About codes defined over skew polynomials.

D. Boucher, F. Ulmer IRMAR, Université Rennes 1

Noncommutative rings and their applications Lens 14th June - 16th June 2011

Gabidulin codes. Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes. Definition. θ -constacyclic and shortened θ -constacyclic codes. Dual code. Self-dual codes.

- \mathbb{F}_{q^m} , finite field
- $heta: a \mapsto a^q$, automorphism of \mathbb{F}_{q^m}
- $R = \mathbb{F}_{q^m}[X; \theta]$ Ore ring (1933) Addition : like in $\mathbb{F}_{q^m}[X]$ Multiplication : $X \cdot a = \theta(a) X, a \in \mathbb{F}_{q^m}$
- Example

$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$
$$(X + \alpha) \cdot (X + \alpha^2) = X^2 + X \cdot \alpha^2 + \alpha X + \alpha^3$$

3

(日) (周) (三) (三)

• \mathbb{F}_{q^m} , finite field

- $\theta: a \mapsto a^q$, automorphism of \mathbb{F}_{q^m}
- $R = \mathbb{F}_{q^m}[X; \theta]$ Ore ring (1933) Addition : like in $\mathbb{F}_{q^m}[X]$ Multiplication : $X \cdot a = \theta(a) X, a \in \mathbb{F}_{q^m}$

Example $\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$ $(X + \alpha) \cdot (X + \alpha^2) = X^2 + X \cdot \alpha^2 + \alpha X + \alpha^3$

(日) (周) (三) (三)

- \mathbb{F}_{q^m} , finite field
- $\theta: a \mapsto a^q$, automorphism of \mathbb{F}_{q^m}
- $R = \mathbb{F}_{q^m}[X; \theta]$ Ore ring (1933) Addition : like in $\mathbb{F}_{q^m}[X]$ Multiplication : $X \cdot a = \theta(a) X, a \in \mathbb{F}_{q^m}$
- Example $\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$ $(X + \alpha) \cdot (X + \alpha^2) = X^2 + X \cdot \alpha^2 + \alpha \ X + \alpha^3$

イロト 不得下 イヨト イヨト

- \mathbb{F}_{q^m} , finite field
- $\theta: a \mapsto a^q$, automorphism of \mathbb{F}_{q^m}
- $R = \mathbb{F}_{q^m}[X; \theta]$ Ore ring (1933) Addition : like in $\mathbb{F}_{q^m}[X]$ Multiplication : $X \cdot a = \theta(a) X, a \in \mathbb{F}_{q^m}$
- Example $\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : \mathbf{a} \mapsto \mathbf{a}^2, \ R = \mathbb{F}_4[X; \theta]$ $(X + \alpha) \cdot (X + \alpha^2) = X^2 + \mathbf{X} \cdot \alpha^2 + \alpha X + \alpha^3$

(日) (周) (三) (三)

- \mathbb{F}_{q^m} , finite field
- $\theta: a \mapsto a^q$, automorphism of \mathbb{F}_{q^m}
- $R = \mathbb{F}_{q^m}[X; \theta]$ Ore ring (1933) Addition : like in $\mathbb{F}_{q^m}[X]$ Multiplication : $X \cdot a = \theta(a) X, a \in \mathbb{F}_{q^m}$
- Example $\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$ $(X + \alpha) \cdot (X + \alpha^2) = X^2 + \alpha^4 X + \alpha X + \alpha^3$

イロト 不得下 イヨト イヨト

- \mathbb{F}_{q^m} , finite field
- $\theta: a \mapsto a^q$, automorphism of \mathbb{F}_{q^m}
- $R = \mathbb{F}_{q^m}[X; \theta]$ Ore ring (1933) Addition : like in $\mathbb{F}_{q^m}[X]$ Multiplication : $X \cdot a = \theta(a) X, a \in \mathbb{F}_{q^m}$
- Example

$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$
$$(X + \alpha) \cdot (X + \alpha^2) = X^2 + \alpha^4 X + \alpha X + \alpha^3$$
$$= X^2 + 1$$

- 4 同 6 4 日 6 4 日 6

Left Euclidean and right Euclidean divisions

Notations : $g, f \in R$ $g|_r f \Leftrightarrow \exists h \in R, f = h \cdot g$ $g|_l f \Leftrightarrow \exists h \in R, f = g \cdot h$

• Factorisation in product of irreducible skew polynomials not unique

• Example

$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$
$$X^2 + 1 = (X + \alpha) \cdot (X + \alpha^2)$$
$$= (X + \alpha^2) \cdot (X + \alpha)$$
$$= (X + 1) \cdot (X + 1)$$

A B F A B F

Left Euclidean and right Euclidean divisions

Notations : $g, f \in R$ $g|_r f \Leftrightarrow \exists h \in R, f = h \cdot g$ $g|_l f \Leftrightarrow \exists h \in R, f = g \cdot h$

• Factorisation in product of irreducible skew polynomials not unique

Example

$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$

$$X^2 + 1 = (X + \alpha) \cdot (X + \alpha^2)$$

$$= (X + \alpha^2) \cdot (X + \alpha)$$

$$= (X + 1) \cdot (X + 1)$$

•

Left Euclidean and right Euclidean divisions

Notations : $g, f \in R$ $g|_r f \Leftrightarrow \exists h \in R, f = h \cdot g$ $g|_l f \Leftrightarrow \exists h \in R, f = g \cdot h$

- Factorisation in product of irreducible skew polynomials not unique
 - Example $\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : \mathbf{a} \mapsto \mathbf{a}^2, \ R = \mathbb{F}_4[X; \theta]$ $X^2 + 1 = (X + \alpha) \cdot (X + \alpha^2)$ $= (X + \alpha^2) \cdot (X + \alpha)$ $= (X + 1) \cdot (X + 1)$

Skew polynomials $R = \mathbb{F}_{q^m}[X; \theta], \theta : a \mapsto a^q$		Linearized polynomials $L = \mathbb{F}_{q^m}[Y^q]$
$egin{array}{c} (R,+,\cdot) \ X \end{array}$	\rightarrow \mapsto	$(L,+,\circ)$ Y^q
$f = \sum f_i X^i$	\mapsto	$\sum f_i Y^{q^i}$
$X \cdot a - a^q X$	\leftrightarrow	$Y^q \circ a - a^q Y^q$

"Linear" evaluation

$$\alpha \in \mathbb{F}_{q^m}, \mathcal{L}_f(\alpha) = \sum_i f_i \theta^i(\alpha) = \sum_i f_i \alpha^{q^i}$$

3

A B A A B A

Image: A matrix

Skew polynomials $R = \mathbb{F}_{q^m}[X; \theta], \theta : a \mapsto a^q$		Linearized polynomials $L = \mathbb{F}_{q^m}[Y^q]$
${(R,+,\cdot) \choose X}$	\rightarrow \mapsto	$(L,+,\circ)$ Y^q
$f = \sum f_i X^i$	\mapsto	$\sum f_i Y^{q^i}$
$X \cdot a = a^q X$	\leftrightarrow	$Y^q \circ a = a^q Y^q$

"Linear" evaluation

$$\alpha \in \mathbb{F}_{q^m}, \mathcal{L}_f(\alpha) = \sum_i f_i \theta^i(\alpha) = \sum_i f_i \alpha^{q^i}$$

3

Gabidulin codes.

Rank metric. Gabidulin codes (of linea

Gabidulin q-cyclic codes.

Module θ -codes.

Definition. θ -constacyclic and shortened θ -constacyclic codes Dual code. Self-dual codes.

Rank metric.

Rank metric.

- Gabidulin, *Theory of Codes with Maximum Rank Distance* 1985 Berger, Loidreau, Wachter, ...
- $y \in (\mathbb{F}_{q^m})^n$, $C \subset (\mathbb{F}_{q^m})^n$ [n,k] linear code

Hamming metric	Rank metric
$w_{ m H}(y) =$ nbe of nonzero	
coordinates of y	
	coordinates of y
$w_{\mathrm{H}}(y) \leq n$	$\operatorname{rang}(y; q) \leq m$
$d_H = min_{c \in C, c \neq 0} w_H(c)$	$d_r = min_{c \in C, c \neq 0} \operatorname{rank}(c; q)$
$\leq n-k+1$	$\leq d_H$
$MDS: d_H = n - k + 1$	$MRD: d_r = n - k + 1$

- 3

イロト イポト イヨト イヨト

Rank metric.

