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Insertion-deletion metric

IF, - finite field with g elements, g a prime power.
o The insdel distance d;,,s.;(a, b) between two words a,b € [F7 is the
smallest number of insertions and deletions of coordinates required to

get one from the other.



Insertion-deletion metric

IF, - finite field with g elements, g a prime power.

o The insdel distance d;,,s.;(a, b) between two words a,b € [F7 is the
smallest number of insertions and deletions of coordinates required to
get one from the other.

o A common subsequence of two vectors a,b € Iy : a sequence u of
length r (0 < r < n) such that there are indices
1<ii<ipp<...<ip<mnand1 <j; <jp <...<J, < nsatisfying

(a,-l,...,air) = U= (bjlv"'abjr)‘

Lemma

Let LCS(a,b) be a largest common subsequence of a and b. Then

dinsdel(av b) = 2(” o K)v where { = |LCS(3, b)|
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Insertion-deletion (or insdel) codes

o To deal with this synchronization errors, the class of codes, called
insertion and deletion (insdel for short) are introduced in the 1960s by

Varshamov, Tenengolts, and Levenshtein.



Insertion-deletion (or insdel) codes

o To deal with this synchronization errors, the class of codes, called
insertion and deletion (insdel for short) are introduced in the 1960s by

Varshamov, Tenengolts, and Levenshtein.

© An (n,M,d),-insdel code C is a subset of I of size M and minimum
insdel distance d, i.e., d = min{d;,4.;/(a,b) : a,b € C, a # b}.

© dinsder is indeed a metric on . Also, note that dinsaer(a, b) < 2dp(a,b)

for any a, b € Fy», where dy is the Hamming distance.



Insertion-deletion (or insdel) codes

o To deal with this synchronization errors, the class of codes, called
insertion and deletion (insdel for short) are introduced in the 1960s by

Varshamov, Tenengolts, and Levenshtein.

© An (n,M,d),-insdel code C is a subset of I of size M and minimum
insdel distance d, i.e., d = min{d;,4.;/(a,b) : a,b € C, a # b}.
© dinsder is indeed a metric on . Also, note that dinsaer(a, b) < 2dp(a,b)

for any a, b € Fy», where dy is the Hamming distance.

Example

o —1
For a normal basis {c, a4, ...,a9" } of Fgn over Fy, dinsaer(a, ad) = 2,

where a = (o, a4, . .., oﬂm_l). But dy(a,a%) = m.




Optimal (non-)linear insdel codes

C CFy-an (1, dinsget) ¢ insdel code. Then

Lemma (Singleton-like bound)

€] < g5,

ey

A code achieving the bound (1) is called insdel-metric Singleton-optimal.
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o Ifrate R := %, relative distance § := %, then the Singleton bound
implies R + 6 < 1.



Optimal (non-)linear insdel codes

C CFy-an (n, dinsdet) q insdel code. Then

Lemma (Singleton-like bound)

dinse
] < ¢~ (1)

A code achieving the bound (1) is called insdel-metric Singleton-optimal.

o Ifrate R := l"g’;l(c), relative distance § := %, then the Singleton bound
implies R + 6 < 1.
Theorem (Con, Shpilka, and Tamo, 2023)

Every linear insdel code that is capable of correcting a § fraction of deletions
has rate at most 15° + o(1).
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Construction from subspace codes: why is it natural?

o Py(n) - the set of all F;-subspaces of Fy.

o Subspace codes (C C P,(n)) were introduced for error-control in

network coding through operator channel.

Definition (Koetter and Kschischang, 2008)

An operator channel associated with 7 is a channel with input and output
alphabet P,(n). A channel input U is related to the corresponding output V' as
V=(UNV)3E,

where E € P,(n) is an error space. In this case, the channel commits

t = dim U — dim(U N V) erasures and p = dim E errors.

