Weight distributions of simplex and MacDonald codes over finite chain rings¹

Sergi Sánchez-Aragón

Universitat Autònoma de Barcelona, Spain

a joint work

C. Fernández-Córdoba¹ & M. Villanueva¹

¹ Universitat Autònoma de Barcelona, Spain

Abstract

A linear code of length n over a finite chain ring R with residue field \mathbb{F}_q is a R-submodule of R^n . A R-linear code is a code over \mathbb{F}_q (not necessarily linear) which is the generalized Gray map image of a linear code over R. In this work, we present the construction of R-linear simplex and MacDonald codes of type α and β . These codes can be seen as a generalization of the linear simplex and MacDonald codes over \mathbb{Z}_{p^s} , with p prime and $s \geq 1$ [2, 3]. Moreover, we show the fundamental parameters of these codes, including their minimim Hamming distance, as well as their complete weight distributions. When $R = \mathbb{Z}_{p^s}$, these codes are related to the \mathbb{Z}_{p^s} -linear generalized Hadamard codes [1].

Keywords

Homogeneous weight, simplex codes, MacDonald codes, finite chain rings.

References

- D. K. Bhunia, C. Fernández-Córdoba, and M. Villanueva. On the linearity and classification of Z_{p^s}-linear generalized Hadamard codes. *Des. Codes Cryptogr.*, 90(4):1037–1058, 2022.
- [2] C. Fernández-Córdoba, C. Vela, and M. Villanueva. Nonlinearity and kernel of Z_{2^s}-linear simplex and MacDonald codes. *IEEE Transactions* on Information Theory, 68(11):7174–7183, 2022.
- [3] M. K. Gupta. On linear codes over Z_{2^s}. Designs, Codes and Criptography, 36:227-244, 2005.

1

 $^{^1{\}rm This}$ work has been partially supported by the Spanish MICINN grant PID2022-137924NB-I00, and by the Catalan AGAUR grant 2021 SGR 00643.