Rank metric.

• Gabidulin, *Theory of Codes with Maximum Rank Distance* 1985 Berger, Loidreau, Wachter, ...

•
$$y \in (\mathbb{F}_{q^m})^n$$
, $C \subset (\mathbb{F}_{q^m})^n$ $[n,k]$ linear code

Hamming metric	Rank metric
$w_{\rm H}(y) =$ nbe of nonzero	rank(y; q) = maximum nbe of
coordinates of y	\mathbb{F}_{q} -linearly independent
	coordinates of y
$w_{\mathrm{H}}(y) \leq n$	$\operatorname{rang}(y; q) \leq m$
$d_H = min_{c \in C, c \neq 0} w_H(c)$	$d_r = min_{c \in C, c \neq 0} \operatorname{rank}(c; q)$
$\leq n-k+1$	$\leq d_H$
$MDS: d_H = n - k + 1$	$MRD: d_r = n - k + 1$

3

(日) (同) (三) (三)

Gabidulin codes.

Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes.

Definition. θ -constacyclic and shortened θ -constacyclic codes Dual code. Self-dual codes.

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{(\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1\}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{(\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1\}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{(\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1\}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, deg(f) = k 1 such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \le m$

- $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1 \}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \le m$

- $\mathcal{G}_{n,k} = \{(\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1\}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

•
$$R = \mathbb{F}_{q^m}[X; heta]$$
 , $heta: a\mapsto a^q$

• $y_1, \ldots, y_n \in \mathbb{F}_{q^m}$ linearly independent over \mathbb{F}_q $(\operatorname{rang}(y; q) = n)$ $n \leq m$

- $\mathcal{G}_{n,k} = \{(\mathcal{L}_f(y_1), \dots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k 1\}$ Gabidulin code (of linearized evaluation)
- Let $f \in R$, $\deg(f) = k 1$ such that $\mathcal{L}_f(y_1) = \cdots = \mathcal{L}_f(y_{k-1}) = 0$ $c = (0, \dots, 0, \mathcal{L}_f(y_k), \dots, \mathcal{L}_f(y_n)) \in \mathcal{G}_{n,k}$ $\sum_{i=k}^n \lambda_i \mathcal{L}_f(y_i) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \mathcal{L}_f\left(\sum_{i=k}^n \lambda_i y_i\right) = 0, \lambda_i \in \mathbb{F}_q \Rightarrow \lambda_i = 0$ $\operatorname{rank}(c; q) = n - k + 1$

$$y_1, \ldots, y_n \in \mathbb{F}_{q^m}$$
 linearly independent over \mathbb{F}_q
 $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \ldots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k - 1 \}$

- $\mathcal{G}_{n,k}$ is a MRD (Maximum Rank Distance) code.
- The dual of a Gabidulin code (of linearized evaluation) is a Gabidulin code (of linearized evaluation).

• If n = m, if $y_i = \theta^{i-1}(y)$ normal basis of $\mathbb{F}_{q^n}/\mathbb{F}_q$, then the dual of $\mathcal{G}_{n,k}$ is a *q*-cyclic code.

(日) (周) (三) (三)

$$y_1, \ldots, y_n \in \mathbb{F}_{q^m}$$
 linearly independent over \mathbb{F}_q
 $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \ldots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k - 1 \}$

• $\mathcal{G}_{n,k}$ is a MRD (Maximum Rank Distance) code.

• The dual of a Gabidulin code (of linearized evaluation) is a Gabidulin code (of linearized evaluation).

• If n = m, if $y_i = \theta^{i-1}(y)$ normal basis of $\mathbb{F}_{q^n}/\mathbb{F}_q$, then the dual of $\mathcal{G}_{n,k}$ is a *q*-cyclic code.

(日) (周) (三) (三)

$$y_1, \ldots, y_n \in \mathbb{F}_{q^m}$$
 linearly independent over \mathbb{F}_q
 $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \ldots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k - 1 \}$

- $\mathcal{G}_{n,k}$ is a MRD (Maximum Rank Distance) code.
- The dual of a Gabidulin code (of linearized evaluation) is a Gabidulin code (of linearized evaluation).

• If n = m, if $y_i = \theta^{i-1}(y)$ normal basis of $\mathbb{F}_{q^n}/\mathbb{F}_q$, then the dual of $\mathcal{G}_{n,k}$ is a *q*-cyclic code.

イロト 不得下 イヨト イヨト 二日

$$y_1, \ldots, y_n \in \mathbb{F}_{q^m}$$
 linearly independent over \mathbb{F}_q
 $\mathcal{G}_{n,k} = \{ (\mathcal{L}_f(y_1), \ldots, \mathcal{L}_f(y_n)) \mid f \in R, \deg(f) \le k - 1 \}$

- $\mathcal{G}_{n,k}$ is a MRD (Maximum Rank Distance) code.
- The dual of a Gabidulin code (of linearized evaluation) is a Gabidulin code (of linearized evaluation).
- If n = m, if $y_i = \theta^{i-1}(y)$ normal basis of $\mathbb{F}_{q^n}/\mathbb{F}_q$, then the dual of $\mathcal{G}_{n,k}$ is a *q*-cyclic code.

イロト 不得下 イヨト イヨト

Gabidulin codes.

Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes.

Definition. θ -constacyclic and shortened θ -constacyclic codes Dual code. Self-dual codes.

Gabidulin linear q-cyclic code.

- $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m
- C linear q-cyclic

$$(c_0,\ldots,c_{n-1}) \in C \Rightarrow (c_{n-1}^q,c_0^q,\ldots,c_{n-2}^q) \in C$$

æ

イロト イヨト イヨト

Gabidulin linear q-cyclic code.

- $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m
- C linear q-cyclic

$$(c_0,\ldots,c_{n-1}) \in C \Rightarrow (c_{n-1}^q,c_0^q,\ldots,c_{n-2}^q) \in C$$

æ

(日) (周) (三) (三)
Skew codes

Gabidulin q-cyclic linear code.

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

$$(c_0,\ldots,c_{n-1}) \in C \Rightarrow (c_{n-1}^q,c_0^q,\ldots,c_{n-2}^q) \in C$$

 \downarrow
 $c_0+\cdots+c_{n-1}X^{n-1}$

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

Skew codes

Image: A matrix

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

$$\begin{array}{cccc} (c_0,\ldots,c_{n-1}) &\in & C &\Rightarrow & (c_{n-1}^q,c_0^q,\ldots,c_{n-2}^q)\in C \\ \uparrow & & \uparrow & & \uparrow \\ c_0+\cdots+c_{n-1}X^{n-1} &\in & C(X) &\Rightarrow & c_{n-1}^q+c_0^qX+\cdots+c_{n-2}^qX^{n-1} \\ & & \bigcap & & & \\ & & R/(X^n-1) & & X\cdot(c_0+\cdots+c_{n-1}X^{n-1})\in C(X) \end{array}$$

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $C \subset (\mathbb{F}_{q^m})^n$ linear, n = m

$$\begin{array}{cccc} (c_0,\ldots,c_{n-1}) & \in & C & \Rightarrow & (c_{n-1}^q,c_0^q,\ldots,c_{n-2}^q) \in C \\ \uparrow & & \uparrow & & \uparrow \\ c_0+\cdots+c_{n-1}X^{n-1} & \in & C(X) & \Rightarrow & c_{n-1}^q+c_0^qX+\cdots+c_{n-2}^qX^{n-1} \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$$

• C(X) left principal ideal of the quotient ring $R/(X^n-1)$

• $C(X) = (g)/(X^n - 1), g|_r X^n - 1$, generator polynomial

Gabidulin q-cyclic code.

 A generator matrix of a [n = m, k] q-cyclic linear code of Gabidulin over 𝔽_{q^m} with generator polynomial g₀ + g₁X + ··· + g_{n-k}X^{n-k} is

• The dual of a *q*-cyclic linear code [n = m, k] generated by *g* is a *q*-cyclic linear code generated by h^* where

$$\begin{array}{l} h \cdot g = g \cdot h = X^n - 1 \\ h^* = \sum X^{k-i} \cdot h_i \end{array}$$

イロト イポト イヨト イヨト

Gabidulin *q*-cyclic code.