Note that the errors and erasures an operator channel commits are essentially

measured by insertion and deletion of dimension, respectively



Insdel codes from subspace codes

Construction (Chen, 2021)
C C Gy(n, k) - a constant-dimension [n, k, log,|C|, d]-type subspace code. The
induced insdel code from C:

Span(C) :=={(B1,...,bk) : {Bi:i=1,... .k} isabasis of U for U € C}.

cu




Insdel codes from subspace codes

Construction (Chen, 2021)
C C Gy(n, k) - a constant-dimension [n, k, log,|C|, d]-type subspace code. The
induced insdel code from C:

Span(C) :=={(B1,...,bk) : {Bi:i=1,... .k} isabasis of U for U € C}.

cu

o Subspace distance: For U,V € P,(n),
ds(U,V) = dim(U + V) — dim(U N V). It defines a metric on Py(n).
o Span(C) is a nonlinear insdel code over Fy» of length k and insdel
distance djysqe1(Span(C)) > dg(C) as follows: for U,V € C with
I =|LCS(cy,cv)|,
ds(U,V) =2(dim(U) — dim(UNV)) < 2(k — 1) = dinsger(cu, cv)-



Optimal non-linear insdel codes from subspace codes

o (Koetter and Kschischang, 2008) C C G,(n, k) - a constant dimension
subspace code with subspace distance d. Then asymptotic Singleton

bound in terms of rate R = %, normalized weight A = f, relative
distance 6 = % is
1
R<(1=0)(1=X)+—(1—=X+0(1)). 2)

An



Optimal non-linear insdel codes from subspace codes

o (Koetter and Kschischang, 2008) C C G,(n, k) - a constant dimension
subspace code with subspace distance d. Then asymptotic Singleton

bound in terms of rate R = %, normalized weight A = %, relative
distance 6 = % is
1
RS(1—5)(1—)\)4—%(1—)\—%0(1)). 2)

Definition (Linearized polynomials)

A linearized polynomial over Fyn - > f,-Xqi where f; € F;» and only finitely
many f;’s are nonzero. The largest i with f; nonzero is called its g-degree.

We denote by Ek[X]qm ={pX+AHXI+ ... +fk,1qu_]  fi € Fgm}.




Optimal insdel codes from interleaved subspace codes

o A={ay,...,ay} C Fgm - aset of F -linearly independent elements
with n, <m, (A), - the Fy-space generated by the elements in A.
o Let Wy = (A), ® Fygn @ - -- © Fyn, a Fy-space of dimension n, + sm.
—_———

s times
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with n, <m, (A), - the Fy-space generated by the elements in A.
o Let Wy = (A), ® Fgn & - - © Fyn, a Fy-space of dimension n, + sm.
s times
o For fixed integers ki, - - - , ks < n;, an interleaved subspace code C () is
the collection of n,~-dimensional subspace of Wj
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Optimal insdel codes from interleaved subspace codes

o A={ay,...,ay} C Fgm - aset of F -linearly independent elements
with n, <m, (A), - the Fy-space generated by the elements in A.
o Let Wy = (A), ® Fygn @ - -- © Fyn, a Fy-space of dimension n, + sm.
—_—————

s times

o For fixed integers ki, - - - , ks < n;, an interleaved subspace code C () is
the collection of n,~-dimensional subspace of Wj

{(an,fD (), f(ap))i=1,... ,n,})q , where £ (x) € L [x] gm
forj=1,...,s.
(3 k)
o [CW| =g = andds(CY) = 2(n, — maxk; + 1)
j
o Setn, =mandk; = m/2 fori =1,...,s, then Span(C®*)) has

R =

2(sj—1) andd =1/2+1/m, ie, R+ — 1 whens — oo



Improved construction

o We can take more basis vectors for each subspace in a constant

dimensional subspace code C to get a larger code than Span(C).

Question: Let U be an n-dimensional subspace of F;'. Any ordered basis
{a1,...,a,} is considered as an n-tuple (v, . .., ) € Fyn. Let S be a
collection of [F,-basis vectors of U such that any two vectors «, 3 € S has a
largest common sequence of length at most /. What is the largest possible size
of §7



Improved construction

o We can take more basis vectors for each subspace in a constant

dimensional subspace code C to get a larger code than Span(C).

