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Part I
Preliminaries
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Insertion-deletion metric

Fq - finite field with q elements, q a prime power.

The insdel distance dinsdel(a,b) between two words a,b ∈ Fn
q is the

smallest number of insertions and deletions of coordinates required to
get one from the other.

A common subsequence of two vectors a,b ∈ Fn
q : a sequence u of

length r (0 ≤ r ≤ n) such that there are indices
1 ≤ i1 < i2 < . . . < ir ≤ n and 1 ≤ j1 < j2 < . . . < jr ≤ n satisfying

(ai1 , . . . , air) = u = (bj1 , . . . , bjr).

Lemma
Let LCS(a,b) be a largest common subsequence of a and b. Then

dinsdel(a,b) = 2(n − ℓ), where ℓ = |LCS(a,b)|.
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Insertion-deletion (or insdel) codes

To deal with this synchronization errors, the class of codes, called
insertion and deletion (insdel for short) are introduced in the 1960s by
Varshamov, Tenengolts, and Levenshtein.

An (n,M, d)q-insdel code C is a subset of Fn
q of size M and minimum

insdel distance d, i.e., d = min{dinsdel(a,b) : a,b ∈ C, a ̸= b}.

dinsdel is indeed a metric on Fn
q. Also, note that dinsdel(a,b) ≤ 2dH(a,b)

for any a, b ∈ Fqn , where dH is the Hamming distance.

Example

For a normal basis {α, αq, . . . , αqm−1} of Fqm over Fq, dinsdel(a, aq) = 2,
where a = (α, αq, . . . , αqm−1

). But dH(a, aq) = m.
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Optimal (non-)linear insdel codes

C ⊆ Fn
q - an (n, dinsdel)q insdel code. Then

Lemma (Singleton-like bound)

|C| ≤ qn− dinsdel
2 +1. (1)

A code achieving the bound (1) is called insdel-metric Singleton-optimal.

If rate R :=
logq(C)

n , relative distance δ := dinsdel
2n , then the Singleton bound

implies R + δ ≤ 1.

Theorem (Con, Shpilka, and Tamo, 2023)
Every linear insdel code that is capable of correcting a δ fraction of deletions
has rate at most 1−δ

2 + o(1).
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Part II
Construction of insdel codes from subspace codes
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Construction from subspace codes: why is it natural?

Pq(n) - the set of all Fq-subspaces of Fn
q.

Subspace codes (C ⊆ Pq(n)) were introduced for error-control in
network coding through operator channel.

Definition (Koetter and Kschischang, 2008)
An operator channel associated with Fn

q is a channel with input and output
alphabet Pq(n). A channel input U is related to the corresponding output V as

V = (U ∩ V)⊕ E,
where E ∈ Pq(n) is an error space. In this case, the channel commits
t = dimU − dim(U ∩ V) erasures and ρ = dimE errors.

Note that the errors and erasures an operator channel commits are essentially
measured by insertion and deletion of dimension, respectively



9/21

Insdel codes from subspace codes

Construction (Chen, 2021)

C ⊆ Gq(n, k) - a constant-dimension [n, k, logq|C|, d]-type subspace code. The
induced insdel code from C:

Span(C) := {(β1, . . . , βk)︸ ︷︷ ︸
cU

: {βi : i = 1, . . . , k} is a basis of U for U ∈ C}.

Subspace distance: For U,V ∈ Pq(n),
dS(U,V) = dim(U + V)− dim(U ∩ V). It defines a metric on Pq(n).

Span(C) is a nonlinear insdel code over Fqn of length k and insdel
distance dinsdel(Span(C)) ≥ dS(C) as follows: for U,V ∈ C with
l = |LCS(cU, cV)|,

dS(U,V) = 2(dim(U)− dim(U ∩ V)) ≤ 2(k − l) = dinsdel(cU, cV).
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Optimal non-linear insdel codes from subspace codes

(Koetter and Kschischang, 2008) C ⊆ Gq(n, k) - a constant dimension
subspace code with subspace distance d. Then asymptotic Singleton
bound in terms of rate R =

logq(|C|)
nk , normalized weight λ = k

n , relative
distance δ = d

2k is

R ≤ (1 − δ)(1 − λ) +
1
λn

(1 − λ+ o(1)). (2)

Definition (Linearized polynomials)

A linearized polynomial over Fqm -
∑

i fiXqi
where fi ∈ Fqm and only finitely

many fi’s are nonzero. The largest i with fi nonzero is called its q-degree.