 A generator matrix of a [n = m, k] q-cyclic linear code of Gabidulin over 𝔽_{q^m} with generator polynomial g₀ + g₁X + ··· + g_{n-k}X^{n-k} is

• The dual of a *q*-cyclic linear code [n = m, k] generated by *g* is a *q*-cyclic linear code generated by h^* where

$$\begin{aligned} h \cdot g &= g \cdot h = X^n - 1 \\ h^* &= \sum X^{k-i} \cdot h_i \end{aligned}$$

イロト 不得下 イヨト イヨト

Skew polynomials and linearized polynomials.

Gabidulin codes.

Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes.

 θ -constacyclic and shortened θ -constacyclic codes. Dual code. Self-dual codes.

• 2007 - : Ulmer, Solé, Loidreau, Geiselmann, Chaussade, B., ...

• A conjecture given in *Codes as modules over skew polynomial rings*, Proceedings of the 12th IMA conference on Cryptography and Coding, Cirencester, 2009, LNCS; B., Ulmer :

We conjecture than an Euclidean self-dual module θ-code is a module θ-constacyclic code."

ightarrow Aim today :

- definition of module θ -codes
- definition of θ -constacyclic and shortened θ -constacyclic codes
- proof of the conjecture
- construction of self-dual module θ -codes

(日) (同) (日) (日)

- 2007 : Ulmer, Solé, Loidreau, Geiselmann, Chaussade, B., ...
- A conjecture given in *Codes as modules over skew polynomial rings*, Proceedings of the 12th IMA conference on Cryptography and Coding, Cirencester, 2009, LNCS; B., Ulmer :

"We conjecture than an Euclidean self-dual module θ -code is a module θ -constacyclic code."

\rightarrow Aim today

- definition of module θ -codes
- definition of θ -constacyclic and shortened θ -constacyclic codes
- proof of the conjecture
- construction of self-dual module θ -codes

- 2007 : Ulmer, Solé, Loidreau, Geiselmann, Chaussade, B., ...
- A conjecture given in *Codes as modules over skew polynomial rings*, Proceedings of the 12th IMA conference on Cryptography and Coding, Cirencester, 2009, LNCS; B., Ulmer :

"We conjecture than an Euclidean self-dual module θ -code is a module θ -constacyclic code."

 \rightarrow Aim today :

- definition of module θ -codes
- definition of θ -constacyclic and shortened θ -constacyclic codes
- proof of the conjecture
- construction of self-dual module θ -codes

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

• $g \in R$, $g_0 \neq 0$, $g|_r X^n - 1$

(日) (四) (王) (王) (王)

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

•
$$g \in R$$
, $g_0 \neq 0$, $g|_r X^n - 1$

$$n = m \qquad R/(X^n - 1)$$

$$C(X) = (g)/(X^n - 1)$$

С

quotient ring

left principal ideal

q-cyclic code

3

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

•
$$g \in R$$
, $g_0 \neq 0$, $g|_r X^n - 1$

any n $R/R(X^n-1)$

left R-module

$$C(X) = Rg/R(X^n - 1)$$

С

 θ -cyclic code

3

<ロ> (日) (日) (日) (日) (日)

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

•
$$g \in R$$
, $g_0 \neq 0$, $g|_r X^n - a, a \in \mathbb{F}_{q^m}^*$

 $R/R(X^n - a)$

any n

$$C(X) = Rg/R(X^n - a)$$
 left *R*-submodule

C
$$\theta$$
-constacyclic code

3

<ロ> (日) (日) (日) (日) (日)

•
$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

•
$$g \in R$$
, $g_0 \neq 0$, $g|_r f$, $\deg(f) = n$

any *n R*/*Rf* left *R*-module

$$C(X) = Rg/Rf$$
 left *R*-submodule

C module θ -code

æ

イロト イポト イヨト イヨト

- $R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$
- $f \in R$, $\deg(f) = n$. $g \in R$, $g_0 \neq 0$, $g|_r f$ $k = n - \deg(g)$
- C(X) = Rg/Rf, left *R*-submodule of *R*/*Rf*

•
$$C(X) = \{m \cdot g / \deg(m) \le k - 1\}$$

 $C = \left\{ c \in (\mathbb{F}_{q^m})^n, \sum_{i=0}^{n-1} c_i X^i \in C(X) \right\}$ module θ -code

Notation

$$C = (g)_{n,\theta}$$

- $R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$
- $f \in R$, $\deg(f) = n$. $g \in R$, $g_0 \neq 0$, $g|_r f$ $k = n - \deg(g)$
- C(X) = Rg/Rf, left *R*-submodule of *R*/*Rf*

•
$$C(X) = \{m \cdot g / \deg(m) \le k - 1\}$$

 $C = \left\{ c \in (\mathbb{F}_{q^m})^n, \sum_{i=0}^{n-1} c_i X^i \in C(X) \right\}$ module θ -code

Notation

$$C = (g)_{n,\theta}$$

- $R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$
- $f \in R$, $\deg(f) = n$. $g \in R$, $g_0 \neq 0$, $g|_r f$ $k = n - \deg(g)$
- C(X) = Rg/Rf, left *R*-submodule of *R*/*Rf*

•
$$C(X) = \{m \cdot g / \deg(m) \le k - 1\}$$

 $C = \left\{ c \in (\mathbb{F}_{q^m})^n, \sum_{i=0}^{n-1} c_i X^i \in C(X) \right\}$ module θ -code

Notation

$$C = (g)_{n,\theta}$$

- $R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$
- $f \in R$, $\deg(f) = n$. $g \in R$, $g_0 \neq 0$, $g|_r f$ $k = n - \deg(g)$
- C(X) = Rg/Rf, left *R*-submodule of *R*/*Rf*

•
$$C(X) = \{m \cdot g / \deg(m) \le k - 1\}$$

 $C = \left\{ c \in (\mathbb{F}_{q^m})^n, \sum_{i=0}^{n-1} c_i X^i \in C(X) \right\}$ module θ -code

Notation

$$C = (g)_{n,\theta}$$

- $R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$
- $f \in R$, $\deg(f) = n$. $g \in R$, $g_0 \neq 0$, $g|_r f$ $k = n - \deg(g)$
- C(X) = Rg/Rf, left *R*-submodule of *R*/*Rf*

•
$$C(X) = \{m \cdot g / \deg(m) \le k - 1\}$$

 $C = \left\{ c \in (\mathbb{F}_{q^m})^n, \sum_{i=0}^{n-1} c_i X^i \in C(X) \right\}$ module θ -code

Notation

$$C = (g)_{n,\theta}$$

イロト イポト イヨト イヨト 二日

Skew codes

Generator matrix.

$$C = (g)_{n, heta}, \ k = n - \deg(g)$$

- 2

<ロ> (日) (日) (日) (日) (日)

Generator matrix.

$$C = (g)_{n, heta}$$
, $k = n - \deg(g)$

$$g = g_0 + g_1 X + \dots + g_{n-k} X^{n-k}$$

$$X \cdot g = \theta(g_0) X + \theta(g_1) X^2 + \dots + \theta(g_{n-k}) X^{n-k+1}$$

$$\vdots$$

$$X^{k-1} \cdot g = \theta^{k-1}(g_0) X^{k-1} + \theta^{k-1}(g_1) X^k + \dots + \theta^{k-1}(g_{n-k}) X^{n-1}$$

Ξ.

<ロ> (日) (日) (日) (日) (日)

Generator matrix.

$$C = (g)_{n,\theta}, \ k = n - \deg(g)$$

$$g = g_{0} + g_{1}X + \dots + g_{n-k}X^{n-k}$$

$$X \cdot g = \theta(g_{0})X + \theta(g_{1})X^{2} + \dots + \theta(g_{n-k})X^{n-k+1}$$

$$\vdots$$

$$X^{k-1} \cdot g = \theta^{k-1}(g_{0})X^{k-1} + \theta^{k-1}(g_{1})X^{k} + \dots + \theta^{k-1}(g_{n-k})X^{n-1}$$

$$G_{g,n,\theta} = \begin{pmatrix} g_{0} & \dots & g_{n-k} & 0 & \dots & 0 \\ 0 & \theta(g_{0}) & \dots & \theta(g_{n-k}) & \ddots & \vdots \\ \vdots & \ddots & \ddots & & \ddots & 0 \\ 0 & \dots & 0 & \theta^{k-1}(g_{0}) & \dots & \dots & \theta^{k-1}(g_{n-k}) \end{pmatrix}$$

- 2

・ロト ・四ト ・ヨト ・ヨト

Skew polynomials and linearized polynomials.