Question: Let U be an n-dimensional subspace of F;'. Any ordered basis
{a1,...,a,} is considered as an n-tuple (v, . .., ) € Fyn. Let S be a
collection of [F,-basis vectors of U such that any two vectors «, 3 € S has a
largest common sequence of length at most /. What is the largest possible size
of §7

Proposition (Aggarwal and P., 2023)

Fora = (ay, -+ ,ay) € S, we denote by o(«) the permuted vector

(Qg(1)s " s Qg(n)) where o € Sy. Let Sy ; denote the set of

(123 - - -i)-avoiding permutations in S,. Then we can have a larger collection

of S with |S| = (g — 1) + L_, (3) Sual(g = 1)(g’ = 1).
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Rank metric codes

o A (linear) vector rank-metric code over the finite extension Fy» /F, of

length n and dimension k is an [Fn-subspace of Fy, of dimension k.

© The rank of an element o = (a1, . . ., @) in Fyu is defined by
rank(a) := dim {(ay, . . ., an>Fq :
The rank function induces a metric d,, called rank metric, on F’;m where

d,(a, ') := rank(a — o) for a, @’ in F.



Rank metric codes

o A (linear) vector rank-metric code over the finite extension Fy» /F, of

length n and dimension k is an [Fn-subspace of Fy, of dimension k.

© The rank of an element o = (a1, . . ., @) in Fyu is defined by
rank(a) := dim {(ay, . . ., an>Fq :
The rank function induces a metric d,, called rank metric, on F’;m where

d,(a, ') := rank(a — o) for a, @’ in F.

Definition (Delsarte, *78, and Gabidulin, ’85)
The Gabidulin code over Fyn /IF, of length n and dimension k by evaluation at

a Fy-linearly independent set o« = {vy, - - - , &, } is defined as
Gab(q;m,n, k, ) :={(f(a1),....f(on)) : f(X) € Li[X] g}




Algebraic condition for optimal linear insdel code

For two vectors I = (1 < I} < --- < Ip;—y < n) and
J=(1<J; <--- <Jy_1 <n), consider the matrix

k—1 k—1
q q q . 9
X, XIl Xlk 1 XJ1 XJ}\ 1
X; x4 ... x4 x4 oo x4
2 153 153 Jo J>
Vigg(X) = . ) :
k—1 k—1
q q q o q
L Xy XIZkfl XIZkfl XJZk—l XJZk—l i

Proposition (Aggarwal, and P., 2023)

Consider the [n, k| linearized RS code or Gabidulin code Gab(q; m,n, k, )
over Fn /B, with evaluation vector o = (ay, . . ., o). If for any two
increasing vectors I,J € [n]**~!
holds that det (V1 j 4(cv)) # O, then the code can correct any n — 2k + 1 insdel

errors.

that agree on at most k — 1 coordinates, it




Optimal linear insdel codes from Gabidulin codes

The algebraic condition is an adaptation of the algebraic condition for

Reed-Solomon codes to be optimal linear insdel codes given by Con, Shpilka,
and Tamo.



Optimal linear insdel codes from Gabidulin codes

The algebraic condition is an adaptation of the algebraic condition for
Reed-Solomon codes to be optimal linear insdel codes given by Con, Shpilka,

and Tamo.

Theorem (Aggarwal, and P. , 2023)

Let k, n be positive integers such that 2k — 1 < n and q > 3 be any prime
power. For m = O(n*~=2) there exists an [n, k] linearized Reed-Solomon code
or Gabidulin code over Fyn /F, obtained by evaluating linearized
polynomials over Fyn /F, of degree at most k — 1 at n F-linearly independent
elements oy, . .., o, of Byn that can recover from n — 2k + 1 adversarial

insertion-deletion errors.




Optimal linear insdel codes from Gabidulin codes

The algebraic condition is an adaptation of the algebraic condition for
Reed-Solomon codes to be optimal linear insdel codes given by Con, Shpilka,

and Tamo.

Theorem (Aggarwal, and P. , 2023)

Let k, n be positive integers such that 2k — 1 < n and q > 3 be any prime
power. For m = O(n*~=2) there exists an [n, k] linearized Reed-Solomon code
or Gabidulin code over Fyn /F, obtained by evaluating linearized
polynomials over Fyn /F, of degree at most k — 1 at n F-linearly independent
elements oy, . .., o, of Byn that can recover from n — 2k + 1 adversarial

insertion-deletion errors.