We denote by Lk[X]qm := {f0X + f1Xq + . . .+ fk−1Xqk−1
: fi ∈ Fqm}.
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Optimal insdel codes from interleaved subspace codes

A = {α1, . . . , αnt} ⊆ Fqm - a set of Fq-linearly independent elements
with nt ≤ m, ⟨A⟩q - the Fq-space generated by the elements in A.

Let Ws = ⟨A⟩q ⊕ Fqm ⊕ · · · ⊕ Fqm︸ ︷︷ ︸
s times

, a Fq-space of dimension nt + sm.

For fixed integers k1, · · · , ks < nt, an interleaved subspace code C(s) is
the collection of nt-dimensional subspace of Ws〈
{(αi, f (1)(αi), · · · , f (s)(αi)) : i = 1, . . . , nt}

〉
q , where f (j)(x) ∈ Lkj [x]qm

for j = 1, . . . , s.

|C(s)| = q
m(

s∑
i=1

ki)
and dS(C(s)) = 2(nt − max

j
kj + 1)

Set nt = m and ki = m/2 for i = 1, . . . , s, then Span(C(s)) has

R =
s

2(s + 1)
and δ = 1/2 + 1/m, i.e., R + δ → 1 when s → ∞
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Improved construction

We can take more basis vectors for each subspace in a constant
dimensional subspace code C to get a larger code than Span(C).

Question: Let U be an n-dimensional subspace of Fm
q . Any ordered basis

{α1, . . . , αn} is considered as an n-tuple (α1, . . . , αn) ∈ Fn
qm . Let S be a

collection of Fq-basis vectors of U such that any two vectors α, β ∈ S has a
largest common sequence of length at most l. What is the largest possible size
of S?

Proposition (Aggarwal and P., 2023)

For α = (α1, · · · , αn) ∈ S, we denote by σ(α) the permuted vector
(ασ(1), · · · , ασ(n)) where σ ∈ Sn. Let Sn,i denote the set of
(123 · · · i)-avoiding permutations in Sn. Then we can have a larger collection
of S with |S| = (q − 1) + Σl

i=1

(n
i

)
|Sn,i|(q − 1)(qi − 1).
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Part III
Construction of linear insdel codes from rank metric codes
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Rank metric codes

A (linear) vector rank-metric code over the finite extension Fqm/Fq of
length n and dimension k is an Fqm-subspace of Fn

qm of dimension k.

The rank of an element α = (α1, . . . , αn) in Fn
qm is defined by

rank(α) := dim ⟨α1, . . . , αn⟩Fq
.

The rank function induces a metric dr, called rank metric, on Fn
qm where

dr(α, α
′) := rank(α− α′) for α, α′ in Fn

qm .

Definition (Delsarte, ’78, and Gabidulin, ’85)

The Gabidulin code over Fqm/Fq of length n and dimension k by evaluation at
a Fq-linearly independent set α = {α1, · · · , αn} is defined as

Gab(q;m, n, k, α) := {(f (α1), . . . , f (αn)) : f (X) ∈ Lk[X]qm}.
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Algebraic condition for optimal linear insdel code

For two vectors I = (1 ≤ I1 < · · · < I2k−1 ≤ n) and
J = (1 ≤ J1 < · · · < J2k−1 ≤ n), consider the matrix

VI,J,q(X) =


XI1 Xq

I1
· · · Xqk−1

I1
Xq

J1
· · · Xqk−1

J1

XI2 Xq
I2

· · · Xqk−1

I2
Xq

J2
· · · Xqk−1

J2
...

... · · ·
...

... · · ·
...

XI2k−1 Xq
I2k−1

· · · Xqk−1

I2k−1
Xq

J2k−1
· · · Xqk−1

J2k−1

 .

Proposition (Aggarwal, and P., 2023)

Consider the [n, k] linearized RS code or Gabidulin code Gab(q;m, n, k, α)
over Fqm/Fq with evaluation vector α = (α1, . . . , αn). If for any two
increasing vectors I, J ∈ [n]2k−1 that agree on at most k − 1 coordinates, it
holds that det (VI,J,q(α)) ̸= 0, then the code can correct any n − 2k + 1 insdel
errors.
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Optimal linear insdel codes from Gabidulin codes

The algebraic condition is an adaptation of the algebraic condition for
Reed-Solomon codes to be optimal linear insdel codes given by Con, Shpilka,
and Tamo.