Gabidulin codes.

Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes.

Definition. θ -constacyclic and shortened θ -constacyclic codes. Dual code. Self-dual codes.

Shortened codes and punctured codes.

C' [n', k'] linear code with generator matrix G'; $n \leq n'$

shortened code	punctured code
$C = \rho_{n' \to n}(C')$	$C = \pi_{n' \to n}(C')$
$c \in C$	$c \in C$ $(c_0, \ldots, c_{n-1}, c_n, \ldots, c_{n'}) \in C'$
[n, k], n' - n = k' - k	[n, k = k']
$G = G' _{[1k],[1n]}$	$G = G' _{[1n]}$

()

- $\exists a \in \mathbb{F}_{q^m}^*, \ g|_r X^n a$
- $(c_0, c_1, \cdots, c_{n-1}) \in (g)_{n,\theta}$ $\Rightarrow (a \ \theta(c_{n-1}), \theta(c_0), \theta(c_1), \dots, \theta(c_{n-2})) \in (g)_{n,\theta}$
- $(g)_{n,\theta}$: θ -constacyclic code; if a = 1, θ -cyclic code
- q-cyclic code of Gabidulin = θ -cyclic code with n = m
- Notation

Skew codes

- $\exists a \in \mathbb{F}_{q^m}^*, \ g|_r X^n a$
- $(c_0, c_1, \cdots, c_{n-1}) \in (g)_{n,\theta}$ $\Rightarrow (a \theta(c_{n-1}), \theta(c_0), \theta(c_1), \dots, \theta(c_{n-2})) \in (g)_{n,\theta}$
- $(g)_{n,\theta}$: θ -constacyclic code; if a = 1, θ -cyclic code
- q-cyclic code of Gabidulin = θ -cyclic code with n = m
- Notation

$$(g)_{n,\theta,c}$$

Skew codes

- $\exists a \in \mathbb{F}_{q^m}^*, g|_r X^n a$
- $(c_0, c_1, \cdots, c_{n-1}) \in (g)_{n,\theta}$ $\Rightarrow (a \ \theta(c_{n-1}), \theta(c_0), \theta(c_1), \dots, \theta(c_{n-2})) \in (g)_{n,\theta}$
- $(g)_{n,\theta}$: θ -constacyclic code; if a = 1, θ -cyclic code
- q-cyclic code of Gabidulin = θ -cyclic code with n = m

Notation

$$(g)_{n,\theta,c}$$

- 3

•
$$\exists a \in \mathbb{F}_{q^m}^*, g|_r X^n - a$$

•
$$(c_0, c_1, \cdots, c_{n-1}) \in (g)_{n,\theta}$$

 $\Rightarrow (a \ \theta(c_{n-1}), \theta(c_0), \theta(c_1), \dots, \theta(c_{n-2})) \in (g)_{n,\theta}$

- $(g)_{n,\theta}$: θ -constacyclic code; if a = 1, θ -cyclic code
- q-cyclic code of Gabidulin = θ -cyclic code with n = m

Notation

$$(g)_{n,\theta,c}$$

3

•
$$\exists a \in \mathbb{F}_{q^m}^*, g|_r X^n - a$$

•
$$(c_0, c_1, \cdots, c_{n-1}) \in (g)_{n,\theta}$$

 $\Rightarrow (a \ \theta(c_{n-1}), \theta(c_0), \theta(c_1), \dots, \theta(c_{n-2})) \in (g)_{n,\theta}$

- $(g)_{n,\theta}$: θ -constacyclic code; if a = 1, θ -cyclic code
- q-cyclic code of Gabidulin = θ -cyclic code with n = m
- Notation

$$(g)_{n,\theta,c}$$

Shortened θ -constacyclic codes.

•
$$\forall a \in \mathbb{F}_{q^m}^*, g \not|_r X^n - a$$

•
$$\exists n' > n, g|_r X^{n'} - 1$$

$$\begin{array}{l} \mathbf{g}_{|_{r}}\tilde{g}_{i}, \tilde{g}_{0} \neq 0, \tilde{g} \in \mathbb{F}_{q}[X^{m}] \; (\tilde{g}, \text{ bound of } g) \\ \tilde{g}_{|}X^{n'} - 1 \in \mathbb{F}_{q}[X^{m}], \; n' > n \\ \tilde{g}_{|_{r}}X^{n'} - 1 \; \text{because } \theta(\tilde{g}_{i}) = \tilde{g}_{i} \end{array}$$

• $(g)_{n,\theta}$, shortened θ -constacyclic code : $(g)_{n,\theta} = \{ c \in (\mathbb{F}_{q^m})^n, (c_0, \dots, c_{n-1}, 0, \dots, 0) \in (g)_{n',\theta,c} \}$ $(g)_{n,\theta} = \rho_{n', h} \circ ((g)_{n',\theta,c})$

Shortened θ -constacyclic codes.

•
$$\forall a \in \mathbb{F}_{q^m}^*$$
, $g \not|_r X^n - a$

•
$$\exists n' > n, g|_r X^{n'} - 1$$

$$\begin{array}{l} \mathbf{g}|_{r}\tilde{g}, \, \tilde{g}_{0} \neq 0, \tilde{g} \in \mathbb{F}_{q}[X^{m}] \, \left(\tilde{g}, \text{ bound of } g\right) \\ \tilde{g}|X^{n'} - 1 \in \mathbb{F}_{q}[X^{m}], \, n' > n \\ \tilde{g}|_{r}X^{n'} - 1 \, \text{ because } \theta(\tilde{g}_{i}) = \tilde{g}_{i} \end{array}$$

• $(g)_{n,\theta}$, shortened θ -constacyclic code : $(g)_{n,\theta} = \{ c \in (\mathbb{F}_{q^m})^n, (c_0, \dots, c_{n-1}, 0, \dots, 0) \in (g)_{n',\theta,c} \}$ $(g)_{n,\theta} = \rho_{n', h} \circ \rho_{n',\theta} \circ \rho_{n',\theta}$

- A E N A E N
Shortened θ -constacyclic codes.

•
$$\forall a \in \mathbb{F}_{q^m}^*$$
, $g \not|_r X^n - a$

•
$$\exists n' > n, g|_r X^{n'} - 1$$

$$\begin{array}{l} g|_{r}\tilde{g}, \ \tilde{g}_{0} \neq 0, \ \tilde{g} \in \mathbb{F}_{q}[X^{m}] \ (\tilde{g}, \ bound \ of \ g) \\ \tilde{g}|X^{n'} - 1 \in \mathbb{F}_{q}[X^{m}], \ n' > n \\ \tilde{g}|_{r}X^{n'} - 1 \ because \ \theta(\tilde{g}_{i}) = \ \tilde{g}_{i} \end{array}$$

• $(g)_{n,\theta}$, shortened θ -constacyclic code : $(g)_{n,\theta} = \{ c \in (\mathbb{F}_{q^m})^n, (c_0, \dots, c_{n-1}, 0, \dots, 0) \in (g)_{n',\theta,c} \}$ $(g)_{n,\theta} = \rho_{n' \to n} ((g)_{n',\theta,c})$

- A E N A E N

Image: A matrix

Shortened θ -constacyclic codes.