But finding an explicit Gabidulin code satisfying the algebraic condition is

still open...
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Nonlinear codes by combining Sidon spaces
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Sidon spaces

Gy(n, k) - set of all k-dimensional IF,-subspaces of [F»
o U € Gy(n, k) is a Sidon space if for all a, b, c,d € U\{0}, ab = cd
implies {alF,, bF,} = {cF,, dF,}.
o C C Gy(n,k) is a cyclic subspace code if aU := {au: u € U} € C for
allaw € Fy, and U € C.

o cyclic subspace codes can be obtained as orbits of the group action

IE‘;‘;n X Gq(n, k) — Gy(n, k)
(,U) = aU = {au: u € U}.

Lemma (Roth, Raviv, Tamo, 2018)
For U € Gy(n, k), Orb(U) is cyclic subspace code of size ‘f;%]l and minimum
distance 2k — 2 if and only if U is a Sidon space.
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Linear insdel codes from Sidon spaces
Lemma

Any Sidon space U € G,(n, k) gives an one dimensional linear insdel code
over F g with length k and minimum distance 2k — 2.

fae
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Linear insdel codes from Sidon spaces

Lemma

Any Sidon space U € G,(n, k) gives an one dimensional linear insdel code

over F g with length k and minimum distance 2k — 2.

Theorem (Niu, Xiao, Gao, 2022)
For k > 2 and n = 3k, let £ be a primitive element in IFqk and y be the root of
an irreducible polynomial of degree n/k over Fp. Setvi = &'y and v = &y
for0 <i,j<g“—2. Thenfor0<i,j<g‘—2
Ui={u+ i —u)yi: ucFpu}and V; = {v +viy: v e Fu}

are Sidon spaces of dimension k. Moreover,

dim(U; Na3V;) < 1, dim(a Ui NFy) < 1, and dim(aV;NFy) <1
for all oy, aa, a3 € Ty, and for every i, j € {0, - - - ,qF— 2}




Nonlinear insdel codes

o For each element of the set S of (2¢* — 1) Sidon spaces of dimension k in
[F,», we consider the corresponding linear 2-dimensional RS codes as

follows.



Nonlinear insdel codes

o For each element of the set S of (2¢* — 1) Sidon spaces of dimension k in
[F,», we consider the corresponding linear 2-dimensional RS codes as
follows.

o Forg=3andm € N, let U C Fz6n be a 2m-dimensional Sidon space
over F3. Let uy, ..., uy, be a basis of U. [Roth, Raviv, Tamo, 2018]

o Let H = (h;;) be a2m x ((3™ + 1)/2) parity check matrix of an
[(3™+1)/2, (3™ 4 1)/2 — 2m]3 linear code with minimum distance at
least 5. [Gashkov and Sidelnikov, 1986]

o Then our [n, 2]36» RS codes Cy of length n = (3™ + 1) /2, defined by the
evaluation points o; = X2 u;h; ; for 1 < j < (3™ + 1)/2 can correct

from n — 3 insdel errors.



Nonlinear insdel codes

o For each element of the set S of (2¢* — 1) Sidon spaces of dimension k in
[F,», we consider the corresponding linear 2-dimensional RS codes as
follows.

o Forg=3andm € N, let U C Fz6n be a 2m-dimensional Sidon space
over F3. Let uy, ..., uy, be a basis of U. [Roth, Raviv, Tamo, 2018]

o Let H = (h;;) be a2m x ((3™ + 1)/2) parity check matrix of an
[(3™+1)/2, (3™ 4 1)/2 — 2m]3 linear code with minimum distance at
least 5. [Gashkov and Sidelnikov, 1986]

o Then our [n, 2]36» RS codes Cy of length n = (3™ + 1) /2, defined by the
evaluation points o; = X2 u;h; ; for 1 < j < (3™ + 1)/2 can correct
from n — 3 insdel errors.

o C: = JyesCu is a larger nonlinear code with same error correcting

capacity.
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