

1 0
0 u

) ,(
0 1 + u
u 0

) ,(
0 1 + u

1 + u 1
) ,

(
0 1 + u
1 1

) ,(
0 1
u 0

) ,(
0 1

1 + u 1 + u
) ,(

0 1
1 1 + u

) .



Corollary for Additive Codes

Corollary

Let R be one of the rings F4, F2[v]/⟨v2 + v⟩ or F2[u]/⟨u2⟩. Then the
number of additive codes over the ring R of length n and size 2k whose
hull size is 2l is equal.



Results II
Number of Linear Codes
-Codes over F2[v]/⟨v2

+ v⟩ = F2 + vF2
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+ v⟩

β ∶ F2[v]/⟨v2
+ v⟩ → F2

2 such that β(a + bv) = (a,a + b).

• The ring F2[v]/⟨v2 + v⟩ is isomorphic to F2 × F2 via the Chinese
Remainder Theorem.

• The map β is the inverse of CRT.

• Let C = β−1(C1,C2) be a code over F2[v]/⟨v2 + v⟩, then C is
denoted by CRT(C1,C2), where C1 and C2 are binary codes and C
is uniquely determined by C1 and C2.
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Linear codes

Theorem

Let k ≤ n/2 and l ≤ k. The number of linear codes over F2[v]/⟨v2 + v⟩ of
length n and size 2k where the size of the hull is 2l is equal to

∑
k=k1+k2

∑
l=l1+l2

Nn,k1,l1 ⋅Nn,k2,l2

= ∑
k=k1+k2

∑
l=l1+l2

⎛

⎝

k1

∑
i=l1
[

n − 2i
k1 − i

] [
i
l1
] (−1)i−l1 2(

i−l1
2 )σn,i

⎞

⎠

⋅
⎛

⎝

k2

∑
j=l2
[

n − 2j
k2 − j

] [
j
l2
] (−1)j−l2 2(

j−l2
2 )σn,j

⎞

⎠

where σn,i is the number of binary self-orthogonal codes of length n
and size 2i.
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+ v⟩

Linear codes

Table 1: The number of codes over F2[v]/⟨v2
+ v⟩ of length n and size 2k, with a hull

of size 2l

n k l Number n k l Number n k l Number

2 0 0 1 8 0 0 1 10 0 0 1
1 0 4 1 0 256 1 0 1024
1 1 2 1 1 254 1 1 1022

4 0 0 1 2 0 27264 2 0 436736
1 0 16 2 1 40576 2 1 653824
1 1 14 2 2 18775 2 2 304471
2 0 104 3 0 1478656 3 0 94961664
2 1 136 3 1 2499296 3 1 161622912
2 2 55 3 2 1382976 3 2 90282240

6 0 0 1 3 3 338832 3 3 22346160
1 0 64 4 0 40786432 4 0 1010

⋅ 10520
1 1 62 4 1 65877504 4 1 1010

⋅ 17134
2 0 1696 4 2 44123352 4 2 1010

⋅ 11603
2 1 2464 4 3 13590432 4 3 109

⋅ 36314
2 2 1111 4 4 2104929 4 4 569194425
3 0 22784 5 0 1011

⋅ 51070
3 1 37432 5 1 1011

⋅ 89580
3 2 199206 5 2 1011

⋅ 63325
3 3 4680 5 3 1011

⋅ 23516
5 4 1010

⋅ 43198
5 5 109

⋅ 42609
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Thank you

Thank you for your attention!


	Definitions
	Rings of order 4
	Number of Codes
	Results I  Number of Additive Codes
	Results II  Number of Linear Codes  -Codes over F2[v]/ v2 + v =F2+vF2
	Appendix
	Appendix
	For Further Reading