•
$$\forall a \in \mathbb{F}_{q^m}^*$$
, $g \not|_r X^n - a$

•
$$\exists n' > n, g|_r X^{n'} - 1$$

$$\begin{array}{l} g|_{r}\tilde{g}, \ \tilde{g}_{0} \neq 0, \ \tilde{g} \in \mathbb{F}_{q}[X^{m}] \ (\tilde{g}, \ bound \ of \ g) \\ \tilde{g}|X^{n'} - 1 \in \mathbb{F}_{q}[X^{m}], \ n' > n \\ \tilde{g}|_{r}X^{n'} - 1 \ because \ \theta(\tilde{g}_{i}) = \ \tilde{g}_{i} \end{array}$$

• $(g)_{n,\theta}$, shortened θ -constacyclic code : $(g)_{n,\theta} = \left\{ c \in (\mathbb{F}_{q^m})^n, (c_0, \dots, c_{n-1}, 0, \dots, 0) \in (g)_{n',\theta,c} \right\}$ $(g)_{n,\theta} = \rho_{n' \to n} \left((g)_{n',\theta,c} \right)$

•
$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$

• $X^4 - 1 = (X^2 + \alpha^2 X + \alpha^2) \cdot \underbrace{(X^2 + \alpha^2 X + \alpha)}_{g}$

• $(g)_{4,\theta,c}$ [4,2,3]₄ θ -cyclic code

$$G_{g,4,\theta} = \left(\begin{array}{ccc} \alpha & \alpha^2 & 1 & 0 \\ 0 & \alpha^2 & \alpha & 1 \end{array}\right)$$

• $(g)_{3,\theta}$ [3,1,3]₄ shortened θ -cyclic code

$$G_{g,3,\theta} = (\alpha \ \alpha^2 \ 1)$$

3

イロト イポト イヨト イヨト

•
$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$

• $X^4 - 1 = (X^2 + \alpha^2 X + \alpha^2) \cdot \underbrace{(X^2 + \alpha^2 X + \alpha)}_g$

• $(g)_{4,\theta,c}$ [4,2,3]₄ θ -cyclic code

$$G_{g,4,\theta} = \left(\begin{array}{ccc} \alpha & \alpha^2 & 1 & 0\\ 0 & \alpha^2 & \alpha & 1 \end{array}\right)$$

• $(g)_{3,\theta}$ [3,1,3]₄ shortened θ -cyclic code

$$G_{g,3,\theta} = (\alpha \ \alpha^2 \ 1)$$

3

イロト イポト イヨト イヨト

•
$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$

• $X^4 - 1 = (X^2 + \alpha^2 X + \alpha^2) \cdot \underbrace{(X^2 + \alpha^2 X + \alpha)}_g$

• $(g)_{4,\theta,c}$ [4,2,3]₄ θ -cyclic code

$$G_{g,4,\theta} = \left(\begin{array}{ccc} \alpha & \alpha^2 & 1 & 0 \\ 0 & \alpha^2 & \alpha & 1 \end{array}\right)$$

• $(g)_{3,\theta}$ [3,1,3]₄ shortened θ -cyclic code

$$G_{g,3,\theta} = (\alpha \ \alpha^2 \ 1)$$

3

・ロン ・四 ・ ・ ヨン ・ ヨン

•
$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$

• $X^4 - 1 = (X^2 + \alpha^2 X + \alpha^2) \cdot \underbrace{(X^2 + \alpha^2 X + \alpha)}_g$

• $(g)_{4,\theta,c}$ [4,2,3]₄ θ -cyclic code

$$G_{g,4,\theta} = \left(\begin{array}{ccc} \alpha & \alpha^2 & 1 & 0 \\ 0 & \alpha^2 & \alpha & 1 \end{array}\right)$$

• $(g)_{3,\theta}$ [3,1,3]₄ shortened θ -cyclic code

$$G_{g,3,\theta} = (\alpha \quad \alpha^2 \quad 1)$$

3

∃ ► < ∃ ►</p>

< □ > < ---->

•
$$\mathbb{F}_4 = \mathbb{F}_2(\alpha), \ \theta : a \mapsto a^2, \ R = \mathbb{F}_4[X; \theta]$$

• $X^4 - 1 = (X^2 + \alpha^2 X + \alpha^2) \cdot \underbrace{(X^2 + \alpha^2 X + \alpha)}_g$

• $(g)_{4,\theta,c}$ [4,2,3]₄ θ -cyclic code

$$G_{g,4,\theta} = \left(\begin{array}{ccc} \alpha & \alpha^2 & 1 & 0\\ 0 & \alpha^2 & \alpha & 1 \end{array}\right)$$

• $(g)_{3,\theta}$ [3, 1, 3]₄ shortened θ -cyclic code

$$G_{g,3,\theta} = (\begin{array}{cc} \alpha & \alpha^2 & 1 \end{array})$$

3

< □ > < ---->

$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

$$R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$$

 $C^{\perp} = (h^*)_{n,\theta,c}$

Skew polynomials and linearized polynomials.

Gabidulin codes.

Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes.

Definition. θ -constacyclic and shortened θ -constacyclic codes **Dual code.** Self-dual codes.

Dual.

• The dual of a θ -constacyclic code is θ -constacyclic.

Proof

$$< X^{i} \cdot g, X^{j} \cdot h^{*} >= \theta^{i}((g \cdot h)_{k+j-i}) = 0$$

- 31

イロト イポト イヨト イヨト

- The dual of a θ -constacyclic code is θ -constacyclic.
- Proof let $C = (g)_{n,\theta,c}$ and let $a \in \mathbb{F}_{q^m}^*$ such that $g|_r X^n - a$

 $g|_{r}X^{n}-a \Leftrightarrow g|_{l}X^{n}-b, b \in \mathbb{F}_{q^{m}}^{*}$

Let $h \in R$ be such that $g \cdot h = X^n - b$, $\deg(h) = k$

Let h^* be the skew reciprocal polynomial of $h \in R$: $h^* = \sum_i X^{k-i} \cdot h_i$

 $\forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ < X^i \cdot g, X^j \cdot h^* >= \theta^i ((g \cdot h)_{k+j-i}) = 0$

so $C^{\perp} = (h^*)_{n,\theta}$

 $h^*|_r X^n - 1/b$ so $C^\perp = (h^*)_{n, heta, o}$

3

(a)

Dual.

- The dual of a θ -constacyclic code is θ -constacyclic.
- Proof let $C = (g)_{n,\theta,c}$ and let $a \in \mathbb{F}_{a^m}^*$ such that $g|_r X^n - a$ $g|_{r}X^{n} - a \Leftrightarrow g|_{l}X^{n} - b, b \in \mathbb{F}_{a^{m}}^{*}$

Let $h \in R$ be such that $g \cdot h = X^n - b$, deg(h) = k

Dual.

- The dual of a θ -constacyclic code is θ -constacyclic.
- Proof let $C = (g)_{n,\theta,c}$ and let $a \in \mathbb{F}_{a^m}^*$ such that $g|_r X^n - a$

 $g|_{r}X^{n} - a \Leftrightarrow g|_{l}X^{n} - b, b \in \mathbb{F}_{a^{m}}^{*}$

Let $h \in R$ be such that $g \cdot h = X^n - b$. deg(h) = k

Let h^* be the skew reciprocal polynomial of $h \in R$: $h^* = \sum_i X^{k-i} \cdot h_i$

Dual.

- The dual of a θ -constacyclic code is θ -constacyclic.
- Proof let $C = (g)_{n,\theta,c}$ and let $a \in \mathbb{F}_{q^m}^*$ such that $g|_{t}X^n - a$ $g|_{r}X^{n} - a \Leftrightarrow g|_{l}X^{n} - b, b \in \mathbb{F}_{a^{m}}^{*}$

Let $h \in R$ be such that $g \cdot h = X^n - b$, deg(h) = k

Let h^* be the skew reciprocal polynomial of $h \in R$: $h^* = \sum_i X^{k-i} \cdot h_i$

$$\forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ < X^i \cdot g, X^j \cdot h^* >= \theta^i((g \cdot h)_{k+j-i}) = 0$$

Dual.

- The dual of a θ -constacyclic code is θ -constacyclic.
- Proof let $C = (g)_{n,\theta,c}$ and let $a \in \mathbb{F}_{q^m}^*$ such that $g|_{t}X^n - a$ $g|_{r}X^{n} - a \Leftrightarrow g|_{l}X^{n} - b, b \in \mathbb{F}_{a^{m}}^{*}$

Let $h \in R$ be such that $g \cdot h = X^n - b$, deg(h) = k

Let h^* be the skew reciprocal polynomial of $h \in R$: $h^* = \sum_i X^{k-i} \cdot h_i$

$$\forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ < X^i \cdot g, X^j \cdot h^* >= \theta^i((g \cdot h)_{k+j-i}) = 0$$

so $C^{\perp} = (h^*)_{n,\theta}$

Dual.