Theorem (Aggarwal, and P. , 2023)
Let k, n be positive integers such that 2k − 1 ≤ n and q ≥ 3 be any prime
power. For m = O(n4k−2) there exists an [n, k] linearized Reed-Solomon code
or Gabidulin code over Fqm/Fq obtained by evaluating linearized
polynomials over Fqm/Fq of degree at most k − 1 at n Fq-linearly independent
elements α1, . . . , αn of Fqm that can recover from n − 2k + 1 adversarial
insertion-deletion errors.

But finding an explicit Gabidulin code satisfying the algebraic condition is
still open...
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Part IV
Nonlinear codes by combining Sidon spaces
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Sidon spaces

Gq(n, k) - set of all k-dimensional Fq-subspaces of Fqn

U ∈ Gq(n, k) is a Sidon space if for all a, b, c, d ∈ U\{0}, ab = cd
implies {aFq, bFq} = {cFq, dFq}.

C ⊆ Gq(n, k) is a cyclic subspace code if αU := {αu : u ∈ U} ∈ C for
all α ∈ F∗

qn and U ∈ C.

cyclic subspace codes can be obtained as orbits of the group action

F∗
qn × Gq(n, k) → Gq(n, k)

(α,U) 7→ αU = {αu : u ∈ U}.

Lemma (Roth, Raviv, Tamo, 2018)

For U ∈ Gq(n, k), Orb(U) is cyclic subspace code of size qn−1
q−1 and minimum

distance 2k − 2 if and only if U is a Sidon space.
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Linear insdel codes from Sidon spaces

Lemma
Any Sidon space U ∈ Gq(n, k) gives an one dimensional linear insdel code
over Fqn with length k and minimum distance 2k − 2.

Theorem (Niu, Xiao, Gao, 2022)
For k ≥ 2 and n = 3k, let ξ be a primitive element in Fqk and γ be the root of
an irreducible polynomial of degree n/k over Fqk . Set γi = ξiγ and γj = ξjγ

for 0 ≤ i, j ≤ qk − 2. Then for 0 ≤ i, j ≤ qk − 2,
Ui = {u + (uq − u)γi : u ∈ Fqk} and Vj = {v + vqγj : v ∈ Fqk}

are Sidon spaces of dimension k. Moreover,
dim(Ui ∩ α3Vj) ≤ 1, dim(α1Ui ∩ Fqk) ≤ 1, and dim(α2Vj ∩ Fqk) ≤ 1

for all α1, α2, α3 ∈ F∗
qn and for every i, j ∈ {0, · · · , qk − 2}.
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Nonlinear insdel codes

For each element of the set S of (2qk − 1) Sidon spaces of dimension k in
Fqn , we consider the corresponding linear 2-dimensional RS codes as
follows.

For q = 3 and m ∈ N, let U ⊆ F36m be a 2m-dimensional Sidon space
over F3. Let u1, . . . , u2m be a basis of U. [Roth, Raviv, Tamo, 2018]

Let H = (hi,j) be a 2m × ((3m + 1)/2) parity check matrix of an
[(3m + 1)/2, (3m + 1)/2 − 2m]3 linear code with minimum distance at
least 5. [Gashkov and Sidelnikov, 1986]

Then our [n, 2]36m RS codes CU of length n = (3m + 1)/2, defined by the
evaluation points αj = Σ2m

i=1uihi,j for 1 ≤ j ≤ (3m + 1)/2 can correct
from n − 3 insdel errors.

C : =
⋃

U∈S CU is a larger nonlinear code with same error correcting
capacity.
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Fqn , we consider the corresponding linear 2-dimensional RS codes as
follows.

For q = 3 and m ∈ N, let U ⊆ F36m be a 2m-dimensional Sidon space
over F3. Let u1, . . . , u2m be a basis of U. [Roth, Raviv, Tamo, 2018]

Let H = (hi,j) be a 2m × ((3m + 1)/2) parity check matrix of an
[(3m + 1)/2, (3m + 1)/2 − 2m]3 linear code with minimum distance at
least 5. [Gashkov and Sidelnikov, 1986]

Then our [n, 2]36m RS codes CU of length n = (3m + 1)/2, defined by the
evaluation points αj = Σ2m

i=1uihi,j for 1 ≤ j ≤ (3m + 1)/2 can correct
from n − 3 insdel errors.

C : =
⋃

U∈S CU is a larger nonlinear code with same error correcting
capacity.
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