- The dual of a θ -constacyclic code is θ -constacyclic.
- Proof let $C = (g)_{n,\theta,c}$ and let $a \in \mathbb{F}_{q^m}^*$ such that $g|_{t}X^n - a$ $g|_{r}X^{n} - a \Leftrightarrow g|_{l}X^{n} - b, b \in \mathbb{F}_{a^{m}}^{*}$

Let $h \in R$ be such that $g \cdot h = X^n - b$, deg(h) = k

Let h^* be the skew reciprocal polynomial of $h \in R$: $h^* = \sum_i X^{k-i} \cdot h_i$

$$\forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ < X^i \cdot g, X^j \cdot h^* >= \theta^i((g \cdot h)_{k+j-i}) = 0$$

so $C^{\perp} = (h^*)_{n,\theta}$

 $h^*|_r X^n - 1/b$ so $C^{\perp} = (h^*)_{n,\theta,c}$

▲□▶ ▲□▶ ▲∃▶ ▲∃▶ = のQ⊙

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.

• Proof

1. Let $C = (g)_{n,\theta}$ be a module θ -code of dimension k and let us assume that C^{\perp} is a module θ -code.

 $\exists p \in R, \deg(p) = k, C^{\perp} = (p)_{n,\theta}$

 $\begin{aligned} \forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ 0 = < X^i \cdot g, X^j \cdot p > = \theta^i((g \cdot h)_{k+j-i}) \text{ with } h = \theta^{-k}(p^*) \end{aligned}$

so $g \cdot h = X^n - b, b \in \mathbb{F}_{q^m}^*$

and C is θ -constacyclic

- 3

(日) (周) (三) (三)

Dual.

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.

Proof

1. Let $C = (g)_{n,\theta}$ be a module θ -code of dimension k and let us assume that C^{\perp} is a module θ -code.

 $\exists p \in R, \deg(p) = k, C^{\perp} = (p)_{n, \theta}$

 $\begin{aligned} \forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ 0 = < X^i \cdot g, X^j \cdot p > = \theta^i((g \cdot h)_{k+j-i}) \text{ with } h = \theta^{-k}(p^*) \end{aligned}$

so $g \cdot h = X^n - b, b \in \mathbb{F}_{q^m}^*$

and C is θ -constacyclic

- 3

(日) (周) (三) (三)

Dual.

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.

Proof

1. Let $C = (g)_{n,\theta}$ be a module θ -code of dimension k and let us assume that C^{\perp} is a module θ -code.

 $\exists p \in R, \deg(p) = k, C^{\perp} = (p)_{n,\theta}$

 $\begin{aligned} \forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ 0 = < X^i \cdot g, X^j \cdot p > = \theta^i((g \cdot h)_{k+j-i}) \text{ with } h = \theta^{-k}(p^*) \end{aligned}$

so $g \cdot h = X^n - b, b \in \mathbb{F}_{q^m}^*$

and C is θ -constacyclic

- 3

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Dual.

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.

Proof

1. Let $C = (g)_{n,\theta}$ be a module θ -code of dimension k and let us assume that C^{\perp} is a module θ -code.

$$\exists p \in R, \deg(p) = k, C^{\perp} = (p)_{n,\theta}$$

$$\begin{aligned} \forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ 0 = \langle X^i \cdot g, X^j \cdot p \rangle = \theta^i((g \cdot h)_{k+j-i}) \text{ with } h = \theta^{-k}(p^*) \end{aligned}$$

so $g \cdot h = X^n - b, b \in \mathbb{F}_{q^m}^*$

and C is θ -constacyclic

∃ → (∃ →

Dual.

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.

Proof

1. Let $C = (g)_{n,\theta}$ be a module θ -code of dimension k and let us assume that C^{\perp} is a module θ -code.

$$\exists p \in R, \deg(p) = k, C^{\perp} = (p)_{n,\theta}$$

$$\begin{aligned} \forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ 0 = < X^i \cdot g, X^j \cdot p > = \theta^i((g \cdot h)_{k+j-i}) \text{ with } h = \theta^{-k}(p^*) \end{aligned}$$

so $g \cdot h = X^n - b, b \in \mathbb{F}_{q^m}^*$

and C is θ-constacyclic

∃ → (∃ →

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.

Proof

1. Let $C = (g)_{n,\theta}$ be a module θ -code of dimension k and let us assume that C^{\perp} is a module θ -code.

$$\exists p \in R, \deg(p) = k, C^{\perp} = (p)_{n,\theta}$$

$$\begin{aligned} \forall i \in \{0, \dots, k-1\}, \forall j \in \{0, \dots, n-k-1\} \\ 0 = < X^i \cdot g, X^j \cdot p > = \theta^i((g \cdot h)_{k+j-i}) \text{ with } h = \theta^{-k}(p^*) \end{aligned}$$

so $g \cdot h = X^n - b, b \in \mathbb{F}_{q^m}^*$

and C is θ -constacyclic

- The dual of a shortened $\theta\text{-constacyclic code}$
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.
- Proof
 - 2. Let $C = (g)_{n,\theta}$ be a shortened θ -constacyclic code.

Let n' > n such that $C' = (g)_{n',\theta,c}$ be θ -constacyclic.

3

イロト イポト イヨト イヨト

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.
- Proof
 - 2. Let $C = (g)_{n,\theta}$ be a shortened θ -constacyclic code.

Let n' > n such that $C' = (g)_{n',\theta,c}$ be θ -constacyclic.

Let $c \in (\mathbb{F}_{q^m})^n$

- 32

(日) (周) (三) (三)

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.
- Proof
 - 2. Let $C = (g)_{n,\theta}$ be a shortened θ -constacyclic code.

Let n' > n such that $C' = (g)_{n',\theta,c}$ be θ -constacyclic.

Let
$$c \in (\mathbb{F}_{q^m})^n$$

 $c \in C \iff (c_0, \dots, c_{n-1}, 0, \dots, 0) \in C'$

(日) (同) (三) (三)

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.
- Proof
 - 2. Let $C = (g)_{n,\theta}$ be a shortened θ -constacyclic code.

Let n' > n such that $C' = (g)_{n',\theta,c}$ be θ -constacyclic.

$$\begin{array}{ll} \text{Let } c \in (\mathbb{F}_{q^m})^n \\ c \in C & \Leftrightarrow & (c_0, \dots, c_{n-1}, 0, \dots, 0) \in C' \\ & \Leftrightarrow & \forall c' \in C'^{\perp}, < (c_0, \dots, c_{n-1}, 0, \dots, 0), c' >= 0 \end{array}$$

3

(日) (同) (三) (三)

- The dual of a shortened θ -constacyclic code
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.
- Proof
 - 2. Let $C = (g)_{n,\theta}$ be a shortened θ -constacyclic code.

Let n' > n such that $C' = (g)_{n',\theta,c}$ be θ -constacyclic.

$$\begin{array}{lll} \text{Let } c \in (\mathbb{F}_{q^m})^n \\ c \in C & \Leftrightarrow & (c_0, \dots, c_{n-1}, 0, \dots, 0) \in C' \\ & \Leftrightarrow & \forall c' \in C'^{\perp}, < (c_0, \dots, c_{n-1}, 0, \dots, 0), c' >= 0 \\ & \Leftrightarrow & \forall c' \in C'^{\perp}, < c, \pi_{n' \to n}(c') >= 0 \end{array}$$

3

(日) (周) (三) (三)

- The dual of a shortened $\theta\text{-constacyclic code}$
 - 1. is not a module θ -code;
 - 2. is a punctured code of a θ -constacyclic code.
- Proof
 - 2. Let $C = (g)_{n,\theta}$ be a shortened θ -constacyclic code.

Let n' > n such that $C' = (g)_{n',\theta,c}$ be θ -constacyclic.

$$\begin{array}{lll} \text{Let } c \in (\mathbb{F}_{q^m})^n \\ c \in C & \Leftrightarrow & (c_0, \dots, c_{n-1}, 0, \dots, 0) \in C' \\ & \Leftrightarrow & \forall c' \in C'^{\perp}, < (c_0, \dots, c_{n-1}, 0, \dots, 0), c' >= 0 \\ & \Leftrightarrow & \forall c' \in C'^{\perp}, < c, \pi_{n' \to n}(c') >= 0 \end{array}$$

so $C^{\perp} = \pi_{n' \rightarrow n}(C'^{\perp})$

 $R = \mathbb{F}_{q^m}[X; \theta], \ \theta : a \mapsto a^q$

글 > - + 글 >

()

Skew polynomials and linearized polynomials.

Gabidulin codes.

Rank metric. Gabidulin codes (of linearized evaluation). Gabidulin *q*-cyclic codes.

Module θ -codes.

Definition. θ -constacyclic and shortened θ -constacyclic codes Dual code. Self-dual codes.

Construction of self-dual module θ -codes.

- $C = (g)_{2k,\theta,c}$, $\deg(g) = k$
- $C = C^{\perp} \Leftrightarrow \forall i, j \in \{0, \dots, k-1\}, \langle X^i \cdot g, X^j \cdot g \rangle = 0$
- k^2 polynomial equations, k unknowns

•
$$N = \left\lfloor \frac{k}{2} \right\rfloor + 1$$

N polynomial equations, N unknowns

Construction of self-dual module θ -codes.

•
$$C = (g)_{2k,\theta,c}$$
, $\deg(g) = k$

•
$$C = C^{\perp} \Leftrightarrow \forall i, j \in \{0, \dots, k-1\}, \langle X^i \cdot g, X^j \cdot g \rangle = 0$$

• k^2 polynomial equations, k unknowns

•
$$N = \left\lfloor \frac{k}{2} \right\rfloor + 1$$

N polynomial equations, N unknowns

3

(日) (同) (三) (三)

Construction of self-dual module θ -codes.

•
$$C = (g)_{2k,\theta,c}$$
, $\deg(g) = k$

•
$$C = C^{\perp} \Leftrightarrow \forall i, j \in \{0, \dots, k-1\}, \langle X^i \cdot g, X^j \cdot g \rangle = 0$$

• k^2 polynomial equations, k unknowns

•
$$N = \left\lfloor \frac{k}{2} \right\rfloor + 1$$

N polynomial equations, N unknowns
Construction of self-dual module θ -codes.

•
$$C = (g)_{2k,\theta,c}$$
, $\deg(g) = k$

•
$$C = C^{\perp} \Leftrightarrow \forall i, j \in \{0, \dots, k-1\}, \langle X^i \cdot g, X^j \cdot g \rangle = 0$$

• k^2 polynomial equations, k unknowns

•
$$N = \left\lfloor \frac{k}{2} \right\rfloor + 1$$

N polynomial equations, N unknowns

Skew codes

()

Construction over \mathbb{F}_4 .

length	nbr	best	nbr of
	pol	distances	codes
4	3	<mark>3</mark> - 3	1
6	3	3 - 3	1
8	3	4 - 4	1
10	5	4 - 4	1
12	21	6 - 6	1
14	11	6 - 6	1
16	3	4 - 6	1
18	27	6 - 6	2
20	63	8 - 8	1
22	33	8 - 8	1
24	93	7 - 8	2
26	65	8 - 8	3
28	279	9 - 9	4
30	285	10 - 10	1
32	3	4 - 10	1
34	289	10 - 10	6
36	1 533	11 - 11	3
38	513	11 - 11	2
40	1 023	12 - 12	1

length	nbr	best	nbr of
	pol	distances	codes
42	2 211	12 - 12	21
44	3 171	14 - 14	1
46	2 051	14 - 14	1
48	1 533	12 - 14	18
50	5 125	14 - 14	4
52	12 483	14 - 14	41
54	13 851	14 - 14	47
56	18 051	15 - 15	2
58	16 385	15 - 15	9
60	136 269	16 - 16	5
62	42 875	17 - 17	1
64	3	4 - 16	1
66	107 811	17 - 17	1
68	≥ 1	17 - 18	≥ 1
70	≥ 1	18 - 18	≥ 1
72	≥ 1	18 - 18	≥ 1
74	≥ 1	18 - 18	≥ 1
76	≥ 1	18 - 18	≥ 1
78	≥ 1	18 - 18	≥ 1

Gaborit, Otmani (2002); Grassl, Gulliver (2009); Chabot (2010) . . .

æ

イロト イヨト イヨト イヨト

• $g = (X+1)^{2^{s-1}}$

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 2]_{4} \theta$ -cyclic self-dual code single $[2^{s}, 2^{s-1}]_{4}$ cyclic code (self-dual)

•
$$g = (X + \alpha^i) \cdot (X + 1)^{2^{s-1}-1}, i = 1, 2$$

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 4]_{4}$ self-dual θ -cyclic code

Conjecture : there is no other [2^s, 2^{s-1}]₄ self-dual module θ-code.

イロト イポト イヨト イヨト 二日

• $g = (X+1)^{2^{s-1}}$

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 2]_{4} \theta$ -cyclic self-dual code single $[2^{s}, 2^{s-1}]_{4}$ cyclic code (self-dual)

•
$$g = (X + \alpha^{i}) \cdot (X + 1)^{2^{s-1}-1}$$
, $i = 1, 2$

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 4]_{4}$ self-dual θ -cyclic code

• Conjecture : there is no other $[2^s, 2^{s-1}]_4$ self-dual module θ -code.

• $g = (X+1)^{2^{s-1}}$

 $(g)_{2^{s},\theta}: [2^{s}, 2^{s-1}, 2]_{4} \theta$ -cyclic self-dual code single $[2^{s}, 2^{s-1}]_{4}$ cyclic code (self-dual)

•
$$g = (X + \alpha^{i}) \cdot (X + 1)^{2^{s-1}-1}$$
, $i = 1, 2$

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 4]_{4}$ self-dual θ -cyclic code

• Conjecture : there is no other $[2^{s}, 2^{s-1}]_{4}$ self-dual module θ -code.

• $g = (X+1)^{2^{s-1}}$

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 2]_{4}$ θ -cyclic self-dual code single $[2^{s}, 2^{s-1}]_{4}$ cyclic code (self-dual)

• $g = (X + \alpha^{i}) \cdot (X + 1)^{2^{s-1}-1}$, i = 1, 2

 $(g)_{2^{s},\theta}$: $[2^{s}, 2^{s-1}, 4]_{4}$ self-dual θ -cyclic code

• Conjecture : there is no other $[2^s, 2^{s-1}]_4$ self-dual module θ -code.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のの⊙

•
$$C = (g)_{2^{s},\theta}, g = (X + \alpha) \cdot (X + 1)^{2^{s-1}-1}$$

1. *C* is
$$\theta$$
-cyclic :
 $h = (X+1)^{2^{s-1}-1} \cdot (X+\alpha^2)$
 $h \cdot g = (X+1)^{2^{s-1}-1} \cdot \underbrace{(X+\alpha^2) \cdot (X+\alpha)}_{X^2+1} \cdot (X+1)^{2^{s-1}-1} = X^{2^s}+1 = g \cdot h$

- 2. *C* is self-dual : $h^* = \alpha^2 g$
- 3. Word of Hamming weight 4 :

$$m = (X+1)^{2^{s-2}-1} \cdot (X+\alpha^2)$$

$$m \cdot g = (X+1)^{2^{s-2}} \cdot (X+1)^{2^{s-1}} = X^{3 \times 2^{s-2}} + X^{2^{s-1}} + X^{2^{s-2}} + 1$$

• C, $[2^{s}, 2^{s-1},]_4$ self-dual θ -cyclic (noncyclic) code

イロト 不得下 イヨト イヨト 二日

•
$$C = (g)_{2^{s},\theta}, g = (X + \alpha) \cdot (X + 1)^{2^{s-1}-1}$$

1. *C* is
$$\theta$$
-cyclic :
 $h = (X+1)^{2^{s-1}-1} \cdot (X+\alpha^2)$
 $h \cdot g = (X+1)^{2^{s-1}-1} \cdot \underbrace{(X+\alpha^2) \cdot (X+\alpha)}_{X^2+1} \cdot (X+1)^{2^{s-1}-1} = X^{2^s}+1 = g \cdot h$

2. *C* is self-dual :
$$h^* = \alpha^2 g$$

3. Word of Hamming weight 4 :

$$m = (X+1)^{2^{s-2}-1} \cdot (X+\alpha^2)$$

$$m \cdot g = (X+1)^{2^{s-2}} \cdot (X+1)^{2^{s-1}} = X^{3 \times 2^{s-2}} + X^{2^{s-1}} + X^{2^{s-2}} + 1$$

• C, $[2^{s}, 2^{s-1},]_4$ self-dual θ -cyclic (noncyclic) code

イロト 不得下 イヨト イヨト 二日

•
$$C = (g)_{2^{s},\theta}, g = (X + \alpha) \cdot (X + 1)^{2^{s-1}-1}$$

1. *C* is
$$\theta$$
-cyclic :
 $h = (X+1)^{2^{s-1}-1} \cdot (X+\alpha^2)$
 $h \cdot g = (X+1)^{2^{s-1}-1} \cdot \underbrace{(X+\alpha^2) \cdot (X+\alpha)}_{X^2+1} \cdot (X+1)^{2^{s-1}-1} = X^{2^s} + 1 = g \cdot h$

- 2. *C* is self-dual : $h^* = \alpha^2 g$
- 3. Word of Hamming weight 4 :

$$m = (X+1)^{2^{s-2}-1} \cdot (X+\alpha^2)$$

$$m \cdot g = (X+1)^{2^{s-2}} \cdot (X+1)^{2^{s-1}} = X^{3 \times 2^{s-2}} + X^{2^{s-1}} + X^{2^{s-2}} + 1$$

• C, $[2^{s}, 2^{s-1},]_4$ self-dual θ -cyclic (noncyclic) code

- 32

イロト イポト イヨト イヨト

•
$$C = (g)_{2^{s},\theta}, g = (X + \alpha) \cdot (X + 1)^{2^{s-1}-1}$$

1. *C* is
$$\theta$$
-cyclic :
 $h = (X+1)^{2^{s-1}-1} \cdot (X+\alpha^2)$
 $h \cdot g = (X+1)^{2^{s-1}-1} \cdot \underbrace{(X+\alpha^2) \cdot (X+\alpha)}_{X^2+1} \cdot (X+1)^{2^{s-1}-1} = X^{2^s} + 1 = g \cdot h$

- 2. *C* is self-dual : $h^* = \alpha^2 g$
- 3. Word of Hamming weight 4 :

$$m = (X + 1)^{2^{s-2}-1} \cdot (X + \alpha^2)$$

$$m \cdot g = (X + 1)^{2^{s-2}} \cdot (X + 1)^{2^{s-1}} = X^{3 \times 2^{s-2}} + X^{2^{s-1}} + X^{2^{s-2}} + 1$$

• C, [2^s, 2^{s-1},]₄ self-dual θ-cyclic (noncyclic) code

- 2

•
$$C = (g)_{2^{s},\theta}, g = (X + \alpha) \cdot (X + 1)^{2^{s-1}-1}$$

1. *C* is
$$\theta$$
-cyclic :
 $h = (X+1)^{2^{s-1}-1} \cdot (X+\alpha^2)$
 $h \cdot g = (X+1)^{2^{s-1}-1} \cdot \underbrace{(X+\alpha^2) \cdot (X+\alpha)}_{X^2+1} \cdot (X+1)^{2^{s-1}-1} = X^{2^s}+1 = g \cdot h$

- 2. *C* is self-dual : $h^* = \alpha^2 g$
- 3. Word of Hamming weight 4 :

$$m = (X + 1)^{2^{s-2}-1} \cdot (X + \alpha^2)$$

$$m \cdot g = (X + 1)^{2^{s-2}} \cdot (X + 1)^{2^{s-1}} = X^{3 \times 2^{s-2}} + X^{2^{s-1}} + X^{2^{s-2}} + 1$$

• C, $[2^{s}, 2^{s-1}, \leq 4]_4$ self-dual θ -cyclic (noncyclic) code

•
$$C = (g)_{2^{s},\theta}, g = (X + \alpha) \cdot (X + 1)^{2^{s-1}-1}$$

1. *C* is
$$\theta$$
-cyclic :
 $h = (X+1)^{2^{s-1}-1} \cdot (X+\alpha^2)$
 $h \cdot g = (X+1)^{2^{s-1}-1} \cdot \underbrace{(X+\alpha^2) \cdot (X+\alpha)}_{X^2+1} \cdot (X+1)^{2^{s-1}-1} = X^{2^s}+1 = g \cdot h$

- 2. *C* is self-dual : $h^* = \alpha^2 g$
- 3. Word of Hamming weight 4 :

$$m = (X + 1)^{2^{s-2}-1} \cdot (X + \alpha^2)$$

$$m \cdot g = (X + 1)^{2^{s-2}} \cdot (X + 1)^{2^{s-1}} = X^{3 \times 2^{s-2}} + X^{2^{s-1}} + X^{2^{s-2}} + 1$$

C, [2^s, 2^{s-1}, 4]₄ self-dual θ-cyclic (noncyclic) code

イロト イポト イヨト イヨト

- 2

$$heta \in Aut(\mathbb{F}_{q^m}), \ lpha \in \mathbb{F}_{q^m}, \ f = \sum_i f_i X^i \in \mathbb{F}_{q^m}[X; heta]$$

"Linear" evaluation

$$\mathcal{L}_f(\alpha) = \sum_i f_i \theta^i(\alpha)$$

- \rightarrow Gabidulin codes (of linearized evaluation), Maximum Rank Distance
 - "Polynomial" evaluation

$$f(\alpha) = \operatorname{Rem}_r(f, X - \alpha) = \sum_i f_i \underbrace{N_i(\alpha)}_{\alpha \theta(\alpha) \dots \theta^{i-1}(\alpha)}$$

- ightarrow "polynomial evaluation" skew codes
- ightarrow module and evaluation skew codes over $\mathbb{F}_{q^m}[X; heta,\delta]$

$$heta \in Aut(\mathbb{F}_{q^m}), \ lpha \in \mathbb{F}_{q^m}, \ f = \sum_i f_i X^i \in \mathbb{F}_{q^m}[X; heta]$$

"Linear" evaluation

$$\mathcal{L}_f(\alpha) = \sum_i f_i \theta^i(\alpha)$$

- \rightarrow Gabidulin codes (of linearized evaluation), Maximum Rank Distance
 - "Polynomial" evaluation

$$f(\alpha) = \operatorname{Rem}_r(f, X - \alpha) = \sum_i f_i \underbrace{N_i(\alpha)}_{\alpha \theta(\alpha) \dots \theta^{i-1}(\alpha)}$$

- ightarrow "polynomial evaluation" skew codes
- ightarrow module and evaluation skew codes over $\mathbb{F}_{q^m}[X; heta,\delta]$

$$heta \in Aut(\mathbb{F}_{q^m}), \ lpha \in \mathbb{F}_{q^m}, \ f = \sum_i f_i X^i \in \mathbb{F}_{q^m}[X; heta]$$

"Linear" evaluation

$$\mathcal{L}_f(\alpha) = \sum_i f_i \theta^i(\alpha)$$

- \rightarrow Gabidulin codes (of linearized evaluation), Maximum Rank Distance
 - "Polynomial" evaluation

$$f(\alpha) = \operatorname{Rem}_{r}(f, X - \alpha) = \sum_{i} f_{i} \underbrace{N_{i}(\alpha)}_{\alpha \theta(\alpha) \dots \theta^{i-1}(\alpha)}$$

\rightarrow "polynomial evaluation" skew codes

ightarrow module and evaluation skew codes over $\mathbb{F}_{q^m}[X; heta,\delta]$

Image: A matrix

$$heta \in Aut(\mathbb{F}_{q^m}), \ lpha \in \mathbb{F}_{q^m}, \ f = \sum_i f_i X^i \in \mathbb{F}_{q^m}[X; heta]$$

"Linear" evaluation

$$\mathcal{L}_f(\alpha) = \sum_i f_i \theta^i(\alpha)$$

- \rightarrow Gabidulin codes (of linearized evaluation), Maximum Rank Distance
 - "Polynomial" evaluation

$$f(\alpha) = \operatorname{Rem}_{r}(f, X - \alpha) = \sum_{i} f_{i} \underbrace{N_{i}(\alpha)}_{\alpha \theta(\alpha) \dots \theta^{i-1}(\alpha)}$$

- \rightarrow "polynomial evaluation" skew codes
- ightarrow module and evaluation skew codes over $\mathbb{F}_{q^m}[X; \theta, \delta]$

Thank you for your attention !

3

<ロ> (日) (日) (日) (日) (日)